| STUDENTS
> Affective Computing and Human-Robot Interaction
|
Affective Computing and Human-Robot Interaction
Note:
Whilst every effort is made to keep the syllabus and assessment records correct
for this course, the precise details must be checked with the lecturer(s).
Code: | M082
(Also taught as: GI17)
|
Year: | 4 |
Prerequisites: | Successful completion of years 1 and 2 of the Computer Science, Mathematics and Computer Science or other Physical Science or Engineering programme with sufficient mathematical and programming content. Fundamentals of calculus, probability, statistics or have taken GI01 Supervised Learning in term 1. (GI02 Unsupervised Learning is a plus. |
Term: | 2 |
Taught By: | Nadia Berthouze (100%)
|
Aims: | The module targets students who have no previous knowledge in cognitive science and emotion theory and therefore the aim of Part 1 of the module is to give a basic introduction to the theory of emotion from psychology and neuroscience viewpoints and to understand its importance in human decision and communication processes. Part 2 will concentrate on the application of machine learning techniques to emotion recognition by looking at current applications in entertainment, education, and health. Part 3 will focus on the challenges in designing robots that are capable of socially interacting with humans. Examples of current applications in entertainment, education, health, therapy, rehabilitation, service robotics, rescue robots will be used to identify problems and discuss machine learning solutions for the topics taught in Parts 2 and 3. |
Learning Outcomes: | To have a basic knowledge of emotion models and of how technology (e.g., robot) can be endowed with the ability to affectively and socially interact with its user. To understand the challenges that affective computing and HRI pose to the machine learning field and identify the advantages and disadvantages of different machine learning techniques to address those issues. To understand how traditional HCI methods need to be modified to be applied to the HRI field. |
Content:
Emotion theory | What is affect, emotion, mood? Why do we have emotions? Neurological and psychological perspectives. How do humans express and recognise emotions? Emotion expression models, appraisal and causal theories. Affective and social interaction. |
Affective computing: emotion recognition | Affective computing, definition and aims. Application of machine learning techniques for adaptive emotion recognition from single modality (e.g. facial expressions, biosignals) Adaptive multimodal emotion regognition: signal fusion. |
Human-Robot Interaction (HRI) | Social robotics: motivation and emotions in robots. Emotion based architecture. Evaluation methods for HRI research. Ethical issues in Affective Computing and HRI research. |
Method of Instruction:
Lecture presentations, programming assignments.
Assessment:
The course has the following assessment components:
- Coursework Section (1 piece, 40%)
- Written Examination (2.5 hours, 60%)
To pass this course, students must:
- Obtain an overall pass mark of 50% for all sections combined
The examination rubric is: N/AResources:
TBC
course website
|