
 1

Implementation of IS-IS routing protocol for the
eXtensible Open Router Platform (XORP)

Group Report

Group Members
Bitao Sun

Hongyi Li

Ling Zhen

Kang Tang

Xin Xiong

Supervisor
Professor Mark Handley

September 2nd, 2005

 2

Acknowledgements
 The group would like to express our sincere appreciation to our supervisor

Professor Mark Handley, for the enlightening advice and assistance as well as the

continuous confidence and encouragement he has been giving us throughout the

project, especially when we were faced with difficulties and feeling frustrated. We

would not have achieved a success without his great help and guidance.

 3

Table of Contents
Chapter One: Introduction ...5

1.1 Report Overview ..5
1.2 Introduction to the project ..5

Chapter 2: Background ..7
2.1 Overview of the IS-IS routing protocol ..7

2.1.1 Link State Routing Protocol..7
2.1.2 IS-IS routing protocol ...8

2.2 XORP router platform...13
2.2.1 XORP Design Philosophy...13
2.2.2 Architecture of XORP...14
2.2.3 Other Features of XORP...17

Chapter 3: Objectives, Scope and Requirements...19
3.1 Objectives and scope...19
3.2 Requirements Analyses...19

3.2.1 Routing Functions...19
3.2.2 XRL interfaces ..20
3.2.3 Modification of the FEA...20

Chapter 4: Design and Implementation ...22
4.1 Define the XRL interface...22
4.2 System Architecture Design ...22

4.2.1 Preliminary System Design..23
4.2.2 Final System Architecture...27
4.2.3 Discussion of the System Architecture Design Issues31

4.4 Design and Implementation of Major components...33
4.4.1 PDU Encoding and Decoding...33
4.4.2 Modifications to the FEA ...35
4.4.3 Circuit & CircuitIO...36
4.4.4 CircuitManager & XrlCircuitManager ...41
4.4.5 Link State Database ..42
4.4.6 Shortest-Path-First (SPF) Calculation...47
4.4.7 XrlRibNotifier...48

Chapter 5: Testing and Evaluation ...51
5.1 Set up testing environment..51
5.2 Unit Testing and Integration Testing...53

 4

5.2.1 Packet Encoder and Decoder ..53
5.2.2 Circuit ...54
5.2.3 LSD & SPF ...56
5.2.4 XORP Integration Tests ..58

5.3 Overall System Testing ...61
Chapter 8: Project Management...63

8.1 Project Management Plan ...63
8.2 Work Breakdown ..64
8.3 Team Organisation ..65
8.4 Monitor and Control ...67
8.5 Risk Management ...68

Chapter 9: Future Work and Conclusion..69
9.1 Future Work ..69
9.2 Conclusion ..69

Bibliography ..71

 5

Chapter One: Introduction

1.1 Report Overview

This report serves as the major documentation of our project -- an implementation

of the Intermediate System to Intermediate System routing protocol based on the

eXtensible Open Router Platform (XORP). It provides descriptions and analyses of

our development process so as to help the readers understand the project in both

technical and management aspects.

The whole report is organised as several sections. The first part (Chapter 1&2)

gives an introduction to the background of the project, including the main features of

the IS-IS routing protocol as well as the XORP platform it is to be implemented on,

which is essential for understanding the rest of the report. Then the objectives, scope

and requirements of the project are identified in Chapter 3. Chapter 4 presents the

design and implementation of the overall system and major individual components

respectively. Not only the design choices and decisions, but also the reasons behind

them are discussed. The following chapter is about the testing and evaluation of the

project, which gives critical assessment on how each module and the system as a

whole work, in comparison with the objectives of the project set up at the beginning.

The rest of the report discusses the future work that can be done to further complete

and improve the project, and the project management approaches adopted by the

group.

1.2 Introduction to the project

Many researchers in the network community are facing a difficult problem that

some of their experiments can only be carried out in simulation environments instead

of real networks. For example, it is almost impossible to evaluate a new routing

protocol, because the commercial router platforms consisting the Internet provide

neither open source router software, nor open API to researchers to deploy the new

 6

protocol in real networks. The design of the eXtensible Open Router Platform (XORP)

is aimed to provide a solution for this problem. To fulfil such a goal, it is necessary for

XORP to be both a stable deployment platform that can be used in production

networks and be an extensible research platform so that researchers can introduce new

protocols or improve existing protocols in the networks. As a result, the design of

XORP focuses on three main goals: extensibility, performance and robustness. How

these goals are achieved will be introduced in next chapter along with the architecture

of XORP.

Currently, XORP provides a set of routing protocol implementations, an

extensible programming API, and configuration tools. The supported protocols are

BGP, RIP, PIM-SM, and IGMP/MLD. IPv4 and IPv6 are both supported. While a

reasonably complete port of John Moy's OSPFd (on FreeBSD) to the XORP

environment exists, it has not been well enough tested to know if it works or not, and

an OSPF implementation specifically for XORP will be produced in the future.

Compared to two other existing open source router software Zebra and Quagga,

which are licensed under the GPL which imposes certain constraints on users, XORP

is licensed under a BSD-style license, which permits people to freely use it, customize

it, make their own product out of it, etc. This may be important to commercial users

and may makes XORP to be more widely used in the real world.

The Intermediate System to Intermediate System Routing Protocol is a link state

routing protocol which has a lot in common with OSPF. Although OSPF is the

primary routing protocol for IP, IS-IS routing has become increasingly popular

widespread usage among Internet Service Providers in recent years. IS-IS enables

very fast convergence with large scalability, and It is also a very flexible protocol and

can been extended to incorporate many new features. Therefore, it is definitely

necessary for XORP to provide support for the IS-IS routing protocol. Our project is

based on such a motivation and is an initial attempt to provide such support.

 7

Chapter 2: Background

2.1 Overview of the IS-IS routing protocol

2.1.1 Link State Routing Protocol

 Since IS-IS is a link state routing protocol, the basic ideas and operations of

general link state routing are first introduced briefly.

Link-state routing and Distance Vector routing are two main categories of

dynamic routing protocols. In Distance Vector routing, each router observes its

distance to every other router in the domain and transmit this information to its closest

neighbours, while Link-state routing works by having a router inform every other

router in the domain about its closest neighbours. Link-state routing provides greater

flexibility and sophistication than Distance Vector routing, and avoids the major

problems of Distance Vector routing such as split horizon and counting to infinity.

The basic principles of link state routing are outlined as follows:

1. In link state routing, each router exchange Hello packets and establishes

an adjacency with each of its neighbours.

2. Each router constructs a Link State Packet (LSP) based on its adjacencies

and transmits it to each neighbour. LSP contains a list of the router’s

neighbours, the state of the link between the router and each neighbour,

and the metric cost of the router’s interface to the link. Each router in turn

forwards the LSPs it receives to each of its own neighbours.

3. Each router stores in a local Link State Database a most recently copy of

all the LSPs it has received.

4. Each router now has a complete graph of the network topology stored as

the Link State Database. Based upon this information, each router

computes the shortest path to each destination using Dijkstra algorithm,

and enters this information into the route table.

 8

2.1.2 IS-IS routing protocol

 IS-IS is initially designed as the routing protocol for the ISO’s Connectionless

Network Protocol (CLNP) and is described in ISO 10589. Since at that time, it was

believed that TCP/IP was an interim protocol suite that would eventually be replaced

by the OSI protocol suite, to support this predicted transition, an extension to IS-IS –

Integrated IS-IS for IP and Dual environments was proposed and was described in

RFC 1195. The purpose of Integrated IS-IS was to provide a single routing protocol

with the capabilities of routing both Connectionless-mode Network Service (CLNS) –

the network layer protocol of CLNP and IP, in contrast with an alternative method

known as “Ships in the Night”, which makes use of completely independent routing

protocols for each of the two protocol suites.

However, since the OSI protocol suite did not end up getting widely used as

TCP/IP, IS-IS is actually used only as an IP routing protocol. Therefore, both the

discussions here and our implementation are based on IP-only environments.

1. IS-IS Hierarchical routing

In order to support large routing domains IS-IS routing has been organized

hierarchically. A routing domain can be administratively divided into areas. Routing

inside an area is referred to as Level 1 routing and between the areas as Level 2

routing. The following graph illustrates the idea of IS-IS areas. An intermediate

system can be a level 1 (L1) router, a level 2 (L2) router, or both (L1/L2).

A L1 router knows only the topology in its own area, and it has a L1 link state

database with all the information for intra-area routing. It uses the closest L2 router in

its own area to send packets out of the area. A L2 router may have neighbors in the

same or in different areas, and it has a L2 link state database with all information for

inter-area routing. L2 routers know about other areas but will not have Level 1

information from its own area. A L1/L2 router may have neighbors in any area. It has

both a L1 and a L2 link-state database for intra-area and inter-area routing. A L1/L2

router runs two SPF calculations and may require more memory and processing as a

 9

result.

Figure 2-1. IS-IS Areas

2. Addresses used in IS-IS

Although IS-IS is now primarily used for IP routing, it still has to use the OSI

network-layer address known as NSAP which is defined for CLNS packets. A NSAP

address consists of a number of different parts that are organized hierarchically. But

for IP-only routing, where routers normally only have TCP/IP addresses, a valid OSI

style address can be and should be algorithmically generated from existing IP address

and Autonomous System number assignments. In such cases, the useful fields in an

OSI address are:

 -- The Routing Domain field: the AS number

-- The Area field: assigned by the authority responsible for the routing domain,

such that each area in the routing domain must have a unique Area value;

-- The System ID field: it is recommended to use either an IEEE 802 48 bit station

ID (MAC address) or to use the value hex “02 00” prepended to an IP address

of the router. Here we choose to use an IP address to identify a IS-IS system.

3. IS-IS Functional Organisation

One of the primary reasons for having a layered network architecture like the OSI

model is so that the functions of each layer can be independent from the layer below.

The network layer, for example, must adapt to many types of data links or

 10

subnetworks. To further this adaptability, the network layer is divided into two

sublayers as shown in Figure 2-2. The Subnetwork-Independent sublayer provides

consistent and uniform services to the transport layer, while the

Subnetwork-Dependent sublayer accesses the services of the data link layer on behalf

of the Subnetwork-Independent sublayer.

Figure 2-2． The OSI Network Layer

IS-IS routing functions are therefore divided into two groups known as

Subnetwork-Independent Functions and Subnetwork-Dependent Functions, each of

which is described below:

Subnetwork Dependent Functions

The purpose of the subnetwork dependent functions is to hide the characteristics

of different kinds of subnetworks from subnetwork independent functions. And the

major functions include:

 Transmit and receive of IS-IS PDUs over the specific attached subnetwork

 Exchange Hello PDUs to discover neighbours, form and maintain adjacencies

An IS-IS router uses its Hello PDUs to identify itself and its capabilities and

to describe the parameters of the interface on which the Hello PDUs are sent. If

two neighbours agree on their respective capabilities and interface parameters,

they become adjacent to one another.

Once an adjacency is established, the Hello PDUs are sent to as keepalives.

Each router sends a holding timer value in its Hello packets, telling its neighbours

how long they should wait to receive the next Hello packet before declaring the

router dead.

 11

 LAN Designated IS

In order to reduce the amount of routing traffic, a mechanism known as

Designated IS is used on broadcast networks. As shown in figure 2-3, rather than

having each router connected to the LAN advertise an adjacency with every other

router on the LAN, the LAN itself is considered as a router and is called a

“pseudonode”. A Designated IS (DIS) is elected based on an administratively set

priority value. Each router, including the DIS, advertises a single link to the

pseudonode, and the DIS also advertises a link to all of the attached routers on

behalf of the pseudonode.

Figure 2-3. LAN Designated IS and pseudonode

Subnetwork Independent Functions

The subnetwork independent functions can be divided into four processes as

shown in figure 2-4: the Update process, the Decision process, the Forwarding

process and the Receiving process. The last two processes are responsible for the

transmission and reception of PDUs and are of little relevance to IP packets; therefore

we basically do not need to worry about them.

 12

Figure 2-4. Four processes in the Subnetwork Independent Functions

The Update Process

 The Update Process is responsible for generating and propagating Link State

information reliably throughout the routing domain, as well as maintaining its Link

State Database (LSD). An LSP holds information about the adjacencies and their

metric values seen by the system that originated the LSP, and since IP routes to IP

subnets, it also contains the IP reachability information (IP address + subnet mask)

reachable by the system.

A system generates its own LSPs periodically and when topological changes or

system management actions happen, for example, when an adjacency goes down or

when the metric of an interface changes. LSPs are propagated throughout the domain

by flooding, in which each router propagates to all its neighbour routers except the

neighbour from which it received the LSP.

 IS-IS uses Sequence Number PDUs (SNPs) both to assure the reliable

propagation of LSPs and to maintain LSD synchronisation. On a point-to-point

subnetwork, a router uses a Partial SNP (PSNP) to explicitly acknowledge each LSP it

receives. On broadcast networks, LSPs are not acknowledged by each receiving router.

 13

Instead, the DIS periodically multicasts a Complete SNP (CSNP) that describes every

LSP in its link state database. When a router receives a CSNP, it compares the LSPs

summarised in it with those in its own LSD. If the router has an LSP that is missing

from the CSNP or a newer instance of an LSP, the router multicast the LSP onto the

network; If the router’s LSD does not contain a copy of every LSP listed in the CSNP

or if the LSD has an older instance of some LSP, it multicasts a PSNP containing the

LSP it needs, and the DIS responds with the appropriate LSP(s).

The Decision Process

 The decision process uses the information in the LSD built by the update process

to calculate a shortest path tree, which is then used to construct a forwarding database

or route table. Dijkstra computations are run separately for L1 and L2 LSDs, and

separately for each supported routing metric within a level. The Dijkstra computation

calculates routes to each distinct IP reachability entry, which can be treated in much

the same manner as an OSI end system.

2.2 XORP router platform

Since our implementation of IS-IS routing protocol is to be based on the XORP

router platform, it is essential to have a good understanding about the architecture of

the XORP, and especially the components which are relevant to our development.

This section gives a description about these issues.

2.2.1 XORP Design Philosophy

 As mentioned before, there are three major goals which XORP set out to achieve:

extensibility, performance and robustness. To achieve extensibility and robustness, the

functionalities in XORP are separated into independent modules and run in different

UNIX processes, with well-defined APIs between them. For example, each different

routing protocol runs as an individual process. In this case, even if a certain routing

process crashes, it will not bring down the whole system, and the router will still be

able to perform most of its functionalities with other processes running properly.

 14

However, a result of such a design is that the system performance would be affected

by the need of carrying out inter-process communications. Thus the inter-process

communication mechanism is carefully designed so that the cost is minimised.

2.2.2 Architecture of XORP

 The figure below shows the system architecture of XORP, which can be divided

into two subsystems. The higher-level (“user-space”) subsystem consists of the

routing protocols and management mechanisms. The lower-level (“kernel”) provides

the forwarding path, and provides APIs for the higher-level to access. User-level

XORP uses a multi-process architecture with one process per routing protocol, and a

novel inter-process communication mechanism known as XORP Resource Locators

(XRLs). XRL communication is not limited to a single host, so XORP can potentially

run on multiple and distributed systems.

Figure 2-5. XORP Process Model

Management Processes

 15

On top level, the four processes IPC finder, router manager, CLI (Command Line

Interface) and SNMP is for management purposes. The router manager is responsible

for starting all the processes of the router in an order that is based on their

dependencies, as well as monitoring their status, and together with the CLI provides

an interface for administrators to configure the router. IPC finder is a component for

inter-process communications.

FEA: Forwarding Engine Abstraction

At the very bottom of XORP user-space is the Forwarding Engine Abstraction,

which as its name suggests, provides a uniform interface to the underlying forwarding

engine and hides the variations between different platforms from other user level

processes. For example, these processes do not need to worry about whether the

underlying router is actually just a single machine or a set of distributed machines.

The FEA provides four different functions: interface management, forwarding

table management, raw packet I/O and TCP/UDP socket I/O. Important to routing

processes, including IS-IS is its interface management function. The FEA can learn

from hardware the state and useful attributes of configured interfaces. Useful

attributes include the whether the interface is a broadcast interface or a point-to-point

interface, its Mac address, the IP Subnets connected to it and so on. When there are

configuration requests from user input, the router manager passes them on for the

FEA to execute accordingly. Processes can register with the FEA to be notified of

changes in interface configuration. The registered processes are notified of changes,

and may query the FEA on the receipt of an update notification to determine the

change that occurred. These notifications are primarily of interest to routing protocols

since they need to know the up-to-date state of each interface.

The packet I/O functions can also be useful to routing processes. For example,

RIP makes use of the TCP/UDP socket I/O to send and receive packets. When it

wishes to send a packet, the RIP process just hands the packet to the FEA along with

an indication of which interface it should be sent on; for packet reception, the routing

process registers with the FEA about what types of packets it is interested in, and the

FEA will deliver such packets to it when received. However, the packets IS-IS uses to

 16

exchange information are raw Ethernet packets, which the FEA does not have any

existing interface to handle at the present. Therefore, we need to take this into account

when designing the system, and need to decide a way for packet transmission and

reception.

RIB: Routing Information Base

The RIB receives and stores routing information from all the routing protocols

running on a XORP router, i.e. the routes calculated by different protocols according

to their own algorithm. When it happens that there exist multiple different routes to

the same destination subnet, the RIB is responsible for deciding which route should be

used based on some administratively configured parameter. The RIB then propagate

the winning route to the FEA, and hence on to the actual forwarding engine.

Routing Processes

BGP4+, OSPF and RIP are the unicast routing protocols that XORP supports right

now, and IS-IS is the component we aim to implement in this project. Since these

processes do not directly communicate with each other, other routing protocols are

actually of little relevance to IS-IS implementation. However, the RIP module does

play an important role in the development process for we refer a lot to its internal

architecture and its code, especially at the early stages of the project. (reasons: general

similarity as routing protocols: exchange packets and maintain database; interaction

with other XORP components; utilization of the XORP library functions and useful

mechanisms; coding style.) Multicast routing processes are totally irrelevant.

XORP Inter-process communications

The separate processes of a XORP router communicate with one another using an

asynchronous remote procedure call mechanism, which is realized by using XORP

Resource Locators (XRLs). XRLs essentially represent inter-process procedure calls

along with their arguments. On a XORP router, each process provides one or more

interfaces that other processes can invoke. In another word, each process is capable of

handling XRL calls. Such a process is termed as a “target”. The IPC finder mentioned

before acts as an inter-process mediator. It knows the location of each XRL target, and

it is responsible for directing XRL calls to the right target. The advantage of this

 17

mechanism is that each of the XORP components only need to register with the IPC

finder, but does not need to know explicitly the location of all other processes, or how

to communicate with them. An XRL may be represented in a human readable form

that allows for easy manipulation with editing tools and invocation from the command

line during development. The XORP libxipc library provides a program “call_xrl” for

developers to perform XRL calls on command line or using simple scripts. (give an

example of XRL human-readable form and explain; XRL router)

2.2.3 Other Features of XORP

1. Programming Language

 XORP is primarily implemented in C++ because of its object orientation and

good performance. Besides, C++ provides a lot of powerful features that may make

the code simpler. For example, extensive use of C++ templates allows common

source code to be used for both IPv4 and IPv6, with the compiler generating efficient

implementations for both.

2. Event-driven model

Each XORP process adopts a single-threaded event driven programming model

[ref:xorp-nsdi]. One reason is that an application such as a routing protocol, where

events affecting common data come from many sources simultaneously, would likely

have high locking overhead. Additionally, as XORP is an open-source platform that

welcomes developers of all levels to make extensions, having a single-threaded design

is much better and easier for new programmers like us than using a multi-threaded

design which is not only hard to understand but also more error-prone.

Each XORP process has a single event loop. Events are generated by timers and

file descriptors; callbacks are dispatched whenever an event occurs. The libxorp

library provides several classes useful for using the event loop to handle events:

EventLoop, XorpTimer and XorpCallback.

3. Facilities provided by XORP libraries

XORP provides a large set of common C++ class libraries that would greatly

 18

simplify the development of code. In the libxorp library, there are a set of classes for

storing and manipulating IPv4 and IPv6 addresses, IP subnet addresses, MAC

addresses and routing next-hop information; a file debug.h providing facility for

debug messages generation; and a template class ref_ptr, a strong reference class

which maintains a count of how many references to an object exist and releases the

memory associated with the object when the reference count reaches zero.

 19

Chapter 3: Objectives, Scope and Requirements

3.1 Objectives and scope

The primary goal of the project is to provide a functional IS-IS routing protocol

implementation for the XORP platform. Considering the time constraints and the

nature of the project, it is not very realistic for the project to provide a complete

implementation that includes all the functionalities defined by the RFC specifications,

and can be actually deployed in the real world. Therefore, we have decided that we

aim to implement the core functionalities which are required by the basic operations

of the protocol, and other optional functionalities such as authentication and partition

repair will not be included in the project.

Another requirement indicated by this goal is that the IS-IS implementation need

to be able to correctly communicate with other processes on the XORP platform when

necessary. As mentioned before, this requirement mainly includes the following

aspects:

 Obtain information about interface state from the FEA.

 Send and receive packets via the FEA.

 Send routes computed by the decision process to the RIB.

Initially, there is another goal of the project, which is to implement a simulation

framework on which we can test the IS-IS implementation. However, as our

development progresses, we decided that there would not be enough time for us to

provide this simulation framework. Therefore, we modified our initial goals and

decided to concentrate on implementing a functional IS-IS routing process.

3.2 Requirements Analyses

3.2.1 Routing Functions

The routing function requirements are clearly defined in the specifications, which

 20

mainly include:

 Exchange of IS to IS Hello packets

 Neighbour adjacency building and maintaining

 LAN Designated IS election

 LSP generation and propagation

 Link State Database building and maintaining

 SPF route calculation

3.2.2 XRL interfaces

Every process in XORP provides one or more XRL interfaces for other processes

to send requests to it. For routing processes, it is necessary to provide some methods

so that the protocol can be configured. For example, the administrators need to be able

to configure an interface or port for the protocol to run on. Defining XRL interfaces is

usually the first step of developing a XORP process, and is therefore what we need to

do first.

3.2.3 Modification of the FEA

We mentioned in the last chapter that the FEA provides some packet I/O

interfaces for routing processes, including raw packet I/O and TCP/UDP socket I/O.

However, neither of these interfaces can be used by IS-IS routing process because

they are not able to handle IS-IS packets, which are raw Ethernet packets. But the

IS-IS routing process has to have some way for packet transmission and reception.

There are basically two options we may choose from to solve this problem:

1. The IS-IS routing process may directly handle the packet I/O itself.

In this case, the routing process has to communicate directly with the data

link layer. The IS-IS routing process need make use of the BPF (Berkley Packet

Filter) which provides a raw interface to data link layers in a protocol independent

fashion. All packets on the network, even those destined for other hosts, are

accessible through this mechanism. Then IS-IS can specify a packet filter for its

 21

PDUs and receive these packets via BPF.

However, this is not a very good solution. Since the BPF varies on different

platforms, the IS-IS must have specific knowledge about the underlying platform

and take the possible variations into account. Nevertheless, as we introduced

earlier, the purpose of having the FEA on XORP is to mask such variations from

the routing processes. This solution obviously misplaces the platform-dependent

operations and therefore undermines the merit of the XORP’s architecture design.

Additionally, it would deprive the portability of the IS-IS routing process because

the code for sending and receiving packets has to be modified accordingly

whenever it is to be migrated to be used on a different platform.

2. Interfaces designed to handle IS-IS packet I/O can be added to the

existing FEA.

In this case, the FEA needs to have additional interfaces specially for IS-IS

packet I/O. (specifically what interfaces? here or later?) (It needs to provide an

interface for the IS-IS to transmit packets, and another interface for IS-IS to

register to receive IS-IS packets, and the IS-IS routing process also needs to

provide with FEA an interface that can be called when the FEA wishes to notify it

the reception of the packets it is interested in.)

This solution is not ideal either, for the FEA has to know specifically about

IS-IS packets. But it is clearly better than the first option, for now how to send and

receive packets on different platforms are left to the FEA to deal with, which

makes the IS-IS routing process platform-independent and therefore portable.

 22

Chapter 4: Design and Implementation

 This chapter first introduces the XRL interface the system needs to provide, and

then discuss an early design of the system along with its problems. The final design is

then presented in comparison to the earlier one, and its relative advantages and

disadvantages are also discussed. The other major part of this chapter is to explain the

design and implementation of major components and the key issues we have

encountered and solved during the project.

4.1 Define the XRL interface

The IS-IS routing process needs to provide an interface for the outside so that it

can be configured. The existing XORP code has an interface definition for the IS-IS

protocol, which is what the IS-IS for XORP aims to support in the future. Considering

the goal of the project, we decided that we will only implement the basic part of the

interface, including several functions:

 -- Get / Set the system ID of the IS, which is typically an IP address of the router.

 -- Add / Delete an area address for the IS.

-- Configure an interface for the IS-IS protocol to run on, and set a number of

necessary parameters.

4.2 System Architecture Design

Designing a proper system architecture is a very important first step in

implementing the IS-IS routing protocol because for such a big system, any

ill-designed architecture would definitely cause increasing problems as the

development progresses. The designing work has also been a major challenge to us

for several reasons:

First, as we are implementing a well-defined routing protocol, an obvious

challenge is that we have to start dealing with the whole system from the very

 23

beginning. Unlike in some other projects where we might be able to start by designing

and developing a simple prototype with a minimal number of functions and features,

and then add more functions and extensions onto it iteratively and incrementally, we

need to take all the functionalities into account when designing the system

architecture.

Secondly, although the functionalities required in the system are extensively

defined in the RFCs and some architectural hints can also be found, they do not lead

immediately to a clear C++ class organization that properly reflects the functionalities

and relationships between them. To produce such a class organization still requires

good understanding of the specifications as well as some careful thinking.

Additionally, since our group members are all relatively inexperienced in C++

programming, we had not fully understood the principles and advantages of

object-oriented programming and thus did not know very well how to apply these

principles in actual system design so as to make use of those advantages.

4.2.1 Preliminary System Design

We spent quite some time in this task and some ideas and possible solutions had

been proposed and discussed in the course.

Initially, we intended to follow the “Functional Organization” defined in RFC

1142 as our guideline for architecture design and module division. Because the RFC

has divided the functions in IS-IS into the Subnetwork Dependent Functions and the

Subnetwork Independent Functions, and furthermore, each group of functions divided

into some smaller parts. For example, the subnetwork dependent functions mainly

consist of neighbour discovery, adjacency forming and maintaining and LAN DIS

election; and the subnetwork independent functions can be seen as composed of two

major parts: the update process and the decision process. Therefore, it seems a good

starting point on which we may base our system design and class structure.

Another useful hint in the RFC is described as “System Management”, which

 24

aims to control and monitors the operation of the IS-IS routing functions. According

to the management specification, each IS-IS system includes one Routing managed

object, which in turn has the classes of subordinate managed objects as shown in

figure 4-1.

Figure 4-1. Classes of Managed Object Subordinate to Routing

The classes of managed object are also defined with a set of associated

Characteristic, Status and Counter Attributes and Events. This system management

hierarchy has been helpful because it is in accordance with C++’s object-orientation,

and the defined attributes and events may be reflected as member variables and

functions in C++ classes. For instance, the Routing managed object represents a top

level class which we ought to have to maintain a set of system parameters that can be

administratively configured, such as the type of the IS (L1/L2), the manual area

addresses and it system identifier, etc.

Based on these information and understandings, an initial architecture design was

proposed as shown in figure 4-2.

ISIS System corresponds to the Routing managed object and is the entry point for

the whole system. From this object down, the system is basically divided into two

 25

major parts: the left part mainly deals with the Subnetwork Dependent Functions and

the right part mainly the Subnetwork Independent Functions.

The Circuit object contains information about a subnetwork or a data link, such as

a point-to-point connection to another system or a broadcast link. For these two types

of different subnetworks, there are some common attributes and operations as well as

some different ones as far as Circuit is concerned. Therefore, it is quite obvious that

Circuit should be designed as a base class, with two subclasses LANCircuit and

P2PCircuit (not shown in the figure) dealing with the specific information

respectively. This design makes good use of the concept of inheritance in C++, in that

the components which need to use the common functions provided by Circuit do not

need to know about the two different subclasses, neither do they need to know how

these functions may be implemented differently for different types of subnetworks.

Therefore, the Circuit object can be considered the boundary between the Subnetwork

Dependent Functions and the Subnetwork Independent Functions. The lower level

components in the left part (Adjacency, DIS and IIH) that are subordinate to the

Circuit object are quite self-explanatory by their names, which are designed to

implement the various subnetwork dependent functions.

In the right part, LSP module was designed to cope with the update process, with

the output LSD to be used as the input of the decision process represented by SPF.

The PDU module at the lowest-level is responsible for packet transmission and

reception, including packet encoding and decoding. PDU communicates with both

parts. For example, when a PDU is received, it is delivered to the IIH module if it is a

Hello packet, or to the LSP module if it is a link state packet or SNP.

 26

Figure 4-2. An initial design of the system

However, as we continued to discuss and started to produce some draft header

files that describe the information and functions stored and implemented in each

component, we gradually realised that this architecture had a number of problems,

some of which needed modifications and others required careful re-considerations and

radical changes.

A first problem has to do with the role of the PDU module. In this design, because

the construction of packets is finished here, PDU has to be able to obtain the

information it needs to add into the packets. For example, in order to construct a Hello

packet, the PDU module must have access to the relevant parameters of the particular

interface it is to be sent on, which is stored in the Circuit module. One way proposed

was to design some structs to as containers for this information, for instance, a struct

Circuit_Info can be used to pass on the information needed by PDU. However,

passing structs as a main approach obviously conflicts with object orientation, and as

a result, it was then proposed to pass the whole Circuit instead. But this was not

desirable either because the PDU module should not have access to most of Circuit’s

public functions which are provided for higher-level components to manage the

 27

Circuit.

We also discovered that the packet transmission and reception operations had been

misplaced. As the Circuit object essentially represents an interface and the link or

network associated with it, it is more naturally related with sending out packets to and

receiving packets from the network. In addition, the LSP module belonging to

subnetwork independent functions should not talk to a component at such a low level

as PDU, but should instead be kept from all that is below Circuit.

There were still other problems with this design but it would be irrelevant to list

them. In a word, we realized that the fundamental problem was that the design was

more procedure-oriented than object-oriented due to the influence of C programming,

and also because of some descriptions in the RFC emphasizing more on how the data

flows within the system.

Having realized the flaws of this design, we started to work on a new one. We felt

that it would be safer if we could refer to some existing design; therefore we carefully

studied the RIP module in the XORP code. Although a distance vector routing

protocol, RIP has a lot in common with IS-IS as far as the architecture is concerned,

and the way it integrates with the XORP platform is even more enlightening for our

work. Meanwhile, our supervisor provided us with Adam Barr’s report on a similar

project, which has also been very helpful for getting us on the right track. A better

system architecture was later designed and is presented in the next section.

4.2.2 Final System Architecture

Figure 4-3 gives a high-level overview of the internal architecture of the IS-IS

routing process. It bears some similarity with the initial design in that the system is

still divided into two subsystems, which mainly represent the subnetwork dependent

and independent functions respectively.

 28

Figure 4-3. Internal Architecture of the IS-IS routing system

 IsisSystem is still the top level container in the system. It maintains some

important attributes of the IS-IS router that can be configured and need to be accessed

by lower level components, such as the router’s system ID and area addresses.

 CircuitManager is the top level manager module for the subnetwork dependent

subsystem. Since there are usually multiple interfaces configured for the routing

protocol on a router, the CircuitManager is needed to contain and manage a list of

Circuit objects that represent these configured interfaces. It also provides functions for

the subnetwork independent subsystem to find and access a certain Circuit object.

The Circuit module still maintains the information about an interface and the

attached link or subnetwork, but operations for PDU transmission and reception is

added. Higher level components forward the packets to be sent to the Circuit, which

in turn forwards them to the CicuitIO; and when packets are received, Circuit handles

them itself or directs them to other component according to different packet types.

The Adjacency object represents a neighbour of the system on this particular circuit,

and a list containing one or more adjacencies is maintained by the Circuit object.

 29

Circuit still has two subclasses LANCircuit and P2PCircuit, and the LAN

Designated IS related functions are now handled by LANCircuit. We decided that it

would be redundant to have DIS as a different module because a DIS is actually either

our own system or one of our adjacent neighbours, both of which we already knew

how to represent.

 CircuitIO is an abstraction of the actual I/O interface of a circuit and it handles

the actual packet I/O processing for the Circuit object. Each Circuit object is bound

with a CircuitIO object.

In the subnetwork independent subsystem, LSDManager is the top level

component. It is designed to manage and coordinate between the Level 1 Link state

database and the Level 2 Link state database which a system may need to maintain

simultaneously.

The Link State Database maintains the latest copy of the system’s own LSP and

the LSPs received from other systems in the routing domain. It also controls the

reliable propagation of LSPs.

The SPF Calculation module obviously represents the Decision Process. It uses

the link state information stored in the LSD(s) to perform the Shortest-Path-First

calculation using Dijkstra algorithm. The results of this process forms the forwarding

database or route table of the IS-IS system.

 The PDU module was greatly modified from the initial design and now mainly

acts as the packet encoder and decoder. It is still a fundamental module and is used by

both subsystems. But it is not drawn in the system architecture diagram because it

does not have much architectural importance.

 The above system architecture has included the routing functionalities defined for

IS-IS, but we still need to provide some additional components which would integrate

the IS-IS system into the XORP platform. Figure 4-4 shows the complete system

architecture of the routing process, including the XORP integration modules.

 30

CircuitManager LSDManager

Adjacency

Circuit

CircuitIO

FEA

IsisSystem

Link State
Database

LANCircuit P2PCircuit

SPF Calculation

XrlTargetXrlCircuitManager

RIB

XrlCircuitIO XrlRibNotifier

Figure 4-4. Complete Architecture of the IS-IS routing process

The XrlTarget is a component needed by every process in XORP because all of

these processes provide XRL interfaces. XrlTarget is responsible for receiving and

dispatching XRL calls targeted for a process. How XRL calls are sent from other

processes to the IS-IS process is handled by the IPC finder, but how to finally direct

these calls to the place where the real implementations for the XRL interfaces are

provided is the job of the XrlTarget. For example, when the function get_system_id in

IS-IS’s XRL interface is called, the request will be sent to the XrlTarget, which calls

the real function in the IsisSystem that returns the system ID.

The XrlCircuitManager serves two main purposes. One is to receive interface

 31

configuration requests directed from the XrlTarget and execute the configurations on

the corresponding circuit object; the other is to obtain interface state information from

the XORP platform, more specifically from the FEA.

The XrlCircuitIO has the same role as the CircuitIO object mentioned earlier. It

sends IS-IS packets to and receive the packets from the FEA.

 The XrlRibNotifier registers with RIB and sends to RIB the route updates it

receives from the SPF computation process.

4.2.3 Discussion of the System Architecture Design Issues

 The architecture design just described has some merits because of which we

chose to use it, but it also has some short-comings as any other system design which

we gradually found out in the development process. These issues are discussed and

analysed in this section.

Advantages

1. The design properly reflects the relationship between the subnetwork

dependent functions and subnetwork independent functions described in the

RFC. As mentioned before, the Circuit module masks the subnetwork

dependent functions from the higher levels by putting them into two

subclasses corresponding to two different types of subnetworks.

2. Dividing the system into two subsystems has some advantages for the project.

A most important one is that it enables us to accordingly divide the group into

two subgroups, each working on one subsystem. Additionally, since the data

only flows between two subsystems at the top level, their respective

implementations are well hidden from each other. Therefore, when our two

subgroups are working on their own part, they do not have to know too much

about the internal structure of the other part, and as long as the interfaces

between them stay the same, they will not be affected by the changes in the

other subsystem.

3. Although we have been referring to the two subsystems that the system is

 32

 divided into as “subnetwork dependent subsystem” and “subnetwork

 independent subsystem”, it is not exactly accurate in that the first subsystem

in fact involves some functions defined as “subnetwork independent”. The

subnetwork independent functions introduced earlier include both the update

process and the decision process, but in our system, the update process is

handled jointly by the two subsystems.

The update process is responsible for the generation and propagation of

LSPs. And in our system, the LSP generation is handled by the

CircuitManager component, while the LSP propagation is controlled by the

LSDManager. Alternatives would have been to put the whole update process

in CircuitManager and Circuit, or in LSDManager and LSD. The reasons why

we did not choose them are explained below.

In order to generate a system’s own LSP, we need to check what

adjacencies each circuit on the system has, and to add the information of

those adjacencies with the right attributes and status into the LSP. Since the

CircuitManager contains all the circuits and therefore their adjacencies, it is

natural for it to handle the generation itself. Similarly, in order to control the

propagation of LSPs, we need to query the LSDs for the flags set for each

circuit that represent on which circuits an LSP needs to be sent out, which is

also relatively easy for the LSD to finish internally. On the contrary, if the

update process is placed entirely on either side, either the LSDManager would

have to use interfaces provided by the CircuitManager to query circuits about

their adjacencies, or the CircuitManager would have to use interfaces

provided by the LSDManager to query the flags stored in the LSD. As a result,

one side would need to know about and might be affected by the other side’s

internal organisation, which weakens their independency from each other. An

additional advantage of our design is that two subsystems involve a

comparable amount of work and therefore easier for us to assign resources.

Disadvantages

One major problem with the design we have found so far is actually a

 33

side effect of the split up of the update process. Since there are a number of

subsidiary functions in the update process, and for some of them the choice

of where to put them is not obvious, it had not been made very clear which

should be put where from the beginning. As a result, there is a danger that

some functions would be missed out and the two groups have to continually

check with each other.

4.4 Design and Implementation of Major components

 This presents the design and implementation of the major components in the

IS-IS system. The first one to be introduced is the PDU encoder/decoder for it is the

most basic module, and then the major components in the Subnetwork Dependent

Subsystem and Subnetwork Independent Subsystem are described respectively. We

both include enough details for understanding the implementation, and also highlight

the relevant design decisions we have made and the reasons behind them.

4.4.1 PDU Encoding and Decoding

 PDU encoding and decoding is a fundamental and most basic component in the

protocol implementation. This section gives a brief description of this module.

1. IS-IS Packet types and Packet Format

There are four general types of packets used in IS-IS:

·Intermediate System-to-Intermediate System Hello (IIH)

IIH packets are used by routers to detect neighbors and form adjacencies.

There are two different subtypes of IIH for LAN and Point-to-Point networks.

In addition, IS-IS uses ISH to initialise adjacency on Point-to-Point links,

which is similar to IIH but is an End System-to-Intermediate System (ES-IS)

PDU.

·Link-State Packet (LSP)

There are four types of LSPs: Level 1 pseudonode, Level 1

nonpseudonode, Level 2 pseudonode, and Level 2 nonpseudonode.

 34

• Complete sequence number PDU (CSNP)

CSNPs contain a list of all LSPs from the current database. CSNPs are used to

inform other routers of LSPs that may be outdated or missing from their own

database. This ensures that all routers have the same information and are

synchronised.

• Partial sequence number PDU (PSNP)

PSNPs are used to request an LSP (or LSPs) and acknowledge receipt of

an LSP (or LSPs).

LAN IIH, LSP, CSNP and PSNP packets all can be either level 1 or level 2.

The header part of IS-IS packets consists of two parts: the first 8 octets contain

the same fields for all types of packets while the rest varies. Following the packet

header is a set of variable length fields, which are encoded in the form of “Code,

Length, Value (CLV)” triplets. Codes are defined for different types of information

that is allowed to add into the packets.

2. Class Organisation

Since all IS-IS packets have a common header part and some common operations,

for example, the CLV fields need finally be added to the packet as binary data

regardless of the type of information, it is desirable to have a base class IsisPDU for

this purpose. Subclasses LANHelloPDU, P2PHelloPDU, Lsp, CSNP and PSNP

handle the packet-specific operations themselves.

3. Key Issues in implementation

The implementation of this module involves a lot of low-level programming,

which did result in some problems especially at the beginning.

-- Struct vs. Class

Because of the influence of C-style programming, a number of structs were

initially designed to represent both the header part and the variable length fields.

While it is reasonable to use structs to represent headers for they are not visible to

outside classes, it is really not a good idea for the CLVs for they need to be passed in

from other classes. If we use structs for them, that means other classes had better use

 35

the same structs as well, which would fill the system with structs both harder to

manipulate than classes and undermine the object-orentation of the whole program.

 -- Byte Order and Word Alignment

 These are two commonly encountered problems in network programming, and

therefore require careful treatments. As just mentioned, the packet headers are

represented using structs, and because of word alignment, the actual size of a struct

may be larger than the header it represents, thus resulting in gap between successive

fields in the header. This is avoided by using arrays of uint8_t (unsigned char) instead

of uint16_t (unsigned short) or uint32_t (unsigned long) data types. As for byte

ordering, it is important to keep in mind that the conversion between host order and

network order is a two-way operation and therefore should appear in pairs upon

packet transmission and reception, otherwise some data would be messed up.

 -- Use of existing and common classes

 As mentioned before, the libxorp library provides a number of classes to contain

information about IPv4 addresses, MAC addresses and etc. A biggest advantage of

this approach is that other classes can deal with them at a higher level, without

worrying about how the data is manipulated internally. For example, if we store an

IPv4 address only as an in_addr type, a lot of repetitious memory copy operations

associated with it would be needed, while now this issue is left for the class itself

which can be easily reused, and can be debugged and tested more easily. Inspired by

this approach, we also defined a number of classes for some frequently used data,

such as SystemID, AreaAddress, LanID, which are essentially octet arrays.

4.4.2 Modifications to the FEA

 Before moving to introducing the subnetwork dependent subsystem, it is

necessary to explain some modifications we have done to the FEA for IS-IS packet

transmission and reception.

 As mentioned in chapter 3, we have decided to choose the FEA as the place to

 36

handle packet transmission/reception for IS-IS, and therefore some additional

interfaces specially for IS-IS packets are needed in both the FEA and the IS-IS. We

created two new XRL interfaces: one for packet transmission and registering interests

(fea_isis_pkt) and the other for packet reception (fea_isis_pkt_client).

 The fea_isis_pkt interface is implemented by the FEA and includes functions to

be called by the IS-IS:

·To send IS-IS packets to a destination MAC address on a certain interface

 ·To register/unregister for receiving IS-IS packets on a certain interface

The fea_isis_pkt_client is implemented by the IS-IS and has a single function to

be called by the FEA when a IS-IS packet is received by the router.

These interfaces conceptually indicate the way we designed to handle IS-IS

packet transmission and reception. However, we did not attempt to provide the actual

implementation in the FEA which handles sending packets to and receiving them from

the real network because it is out of the scope of our project.

4.4.3 Circuit & CircuitIO

The Circuit module plays an important role in the system in that it is the bridge

connecting the higher level components and the underlying network, and provides a

uniform interface to the subnetwork independent functions.

This component mainly performs the following functions:

·Transmit and receive packets form the underlying network

·Exchange Hello packets and maintain adjacencies with neighbours

·Participate in LAN DIS election on broadcast networks

These functions are fundamental because the operations for generating local link

state information, propagating link state information as well as calculating the SPF

and hence the final route table all rely on them. And packet transmission and

reception should clearly be the first step.

1. Packet Transmission and Reception

Although the actual IS-IS packet transmission and reception is handled by the

 37

FEA, for the IS-IS system itself, Circuit is the place where all packets go out and

come in. The mechanism for passing packets between the Circuit and the FEA is

described as follows.

First, there are four relevant classes: Circuit, CircuitIOUser, CircuitIO and

XrlCircuitIO. CircuitIO and CircuitIOUser are the base class for XrlCircuitIO and

Circuit respectively. CircuitIO represents an I/O object associated with an interface,

while CircuitIOUser represents an object which needs to use the I/O object to send

and receive packets on that interface. Therefore, each CircuitIOUser object is

associated with a CircuitIO object, and this one-to-one binding happens when these

objects are created. More specifically, the CircuitIO class takes the reference to a

CircuitIOUser object as a parameter of its constructor, which means a CircuitIO

object cannot be created without a CircuitIOUser object to be associated with it. And

the CircuitIOUser class holds the pointer to a CircuitIO object, known as its

io_handler, which can be accessed by its subclasses. In this way, each circuit has an

I/O object dedicated to it, which makes the packet I/O more efficiently and reliably.

As shown in figure 4-5, the communications between Circuit and XrlCircuitIO

actually happen via their base classes. For example, the functions for sending packets

are defined in CircuitIO as pure virtual functions, which are actually implemented by

XrlCircuitIO. Thus when Circuit calls these functions, it is actually calling those real

functions in XrlCircuitIO. But the Circuit knows about that, which is nice because we

do not want the internal components of the IS-IS to need to know about the XORP

integration components. Additionally, in order to guarantee successful packet

transmission, the Circuit will be notified by the FEA via the callback mechanism

when the transmission is completed.

As for reception, the incoming packets are first delivered to the

XrlCircuitManager, which should decide which Circuit object a particular packet is

destined to according to the interface on which it comes in, by searching the list of

circuits it monitors and manages. When a Circuit object actually receives a packet, it

checks the field in the packet header indicating the packet type and constructs

different types of PDU objects accordingly and dispatches them to the proper

 38

functions.

Figure 4-5. The mechanism for packet I/O

2. IIH Exchange and Adjacency

Next responsibility of the Circuit module is to discover the neighbours of the

system, to establish adjacencies with them accordingly and to maintain the

adjacencies thereafter. The relevant operations are mostly different for broadcast and

point-to-point subnetworks, and therefore implemented in Circuit’s two subclasses

LANCircuit and P2PCircuit respectively.

For LANCircuit, once the Circuit is configured and enabled, it starts to multicast

Hello packets to the multi-destination address AllL1ISs or AllL2ISs according to the

level of the circuit. IIHs are sent periodically according to a configurable value

hello_interval, or when the metric or priority of the circuit changes, to notify the

neighbours with the latest state of the circuit. Therefore, an iih_timer need to be set to

trigger the transmission whenever it expires.

Adjacencies are formed based on the Hello packets the circuit receives from other

 39

routers, and are separate for Level 1 and Level 2 neighbours. Therefore, each circuit

holds two separate lists of Adjacencies for Level 1 and Level 2 respectively.

On reception of Hello packets from neighbours, the system needs to perform some

acceptance tests before forming an adjacency, for example, a Level 1 neighbour must

have at least one common area address with our system to become adjacent. When an

Adjacency is formed, it is in the state INITIALISING, and only when our system

receives a second Hello packet from the same adjacency which has our own MAC

address in the LAN Neighbours field, which means the other side has also accepted us

as its adjacency, can it set the adjacency state to UP. Figure 4-6 shows this process. A

holding timer needs to be set for each adjacency, which will be purged from the

adjacency database if it is not refreshed before the timer expires.

 Figure 4-6. Adjacency State Machine in LANCircuit

 For P2PCirucit, the major difference compared to LANCircuit is that an interface

on a point-to-point link only has a single neighbour, while an interface on a LAN

usually has multiple neighbours. From an implementation point of view, a router

initializes an adjacency by sending an ISH packet to its neighbour, and the checks

before forming adjacency are simpler than those in LANCircuit.

 The main issue in implementing these functions is that because a lot of conditions

need to be checked when receiving a Hello packet, forming and updating an adjacency,

 40

many multinested for and if loops are used. Therefore, we need to be very careful to

get them right, and even so, the correctness of this code can only be verified when this

component is actually tested.

 Adjacency database is maintained by all systems to keep track of neighbours.

There are two approaches to build the database. The first one uses c++ template <list>

to implement. The second one uses c++ template <map> as the basic data structure

which is proved more simple and efficient than the first approach. We use <map> to

store all the adjacencies associated with a particular circuit. Map is a sorted associate

container that associates objects of type key with objects of type data which means

that its value type is pair<const Key, Data>. It is also a unique associative container,

meaning that no two elements have the same key. Map has the important property that

inserting a new element into a map does not invalidate iterators that point to existing

elements. Erasing an element from a map also does not invalidate any iterators, except,

of course, for iterators that actually point to the element that is being erased. The

availability of this structure led us to demonstrate it by a simple solution to a

well-known problem. Moreover, its performance is substantially better as well. The

database has the basic function required in this system including search, add and

delete a particular circuit, update the database and print the information etc.

3. LAN Designated IS

This operation only exists in LANCircuit. In order to perform the DIS election,

each interface on the LAN is assigned with a priority between 0 and 127, which is a

configurable parameter. The priority is advertised in the Hello packets sent out by the

interface. The router with the highest priority circuit becomes the DIS on the LAN,

with numerically higher MAC address breaking ties.

It was originally considered to develop a separate class to represent the DIS,

however, it was later realised that it would be redundant and unwanted because the

DIS is definitely either ourselves or one of our adjacent routers and therefore the

relevant information for a DIS will be able to be stored in either the Adjacency or

Circuit class. And in order to perform the MAC address comparison, new operators

were added to the MAC class in libxorp code.

 41

4.4.4 CircuitManager & XrlCircuitManager

These two components are closely related and they are both responsible for

managing a collection of circuits on which the IS-IS routing process runs. They both

maintain a list of these circuits which must be up-to-date and identical. The reason of

having two components is to separate the part which needs to interact with the XORP

platform.

Key Issues in Implementation

-- Obtaining interface state information from the FEA

The FEA is responsible for maintaining interface configuration state, and it

updates the configuration state based on information from forwarding hardware and

configuration requests from the router manager. In addition, it can mirror its interface

configuration state across routing processes, the RIB, and any other interested parties.

The interface configuration information is held within an IfMgrIfTree class, which

contains all the information associated with physical interfaces, virtual interfaces, and

addresses associated with virtual interfaces. Within the IfMgrIfTree class, physical

interfaces are represented by IfMgrIfAtom instances, virtual interfaces by

IfMgrVifAtom instances, and addresses by instances of IfMgrIPv4Atom and

IfMgrIPv6Atom.

An instance of the IfMgrIfTree is maintained by the FEA and by remote processes

which are interested in the interface configuration state. Remote processes need to

have an IfMgrXrlMirror instance, which contains the IfMgrIfTree instance and as its

name suggests, is responsible of mirroring the interface state from the FEA. When

changes on interface state occur, updates are first dispatched to the local IfMgrIfTree

instance and if successful forwarded to each remote IfMgrXrlMirror instance. In this

way, the information about interface state held by routing processes such as IS-IS can

be conveniently synchronised with that maintained by the FEA.

 42

4.4.5 Link State Database

The LSD module contains two main parts: one is the actual Link State Database

of the system which stores latest local and received link state information; the other is

the operations that manage the LSP propagation, mainly the manipulation of SRM and

SSN flags. This section gives an explanation on the design and implementation of

both parts.

1. Database operations

The link state database (LSD) is the most important database in an IS-IS system.

Its input comes from two sources: after a system generates its new LSP(s) reflecting

the current connection state with its neighbours periodically or driven by some events,

they are stored in the LSD; and when an LSP is received from another router, it is

directly forwarded to the LSD. Upon the reception of an LSP, the LSD checks

whether an LSP from the same source already exist in the database, and if it does,

whether it is newer, older than or equals to the existing one, after which the LSD can

determine to add the new LSP, or to replace the old one or just drop it.

The LSD keeps the link state information up to date by making use of the

remaining lifetime attribute associated with an LSP. Each LSP has a remaining

lifetime of 1200 seconds (known as MaxAge) when generated, and its originator

periodically refreshes the LSP to prevent the time from reaching zero. If an LSP’s

remaining lifetime reaches zero thus expires, it will be kept for another 60 seconds

(known as ZeroAgeLifetime) before it is purged from database.

The LSD also carries out a purge of an LSP if it is received with an incorrect

checksum, by setting its remaining lifetime to zero, removing the payload, keeping

the header, and re-flooding it. The originator of this LSP has to generate a new LSP

after receiving this purged packet.

As mentioned before, an IS-IS system may have two link state databases if it is an

L1/L2 router, for which reason an LSDManager is needed to manage them both. The

LSDManager is responsible for forwarding LSPs of different levels to the appropriate

LSD. Moreover, it provides interfaces for other modules to access and to

 43

communicate with the link state databases.

Finally, the Link State Database is the direct input for the SPF computation

module, which means it should be able to collect and forward the connection and

metric information residing in each LSP to the SPF module to perform the calculation.

In summary, the LSD should at least include the following functions:

● Add an LSP to the database / Remove an LSP from the database / Retrieve an

LSP from the database

● Compare two LSPs to decide one is newer, older than or equals to the other

● Automatically purge an LSP from the database when it expires

● Collect the necessary information from stored LSPs and pass it to the SPF

computation module

2. SRM & SSN Flags Operations

The SRM (Sending Routing Message) and SSN (Sending Sequence Number)

Flags are used to guarantee the reliable propagation of LSPs. Each LSP is associated

with an array of SRM flags, and each element in the array corresponds to a circuit on

the system over which routing messages are to be exchanged. The LSP should only be

transmitted on the circuits whose SRM flags are set. The SSN flags are used in the

same manner to indicate which LSP(s) should be included in the next PSNP (Partial

Sequence Number PDU) transmitted on each circuit. Therefore, whenever a new LSP

is generated or received from other systems, the SRM/SSN flags need to be set or

cleared as appropriate.

Although the RFC does not explicitly say where these flags operations should be

performed, since the flags do not exist in the actual Link State packets exchanged

between routers, it is reasonable to create some data structure in the LSD to hold these

flags associated with each LSP stored in it. Besides, in some cases, an LSP needs to

have its SSN flag set even though it is not yet stored in the database. For example,

when receiving a CSNP (Complete Sequence Number PDU), a system may find some

LSP entries listed in the packet which it does not have, then it will need to set the SSN

flags for these “nonexistent” LSPs. For these reasons, the SRM/SSN flags operations

are placed in the LSD module, and new data structures are created dedicatedly for the

 44

SRM/SSN flags. Another benefit of this design is that, if the flags are placed within

each LSP record in the database, we would need to search the whole database every

time to find out the LSPs waiting to be transmitted, but with additional data structures

for flags only, we can just put the indexes of the associated LSPs in these structures.

In this way, the efficiency is improved because we only need to search a subset of the

link state database.

The following functions are also needed in the LSD module to facilitate the

manipulation of SRM/SSN flags:

● Data structures to store SRM/SSN flags

● Set and Clear SRM/SSN flags

● Search for the LSPs waiting to be transmitted or acknowledged

● Update the SRM/SSN flags when Circuit up/down events happen

Key Issues in Implementation

-- Database

(1) The Map class provided by the C++ Standard Template Library is the ideal

container to hold the potentially large number of LSPs in the database, especially with

its feature of automatically sorting the data entries by index.

(2) An LSPRecord class is developed to wrap the LSP packets stored in the LSD.

The reason for this choice is that some extra information other than that contained in

an actual LSP is necessary for managing the link state information in the database. For

example, it would be difficult and inconvenient for the database to continuously

observe and update the remaining lifetime of an LSP. Instead, we convert the value of

the remaining lifetime field in an LSP to an expiration time attribute indicating the

absolute time when this LSP expires and store this attribute in the LSPRecord class.

(3) In order to purge expired LSPs from the database, some timer(s) need be

created. A naive solution would be to set a separate timer for each individual LSP,

which would definitely be an undesirable overhead especially for large networks.

Thus a better choice is to have a single timer (known as the purge timer) for the LSP

whose expiration time is nearest to the current time. A callback will be invoked to

purge this LSP when the timer expires, and the purge timer will then be rescheduled

 45

for the next LSP whose expiration time is now the nearest. This design requires the

LSPs in database sorted by their expiration time, which can be conveniently achieved

by creating a Multimap, with the expiration time variable as its index.

(4) After the purge timer expires, a new timer is created to count down

ZeroAgeLifetime before each expired LSP is removed. A timer list is created to hold

these temporary timers and ensure that they are removed from the list as soon as they

expire. Although we should try to avoid the situation of having a separate timer for

each individual LSP, since the number of LSPs which are waiting to be removed at

any particular moment is usually small, the overhead caused by these temporary

timers can be ignored.

(5) All these timers are created inside the LSD class: the purge timer is initialized

when the LSD is created and rescheduled when an LSP is added or removed; the

temporary timers are created by the purging operation and automatically destroyed

when they expire. Therefore, the users of the LSD module do not need to know

anything about these internal operations which are handled automatically as soon as

an LSD object is instantiated.

-- SRM/SSN Flags operations

(1) While the LSPRecord class first seems to be the proper place to hold the flags

information, there are some cases where the LSPs that need to have SSN flags set are

not in the database at all, which means no LSPRecord objects would have been

created for these LSPs. And in order to improve the efficiency of searching for LSPs

waiting to be transmitted, a Map is created to hold the indexes of LSPs with the SRM

flag set, and another for those with the SSN flags set.

The SRMFlags and SSNFlags class are created to hold the LSPs which have

SRM or SSN flags set on a particular Circuit, which means each of them need to have

an internal database structure as well. For example, to find out which LSPs are

waiting to be sent on Circuit C, firstly, we can find the corresponding SRMFlags

object associated with Ciricuit C from srm_map, then search the internal map of

SRMFlags object we found to find out the LSPs’ indexes we want. We can see this

clearly from the diagram below.

 46

All the flags operations of SRM/SSN flags are wrapped in four methods, they are,

void set_SRMflag(OP op, LSPRef lsp, Circuit::CircuitRef c);

void clear_SRMflag(OP op, LSPRef lsp,Circuit::CircuitRef c);

void set_SSNflag(OP op,LSPRef lsp,Circuit::CircuitRef c);

void clear_SSNflag(OP op, LSPRef lsp, Circuit::CircuitRef c);

where lsp is the reference to the LSP whose flags are to be modified, c is the reference

to the Circuit on which this LSP is going to be modified, the OP is a enum variable I

defined as,

typedef enum {ALL, ALL_BUT, ONLY} OP;

With these convenient methods, other operations can set or clear the SRM/SSN

flags without knowing anything about the structure used to hold the flags. For

example, if we want to set SRM flag for lsp0 on all the Circuits other than circuit c,

just call,

Set_SRMflag(ALL_BUT, lsp0, c).

All these flags operations are based on the presumption that, the database always

knows the most updated information about the Circuits status. The circuit up or circuit

down events happen during the operation of a system must be notified to database,

otherwise, it has no way to figure out what circuits are currently valid and could not

set the SRM/SSN flags properly. Hence two methods are provided in LSD, to be

called by CircuitManager are when such events happen,

void circuit_up(Circuit::CircuitRef c)

void circuit_down(Circuit::CircuitRef c).

Periodically, the update process needs to scan the database for the LSPs with

SRM flag set, and send them out on appropriate circuit when they are found. To hide

the details of the SRM/SSN flags search from the users of database, the operations to

found out these LSPs and send them out on circuits are included in one single method,

which will be called by update process upon the expiration of minimum transmission

intervals.

 47

4.4.6 Shortest-Path-First (SPF) Calculation

The SPF (Shortest Path First) algorithm, also known as Dijkstra algorithm, is

used by IS-IS protocols to obtain the best paths through the network. The code

performing the Dijkstra computation does exist in one of the XORP library packages

(libproto), however, some modifications must be made before we can use it in our

scenario.

Firstly, the SPF in libproto is only defined for IPv4, IPv6, and string. But in our

IP-only IS-IS protocol scenario, each node in SPF network could be either an IP

network or an Intermediate System, identified by five octet value. This requires me to

provide a new class to denote the nodes in SPF network, which can present either an

IP network or a Intermediate System, and at same time, keep transparent to SPF

computation.

Secondly, the output of the original code consist only the operation name, the

destination, and the next hop, without metric, but to forward these routes information

to RIB, a metric for each path is necessary. Therefore, modification of the algorithm

and output format is needed.

Finally, if a node in SPF network is pseudo node, then this node can not be the

next hop node for any destination, because this node does not exist actually. Hence

some mechanism, such as a flag, is necessary to help distinguish pseudo nodes from

real nodes.

Key Issues in Implementation

In order to use the SPF computation code from libproto, a new class must be

created to present either an Intermediate System or an IP network. The new class is

named as IsisNode, which is defined as,

Each time the computation is performed, a list of RouteCmd is returned as the

result of the computation. Only what has changed from previous time the computation

was run can be fetched from this command list. The original RouteCmd consists of a

command (ADD, REPLACE, and DELETE), a destination node, and the next hop

node to reach that node. To make it suitable for our situation, a metric attribute is

 48

added to RouteCmd class, indicate the metric value of the updated route. Furthermore,

the destination node need to be adapted to IP network address or IS node address

based on the value of IPnet_flag of IsisNode, and for our IP only implementation of

IS-IS protocol, only the updates of IP network node should be computed and sent to

forwarding database. Some of the code is as below,

The computation of SPT relatively expensive, therefore it is not a good idea to

invoke SPF computation whenever some change happens to the internal SPF network.

Instead, a periodical timer is created to perform the SPF computation, and forward the

result of computation to RIB after the computation. These functions are implemented

in spt_compute method in LSD.

4.4.7 XrlRibNotifier

 In XORP, the RIB process takes routing information from multiple routing

protocols, stores these routes, and decides which routes should be propagated on to

the FEA. Figure 4-7 gives an overview of the structure of a unicast RIB. We can

regard RIB and FEA as the forwarding process of IS-IS protocol. In this project, IS-IS

protocol should supply routes to the OriginTable of RIB after SPT computation.

Hence the work is to offer an interface to extract the information from RouteUpdates

and send them in “a proper way” to RIB.

Figure 4-7. Structure of a Unicast RIB

The key point is to create a separate interface to link two parts: RouteUpdates and

 49

OriginTable of RIB, and the interface should provide the functions including:

 Extraction from RouteUpdates to proper parameters

 Insertion of IGP table

 Deletion of IGP table

 Insertion of Routes (IPv4 or IPv6)

 Replacement of Routes (IPv4 or IPv6)

 Deletion of Routes (IPv4 or IPv6)

 Lookup of NextHop By Destination

The required parameters sent to RIB are:

 Network address prefix of the route

 Nexthop (the address of the next-hop router toward the destination)

 Routing metric
The structure of the interface is demonstrated in figure 4-8:

RouteUpdates RibNotifier RibRegister RIB
Send_add_route()Send_to_rib() Send_add_route4()

Figure 4-8. Structure of XrlNotifier Module

 The first point to mention is that, although this project intends to support IPv4

only, interfaces for IPv6 should be considered when it is possible considering further

extension. Based on this thinking, RibRegister is implemented as a template class.

 The second point is that RibRegister needs to co-ordinate with the RIB which is

within a different process and may be on a different machine. In XORP, different

process communication should base on Service Class. A service instance is an entity

that can be logically started and stopped. Therefore service should be introduced to

implement RibRegister. As a service, RibRegister should at least includes startup()

method and shutdown() method. Before startup(), an instances state is

SERVICE_READY. When startup() is called in the main eventloop of ISIS process, it

should register a routing table called “IS-IS” and transition into

SERVICE_RUNNING. When in SERVICE_RUNNING state updates are sent to the

RIB. When shutdown() is called it remove the “IS-IS” routing table from the RIB. At

 50

any time it may fall into state SERVICE_FAILED if communication with the RIB

fails.

 Finally, callback is widely used in RibRegister to receive the returns from RIB

process. For example, when RibRegister passed routes information to RIB, an

XrlError is returned to Callback function. If it is not XrlError::OKAY(), we know the

operation is failed. However if there is no limit to the numbers of callbacks in-flight it

would cause other tasks awaiting dispatch by the eventloop. Therefore the maximum

number of Xrls inflight should be set when RibRegister instanced. When RibRegister

try to “talk to” RIB, numbers of Xrls inflight should be increased, such as startup(),

add_route() etc. While numbers of Xrls inflight should be decreased when callback

function received the return or service is shutdown.

 RibNotifier can be regarded as “the conjunction” of RibRegister and

RouteUpdates. For the part of RibRegister, it is no doubt that RibNotifier calls it to

perform the function of communication with RIB. For the part of SPT, at first, a list is

constructed to hold these routes information after SPT class sent them. XorpTimer is

used to process the list periodically and send the parameters to RibRegister. Although

this way saves excessive effort to process, it is not a good trade-off to swift response

because the process procedure is not expensive compared with SPT computation. So

it was abandoned and we process the routes received immediately. That means when

SPT class called the method send_to_rib in RibNotifier, the routes information will be

extracted and send to RibRegister.

 51

Chapter 5: Testing and Evaluation

5.1 Set up testing environment

The testing for those components which interact with other processes in the

XORP platform needs to be carried out in an environment where these processes are

running as well as properly configured. This environment will also be necessary for

the integration test. Therefore, some preparation work needs to be done in advance so

that later testing would not be held back by this problem.

1. Start the Finder/FEA/RIB daemons

As we introduced earlier, the router manager is responsible for starting the

processes on a XORP router in one go according to a configuration file. However, it is

usually not desirable to do so in testing for a couple of reasons: we may need to

monitor the debugging messages generated by each individual process, which are not

available via the router manager; also, we need to run the dummy_fea instead of the

real FEA for testing purpose, which the router manager does not do either.

Three processes need to be running for testing IS-IS: xorp_finder, xorp_fea (or

xorp_fea_dummy) and xorp_rib. The finder needs to be started first because all other

processes must register with the finder once they are started. The finder listens to a

certain port after started, which is by default 19999 on the localhost. Although these

programs are supposed to take command line arguments which specify the port

number of the finder, some processes, such as xorp_rib, do not support this yet.

Therefore, if the default finder port is being used by another process on the host, the

RIB would not able to be started. In order to solve this problem, our supervisor

discussed with other XORP developers and changed the way the finder port is

configured. It is now specified by setting the value of an environment variable

XORP_FINDER_SERVER_PORT, and then all XORP processes will have the same

information about where to connect to the finder.

Shell scripts were written to save the time and effort of typing the commands to

 52

run these daemons every time.

2. Configure the FEA

The FEA has to be configured with necessary information such as interface state

before IS-IS itself can be actually configured because IS-IS would need to consult

the FEA about the information of interfaces. The FEA provides a number of functions

in its Interface management XRL interfaces which we can call to obtain information

or carry out configurations, such as create_interface, delet_interface, create_vif,

delete_vif, configure_interface_from_system, and get_configured_interface_names,

etc. If we are running the real FEA, we can call configure_interface_from_system to

request it to learn the interface information from the underlying system; and if we are

running the dummy FEA, since it knows nothing about the real interfaces or networks

whatsoever, we need to explicitly create interfaces and associated virtual interfaces as

well as to set the various parameters where necessary.

This is where we can use the program “call_xrl” provided in the libxipc library.

The program takes a complete XRL call as its argument. An example is shown below:

Command:

bash-2.05b$./call_xrl "finder://fea/ifmgr/0.1/get_system_interface_names"

Response:

ifnames:list=:txt=dc0,:txt=faith0,:txt=lo0,:txt=ppp0,:txt=sl0,:txt=vr0

The command requests the FEA to return the information about what physical

interfaces the system has, and gets a response of a list of interface names.

A point to note is that some configuration function calls must be carried out as a

transaction, and some related methods are provided: start_transaction,

commit_transaction and abort_transaction. The start_transaction function returns an

integer known as “Transaction ID”, which must be used as an argument in every XRL

call that needs to be called within a transaction. Shell scripts are also necessary here

for performing these configurations as transactions, for the Transaction ID expires

extremely shortly after calling start_transaction, making it impossible to finish a

transaction by typing commands in command line. The shell scripts written for this

purpose make use of an existing script xrl_shell_funcs.sh provided by the FEA.

 53

5.2 Unit Testing and Integration Testing

 Unit testing plays an important role in any software development process.

Particularly, since the IS-IS system is large and complex and we are not likely to

begin system integration early, it is very important for us to carry out proper unit tests

for individual components along with the development to make sure they can perform

their functions as expected. This section briefly describes some example tests to show

the main aspects we have tested for the major components.

5.2.1 Packet Encoder and Decoder

1. Tested Functions

Tests are performed for this module mainly to verify the following functions:

 A PDU object can be correctly constructed with given information, and the

attributes of a PDU can be correctly accessed

 The information can be correctly encoded and placed in the right position of

the packet header or variable length part as defined by the “Structure and

Encoding of PDU” section in RFC 1142 and RFC 1195

These functions are used by the system when sending packets.

 A PDU object can be correctly constructed with binary data

 The binary data can be correctly decoded from and converted to the

corresponding attributes of a PDU object.

These functions are used by the system when receiving packets.

2. Testing Approach:

The tests for this component use the d_help library, which was provided by our

course director Dr. Saleem Bhatti in the Z23 course module. It provides functions to

print out data stored in certain memory space in a similar format as tcpdump. All six

PDU classes (LANHelloPDU, P2PHelloPDU, Lsp, CSNP, PSNP, and ISH) are tested

respectively to validate the symmetric and correct behaviours of the encoder/decoder.

 54

5.2.2 Circuit

 Tests are performed in this module to verify the subnetwork independent

functions described before. A Circuit object is normally created when an interface on

the router is configured for IS-IS, but at the unit testing stage the Circuit module has

not integrated into the XORP platform yet, Circuit objects are therefore explicitly

created and set with necessary parameters in these tests. One example test scenario

and results is shown below. In this test, there are three Circuits: lan_circuit_1,

lan_circuit_2 and lan_circuit_3. They form adjacencies with each other by exchanging

IIHs, and then the LAN DIS is elected.

Step 1: Create and configure three Circuit objects:
---------------lan_circuit_1----------------
lan_circuit_1: set up...
SYSTEM ID is : 0200 6465 6667
----------------lan_circuit_2----------------
lan_circuit_2: set up...
SYSTEM ID is : 0200 6465 6668
----------------lan_circuit_3----------------
lan_circuit_3: set up...
SYSTEM ID is : 0200 6465 6669
----------------end of set up object---------

Step 2: lan_circuit_1 receives an IIH from <<lan_circuit_2>>
[53294 +718 isis_circuit.cc circuit_io_receive] LAN_L1_HelloPacket received...
SYSTEM ID: 0200 6465 6668
[53294 +1262 isis_circuit.cc event_receive_iih] pkt :: size of lan_neighbours is : 0
[54071 +1733 isis_circuit.cc print_adj_list_content] Adjacency_list size is : 1
neighbor_id is : 0200 6465 6668
neighbor_hold time is : 40
adjacency _status is : 0
neighbor_priority is : 2

Lan_circuit_1 receives packet from lan_circuit_2 accept it as an adjacency with

the adjacency state of 0 (INITIALISING).

Step 3: lan_circuit_1 receives packet from <<lan_circuit_3>>
[53294 +718 isis_circuit.cc circuit_io_receive] LAN_L1_HelloPacket received...
SYSTEM ID: 0200 6465 6669

 55

[53294 +1262 isis_circuit.cc event_receive_iih] pkt :: size of lan_neighbours is : 0
[54071 +1733 isis_circuit.cc print_adj_list_content] Adjacency_list size is : 2
neighbor_id is: 0200 6465 6668
neighbor_hold time is : 40
adjacency_status is : 0
neighbor_priority is : 2

neighbor_id is: 0200 6465 6669
neighbor_hold time is : 40
adjacency _status is : 0
neighbor_priority is : 3

When lan_circuit_1 receives packet from lan_circuit_3 and accept it as an

adjacency as well with the state INITIALISING. lan_circuit_1 now has two

adjacencies.

Step 4: lan_circuit_2 receives packet from <<lan_circuit_1>>
[53294 +718 isis_circuit.cc circuit_io_receive] LAN_L1_HelloPacket received...
[53294 +1262 isis_circuit.cc event_receive_iih] pkt :: size of lan_neighbours is : 2
[54071 +1733 isis_circuit.cc print_adj_list_content] Adjacency_list size is : 1
neighbor_id is: 0200 6465 6667
neighbor_hold time is : 40
adjacency_status is : 1
neighbor_priority is : 1

lan_circuit_2 receives the Hello packet from lan_circuit_1, in which two

neighbours are advertised, including lan_circuit_2 itself. Therefore, the adjacency

state is changed to 1 (UP).

Step 5: lan_circuit_1 receives packet from <<lan_circuit_2>>
[53294 +718 isis_circuit.cc circuit_io_receive] LAN_L1_HelloPacket received...
SYSTEM ID: 0200 6465 6668
[53294 +1262 isis_circuit.cc event_receive_iih] pkt :: size of lan_neighbours is : 1
[54071 +1733 isis_circuit.cc print_adj_list_content] Adjacency_list size is : 2
neighbor_id is: 0200 6465 6668
neighbor_hold time is : 40
adjacency _status is : 1
neighbor_priority is : 2

neighbor_id is: 0200 6465 6669
neighbor_hold time is : 40
adjacency r_status is : 1

 56

neighbor_priority is : 3

When a Hello packet is received from an adjacency which is already in the

adjacency list, the size of the adjacency list will not increase.

Step 6: LAN DIS election
[75807 +900 isis_circuit.cc dis_elect] The size of adj_db is _adj_list_l1 : 2
[75807 +931 isis_circuit.cc dis_elect] The size of dis_list is : 2
[75807 +963 isis_circuit.cc dis_elect] DIS ID is : 0200 6465 6669

For lan_circuit_1, DIS is elected from the adjacencies whose state is “UP”.

lan_circuit_3 (6465 6669) with the highest priority is elected as the DIS.

 Similar tests were also performed for P2PCircuit.

5.2.3 LSD & SPF

1. LSP Purging Test

This is a simple test to make sure all the LSPs in the database are purged out

when they expire. The purging procedure of a LSP has two steps, firstly, the LSP

which expires is labeled, and then, after a certain period of time, known as

ZeroAgeLifetime, the LSP is removed from database.

Three LSPs are created and added into LSD, their remain life time are,

LSP_A, Remaining Life = 2 seconds,

LSP_B, Remaining Life = 4 seconds,

LSP_C, Remaining Life = 3 seconds,

After some time, they expired in the database:

[42823 +191 LSD.cc purge_outdate_LSPs] purging lsps expire at

(1125027927.155375)

 [42823 +208 LSD.cc purge_outdate_LSPs] purge timer is rescheduled.

[42823 +191 LSD.cc purge_outdate_LSPs] purging lsps expire at

 57

(1125027928.156016)

 [42823 +208 LSD.cc purge_outdate_LSPs] purge timer is rescheduled.

[42823 +191 LSD.cc purge_outdate_LSPs] purging all lsps expire at

(1125027929.154680)

From the debug messages, we can see the purge timer was rescheduled to LSP_C

after LSP_A expired, and then rescheduled to LSP_B after LSP_B expired.After

ZeroAgeLifetime from they expired, they are removed from database in turn.

[42823 +344 LSD.cc void_remove_lsp] remove lsp from databse.

[42823 +99 LSD.hh LSPRecord] LSPRecord object destroyed.

[42823 +344 LSD.cc void_remove_lsp] remove lsp from databse.

[42823 +99 LSD.hh LSPRecord] LSPRecord object destroyed.

[42823 +344 LSD.cc void_remove_lsp] remove lsp from databse.

[42823 +99 LSD.hh LSPRecord] LSPRecord object destroyed.

2. XrlRibNotifier

 The test for the XrlRibNotifier is to register an IGP table in RIB and perform

adding, replacing and deleting route operations. An issue discovered in the testing is

that a route added to the RIB should either has a next-hop IP address that is directly

connected or specifies the outgoing interface toward the destination. The tests need to

be done along with the operations of creating a virtual interface with a unique name

and explicitly adding the directly-connected routes to RIB.

3. LSD and SPT Computation Test

This test is used to simulate the situation that the connections information is

extracted from all the LSPs in database, and then forwarded to the SPF computation

module. The computation for best routes is then performed and the output printed.

Firstly, four LSPs, LSP_A, LSP_B, LSP_C, LSP_D, are created. They are used to

simulate the LSPs generated from Intermediate System A, B, C, and D, respectively.

 58

Secondly, four LSPs are added into the Level 1 LSD maintained by system A. Finally,

the SPF computation function is called. The network graph for this test is shown in

figure 5-1.

If the system ID of these four Intermediate System are set as A:<20a001/0>,

B:<20a002/0>, C:<20a003/0>, D:<20a004/0>, then the result of computation is as

below:

ADD node: Node<IS:20a002/0> nexthop: Node<IS:20a002/0> metric: 5

ADD node: Node<IS:20a003/0> nexthop: Node<IS:20a004/0> metric: 4

ADD node: Node<IS:20a004/0> nexthop: Node<IS:20a004/0> metric: 1

A

D

C

B 12

8

9

2

4

8

Origin
<20a001/0>

<20a003/0>

<20a002/0>

<20a004/0>

Figure 5-1. Test Network Topology

5.2.4 XORP Integration Tests

 The main loop of the program along with the subnetwork dependent subsystem is

tested to verify that they can correctly interact with other processes in the XORP

platform.

Step 1: A shell script is run to start relevant XORP processes

 59

Port number for the xorp_finder=
12345
Setting port...
Starting xorp_finder...
Starting xorp_fea...
Starting xorp_rib...
> [2005/09/02 05:03:03 INFO xorp_fea CLI] CLI enabled
[2005/09/02 05:03:03 INFO xorp_fea CLI] CLI started
[2005/09/02 05:03:03 INFO xorp_fea MFEA] MFEA enabled
[2005/09/02 05:03:03 INFO xorp_fea MFEA] CLI enabled
[2005/09/02 05:03:03 INFO xorp_fea MFEA] CLI started
[2005/09/02 05:03:03 INFO xorp_fea MFEA] MFEA enabled
[2005/09/02 05:03:03 INFO xorp_fea MFEA] CLI enabled
[2005/09/02 05:03:03 INFO xorp_fea MFEA] CLI started

 The Finder, the FEA and the RIB daemons are all started with the finder port

manually input.

Step 2: A shell script is run to configure the FEA

configure_interface_from_system 738664 vr0
create_vif 738664 vr0 vr0
enable_vif 738664 vr0 vr0
commit_transaction
get_system_interface_namesifnames:list=:txt=dc0,:txt=faith0,:txt=lo0,:txt=ppp0,:txt=s
l0,:txt=vr0
get_configured_interface_namesifnames:list=:txt=vr0
get_system_vif_names vr0vifs:list=:txt=vr0
get_configured_vif_names vr0vifs:list=:txt=vr0

 A series of XRLs are called to configure the system interfaces for the FEA, which

are all self-explanatory by the function names.

Step 3: Run the IS-IS process

[78397 +103 xorp_isis_main.cc] Isis started.
[78397 +82 xorp_isis_main.cc] Default Finder_host:127.0.0.1/Default
Finder_port:19999
[78397 +57 xrl_circuit_manager.cc] XrlCircuitManager created.
[78397 +23 xrl_target_isis.cc] XrlIsisTarget created.
[78397 +281 xrl_circuit_manager.cc] XrlCircuitManager::tree_complete

 60

notification.
[78397 +133 isis_circuit_manager.hh] circuits update from XrlCircuitManager.

 The IS-IS process is started and relevant components are created. Since the

XrlCircuitManager acts as a remote mirror, it is notified by the FEA with

“tree_complete notification” once started.

Step 4: Configure an interface for the IS-IS process

(Configuration command)
./call_xrl "finder://isis/isis/0.1/set_system_id?id:ipv4=192.164.160.88"
(Response of the IS-IS process)
[78397 +71 xrl_target_isis.cc] System ID updated to 192.164.160.88

(Configuration command)
./call_xrl "finder://isis/isis/0.1/add_area_address?addr:u32=56890"
(Response of the IS-IS process)
[78397 +88 xrl_target_isis.cc] Area address de3a added.

(Configuration command)

./call_xrl

'finder://isis/isis/0.1/configure_interface?ifname:txt=vr0&vif:txt=vr0&level:u32=1

&enable:bool=true&passive:bool=false&metric:u32=10&hello_interval:u32=100&hol

d_time_multiplier:u32=3&priority:u32=64'

(Response of the IS-IS process)

[78397 +117 xrl_target_isis.cc] Configure interface:vr0/vr0 to:level 1;enable
1;passive 0; metric 10;hello_interval 100;hold_time_multiplier 3;priority 64.
[78397 +120 xrl_circuit_manager.cc] Configure interface:vr0/vr0 to:level 1;enable
1;metric 10;hello_interval 100;hold_time_multiplier 3;priority 64.
[78397 +24 xrl_circuit_manager.cc] Looking for vr0/vr0
[78397 +38 xrl_circuit_manager.cc] Found
[78397 +178 xrl_circuit_manager.cc] Creating new Lan circuit with id 2
[78397 +393 isis_circuit.cc LANCircuit] LANCircuit vr0/vr0/2 created.
start_iih_timer...
send_iih()...
 [78397 +40 xrl_circuit_io.cc send] packet is sending to FEA ...
 [78336 +2509 xrl_target.cc] Send IS-IS packet;
To Mac address: 00:01:02:03:04:05.
[78336 +2513 xrl_target.cc] Size of the packet:49

 61

[78336 +2514 xrl_target.cc] Content of the packet:
083a0150 831b 0100 0f01 0000 0102 00c0 a4a0 5801 X.
083a0160 2c00 3140 0000 0001 0000 0001 0e0d 4700 ,.1@..........G.
083a0170 0580 0000 a700 00de 3a00 0084 0480 1042 :......B
083a0180 5f _
[78397 +80 xrl_circuit_io.cc send_cb] SendCB 100 Okay

 We can see from this test that the IS-IS process can correctly receive the

configuration requests via XRLs, and once an interface is configured for IS-IS, a

Circuit object is created and starts to send out Hello packets periodically.

5.3 Overall System Testing

 After the major components have been verified to work properly and some

integration for part of the system has been carried out, the next step would be to test

how the routing process works as a whole. We planned to use an existing simulation

framework developed by Adam Barr which can simulate a network consisting of

multiple routers by running multiple IS-IS instances on a single machine (as shown in

figure 5-2).

 The simulation framework mainly involves two aspects and is related to the

modifications of the FEA we mentioned before.

One major function of the framework is to create simulated interfaces. In order to

emulate a network, we first need to emulate some routers, each of which has multiple

interfaces. The existing dummy FEA in XORP provides interfaces for us to manually

create and configure virtual interfaces via XRLs for testing purposes. The simulation

framework provides a similar but more convenient function—the FEA can read from

interface state files that have very simple format and create spoofing interfaces

accordingly. This function is implemented by adding an interface state file loader into

the FEA.

Another important function provided by the simulation framework is to transmit

packets between virtual IS-IS routers. A virtual IS-IS router is represented by a set of

XORP processes: the Finder, the simulation FEA, the RIB and the IS-IS routing

 62

process. As mentioned earlier, the IS-IS packet I/O is handled by the FEA by adding

specific interfaces to it. We created those interfaces but have not provided real

implementation, which is accomplished by this simulation framework. The links

between interfaces on a virtual network are represented by IP multicast address/port

pairs. The information of which interface is connected to which virtual link, i.e.

associated with which multicast address/port is specified in the interface state file.

Figure 5-2. A virtual network of two virtual routers

Facilitated with this simulation framework, we conveniently design different

network topologies and scenarios on which to test the IS-IS protocol. The IS-IS

Operations Test Suite developed by the InterOperability Laboratory at University of

New Hampshire is a good example to refer to for designing test cases.

However, due to the limited time for the project, especially for the development

and testing stage, we did not have enough time for carrying out many overall system

tests after we have integrated the system.

 63

Chapter 8: Project Management

Since this is a group project, it is necessary that we use appropriate project

management techniques to plan, monitor and maintain progress, as well as to assign

different tasks to group members and coordinate the group activities.

8.1 Project Management Plan

According to the nature and characteristics of this project, we decided the project

management plan we were going to adopt at the beginning of the project. First of all,

we decided it would not be very appropriate for us to use an agile approach such as

XP Programming. Agile approaches emphasise on iterative and incremental

development, along with small iterations and releases. Such approaches are quite

popular in software engineering and have a lot of advantages. For example, XP

Programming techniques allow for constant refinement of requirements and provide

continuous feedback from earlier development cycles. Therefore, XP Programming is

best for the kind of project in which the requirements are not clearly defined at the

beginning or are likely to be changed continually throughout the process of the project.

However, in the case of our project, the primary requirements are very clearly and

extensively defined in relevant specifications and are not likely to change. In addition,

the scale of the IS-IS system and the time we have for the project together has

determined that it would be unrealistic to plan for multiple iterations and releases

because the whole project should be seen as the first iteration of providing an

operational IS-IS implementation for the XORP platform, and we only expected a first

release.

 Therefore, the project management plan we chose to use is more like the

traditional waterfall model, which typically has four major stages: requirement

analysis, system design, implementation and testing. In addition, we also decided that

although it would not be advisable for us to adopt a formal iterative and incremental

approach completely, there are some ideas and techniques in this type of plans that we

 64

could make use of in order to improve our development and mitigate risks. For

example, although we cannot have multiple iterations, we can apply the idea of

continuous feedback to different components. The most basic and fundamental

components which other components depend on would be implemented and tested

first, during which some problems may be discovered and trigger the revision and

improvements of the architecture design as well as the individual module design. This

decision was also made because it would enable us to gain valuable experience in

actual coding and testing during the early developments. Although the

implementations for individual components are likely to be very different, the

requirements for programming knowledge and skills would inevitably have something

in common, therefore, this method would hopefully make the later developments

faster and more reliable. Moreover, we integrate a small part of the system once some

components are finished and become available instead of leaving all the integration to

the final stage of the project, which helps discover the bugs in individual components

earlier and therefore makes it easier to fix them gradually. Figure 8-1 gives a general

idea of our development process as time evolves.

Figure 8-1. Illustration of Development Process

8.2 Work Breakdown

 As suggested in our earlier Project Management course module, we designed

very detailed work breakdown structure which breaks the whole project work down

Implementing
module 1

Implementing
module 2

Implementing
module 3

Time

Testing
module 1

Testing
module 2

Testing
module 3

Integration

Integration

Integration

 65

into smaller tasks that can be undertaken by individual group members. Figure 8-1

shows only the summary structure.

Figure 8-2. Work Breakdown Structure

8.3 Team Organisation

The project is carried out under the supervision of Professor Mark Handley, and

he acts as both the client of the project and our advisor. The group itself consists of

five people, and the initial roles of individual group members were agreed at the

beginning of the project after group discussion:

-- Project Manager: Ling Zhen

-- Design Engineer: Bitao Sun

-- Test Engineer: Xin Xiong

 66

-- Configuration manager: Kang Tang

-- Risk and progress manager: Hongyi Li

However, since the team members do not have particular advantages over others

in these aspects of a project, we were not clear at the beginning that how suitable this

assignment of roles and responsibilities would be. Therefore, we also decided that the

roles and responsibilities of team members should not be fixed, but should be

adaptable according to suitability. Also, the roles of group members should be flexible

considering the progress of the project, for example, when difficulties are encountered

in some high priority tasks which might not be able to be finished within the planned

time, more people may be assigned to help with those tasks. The roles of group

members may also be rotated in order for us to learn about all aspects of the project.

As the project evolves, we have made some adjustments to the work dividing

decisions. At the beginning stage of the project, we decided that one member should

be responsible for getting familiar with the environment and configuration relevant

issues on the XORP platform (Ling was assigned to this task), while others should

read the extensive specifications about the IS-IS routing protocol and understand its

internal structure and operations.

After the system architecture design (mainly done by Bitao and agreed by the

group) was finished, the system is divided into two major parts which are relatively

independent of each other. One part mainly consists of LSDManager, LSD, SPF

Calculation and XrlRibNotifier modules, and the other mainly consists of

CircuitManager, Circuit, CircuitIO and Adjacency modules. Therefore, the group was

divided into two sub-groups with two persons each. Kang and Xin would mainly work

on the former part, and Bitao and Hongyi on the latter. And Ling would work on the

packet encoder/decoder module, the pieces connecting the above two parts and some

XORP integration pieces. Having made such arrangements, we felt that it would be

more feasible and efficient for each member to take responsibilities for the design,

coding and testing of the modules they work on because it would take more time for

others to learn about the modules they are not familiar with.

In the final documentation stage of the project, every member was responsible for

 67

writing about the part they had been working on and Ling integrated all these

documentations into the group report.

8.4 Monitor and Control

Carrying out effective measurements to monitor and control the progress of the

project is important because it enables us to be aware of the up-to-date status of the

project, to compare the actual progress with planned and to make appropriate

adjustments accordingly.

 The project manager is generally responsible for overseeing the progress of the

project. Regular internal reports including progress report and issue log are produced

on a daily/weekly basis. Actual progress is compared to the planned schedule and if it

is lagging behind, the schedule would have to be adjusted.

 The group has regularly meetings with our supervisor on a weekly basis. On

every meeting, we discuss the problems we have encountered both in technical and

project management aspects and seek advice and opinions from the supervisor. Some

documents such as design diagrams and related materials are prepared when

necessary to facilitate the discussions. Sometimes we have more than one meeting per

week when problems and confusions occur more frequently especially at the

beginning of the development stage, and we also seek help from the supervisor on

more specific problems individually every now and then. Thanks to the great

guidance of our supervisor, we have been able to solve most of the problems in time.

Meeting minutes are taken to make sure we have understood the problems and

relevant resolutions, which group members can refer to whenever necessary. They

also serve as an important documentation for recording the evolution of the project.

Communications within the group happen in a number of ways. It is suggested to

meet every weekday and work together in the labs so that problems can be discussed

and solved by short meetings more efficiently. A group mailing list is created to

update members with each other’s development status and for various discussions. In

addition, a CVS repository is created for the project, so that we can keep track of the

 68

development progress and have access to the modification history. The CVS is also

beneficial in that it enables group members to continuously check the interfaces

provided by one another’s modules and therefore makes the integration of different

components easier.

8.5 Risk Management

 We have identified a number of potential risks and corresponding mitigation

strategies.

Description Priority Mitigation Strategy
Bad design High − Incremental Iterative Development

− Continuous integration

− Simple design

− Feedback

Configuration
problems

Low − Assign a group member to take charge before actual work
begins

Progress not
according to
schedule

Moderate − Progress tracking (daily work check and keep a work log)

− Learn from mistakes that cause delay

− Teamwork

Absence of
supervisor

Moderate − Keep in touch with email
− Project schedule should be more tightly

− Work extra hours

Insufficient
materials

Moderate − Ask supervisor for information

− Check the internet frequently

Absence of team
members

Low − Keep in Constant Communication

− Inform team and keep track of absence well in advance

Data loss
Low − Back up everyone’s own work daily in their own machine

and CS directory

− Project manager backs up the whole work on CS machines

Lack of developing
experiences

Low − Self study

− Learn from other groupmates

 69

Chapter 9: Future Work and Conclusion

9.1 Future Work

 Due to the time constraints of the project, there exist some possible enhancements

and extensions to the work we have accomplished.

 First, the implementation can be extended to support both IPv4 and IPv6.

Existing XORP routing protocols provide support for both IPv4 and IPv6 by using

template classes in the C++ Standard Template Library. In our project, only the

XrlRibNotifier module uses this feature to adapt to both types of IP address, the rest of

the system is specifically developed for IPv4. Therefore, some work can be done to

add the template usage to the system in order to add the support for IPv6. Most of the

specific routing functions would not have to be modified because IS-IS is a quite

flexible routing protocol and does not need to be changed much itself for supporting

IPv6 or even new network layer protocols.

 Second, proper integration testing should be carried out for the system either

based on the existing simulation framework or by developing a new simulation

framework. Since the existing simulation framework is known to work well, it might

be more desirable to make further modifications to the FEA for reading and writing

IS-IS frames from and to the wire so that the protocol could be tested on the real

network.

 Additionally, some possible extensions which have been considered as optional

functions defined in RFC 1142 and RFC 1195 can be further implemented. These

functions include: partition repair, authentication, hierarchical abbreviation of IP

reachability information and so forth.

9.2 Conclusion

 The primary objective of the project that we set out to fulfil is to provide an IS-IS

implementation including the core functionalities for the XORP platform. The project

 70

can be considered to be an overall success because we have basically achieved our

goal.

 Firstly, we have designed a sensible system architecture by which the structure of

the IS-IS routing protocol is properly reflected. This system architecture has proved to

be beneficial during the implementation of individual components. It is an important

achievement in developing a complex system because it provides a solid basis for

potential extensions and improvements in the future.

Secondly, we have implemented a complete set of core functions defined by the

relevant specifications and performed proper tests to verify the correct behaviours of

all components, which means we have successful achieved the goal of the project.

Although enhancements can definitely be made to improve the performance of the

system, such non-functional requirements are not within the scope of our project. In

addition, our IS-IS system is integrated into the XORP platform properly. The XORP

integration parts have been thoroughly tested and work well, which is also important

groundwork for possible future extensions.

Although the time has not allowed us to do many tests for the overall system to

make sure it works without problems, since individual components have been

properly tested and system integration has been done successfully, it is less likely that

major problems would occur when the system is tested as a whole.

 This project has been a challenge for us, and we have learned a great deal in this

process. We have learned and worked on the XORP platform, and have therefore

become familiar with this young and lively research project. The design choices made

for XORP in order to achieve its goals of extensibility, robustness and performance

have given us a valuable lesson in system architecture design. We have also learned a

great amount of knowledge about the operations of routing protocols, not only IS-IS

but also OSPF and RIP; and we have gained valuable experiences in C++

programming, especially in using the Standard Template Library. All of these would

be continuously beneficial for either our further study and research or professional

careers in the future.

 71

Bibliography

[1] XORP - Open Source IP Router, April 2005. http://www.xorp.org

[2] D. Oran. OSI IS-IS Intra-domain Routing Protocol, RFC 1142.

[3] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments,

RFC1195

[4] Adam Barr. An Intermediate System to Intermediate System (ISIS) Implementation

for the eXtensible Open Router Platform (XORP)

[5] Cisco Systems. Introduction to Intermediate System to Intermediate System

Protocol. 2002.

[6] XORP Design Overview. http://www.xorp.org.

[7] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. Designing.

 Extensible IP Router Software. In Proceedings of the 2nd USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2005.

[8] M. Handley, O. Hodson, and E. Kohler. XORP: An Open Platform for Network

Research. In First Workshop on Hot Topics in Networks, Princeton, New Jersey,

2002.

[9] M. Handley. Introduction to Writing a XORP Process. http://www.xorp.org, 2004.

[10] Intermediate System to Intermediate System (IS-IS) Operations Test Suite,

Revision 4.3. Technical report, IPv4 Consortium, InterOperability Laboratory,

Research Computing Center, University of New Hampshire, 2005.

[11] Jeff Doyle, Routing TCP/IP , Volume 1, 1998, Cisco Press

[12] Open Source Development Network. SourceForge.net. http://sourceforge. net/.

[13] R. Perlman. Interconnections: Bridges, Routers, Switches and Internetworking

Protocols. Addison-Wesley, 2000. Second edition.

