
University College London
Department of Computer Science

M.Sc Data Communications, Network and Distributed Systems

Extensible Secure Event and
Report Toolkit

User Manual

Group Members
Shaohua Yan
Yang Wang
Xiaoyue She
Ping Liang

Supervisor
Dr. Saleem Bhatti

30 Aug 2005

Page 1

1 System Requirement

A set of software and third party libraries are required before running this toolkit.

They are listed as follows:

1. Python 2.3.5 or above.

2. OpenSSL 0.9.7E or above.

3. Twisted (third party library of SSL)

4. MySQL 4.1 or above

5. Port 5555 must be available for PoDRegistry.

2 Installation

Once all the items in section A.1 have been installed, the first step is to copy and

uncompress the source file. The following command is how to do this uncompressing:

tar -xvvf ExSERT.tar

After uncompressing the source file, a number of directories and files are generated,

the directory structure is listed below:

Compiler/
 Compiler.py
 Configuration.ini
 Report.xml
Lib/
 __init__.py
 Base/
 __init__.py
 Base.dtd
 Day.py
 Hour.py
 IPv4Address.py
 IPv6Address.py
 Integer.py
 MACAddress.py
 Minute.py
 Month.py
 NumOfBytes.py
 PacketLoss.py
 Second.py
 String.py
 RTT.py
 Year.py
 Function/

Page 2

 __init__.py
 BinaryEncoding.py
 LinkStatus.py
 LinkUtilization.py
 PoDServer.py
 StatisticRTT.py
 ThresholdRTT.py
PoDRegistry/
 Configuration.py
 PoDRegistry.py
Demo/
 LinkMeasure/
 __init__.py
 Class/
 Common/
 Glue/
 PoD/
 Client/
 Cert/
 ClientCert.pem
 ClientKey.pem

 Configuration.ini
 Handlers.py
 VFClient.py
 XMLValidator.py
 XmlToHTML

In the Demo folder, a sample RMF (LinkMeasure) is created for references to the end

user. An example client has also been implemented to test the system. Note that the

toolkit only produces XML document to the client, which then can handle, validate, or

display the XML document by whatever ways they prefer.

3 RMF Toolkit Creation

The following procedures explain how to create a new RMF toolkit using the

compiler and provided API. Firstly, it details the steps taken to generate common

code for system components using the compiler. Then it includes a description on

how to create key pairs and certificates using OpenSSL. Finally, it illustrates the user

on how to modify the generated code in order to complete the creation of the toolkit.

An example has been used throughout the description these steps, and this typical

Page 3

RMF is named LinkMeasure. Before doing all these steps, the python path that

enables the program to locate the path of the API needs to be set up like below:

export PYTHONPATH=”~/ExSERT”

3.1 Common Code Generation
1. Move to the Compiler directory.

2. Create a report format for the toolkit, and sample report format can be found in

this directory.

3. Configure the compiler by modifying Compiler/Configuration.ini file in which the

toolkit name, report name and the location of the library can be specified.

4. Run the compiler by typing

python Compiler.py

5. The common code for the system components of this example have been

generated and structured as below:

LinkMeasure/ Root of this RMF
 __init__.py
 Class/ Contains the user-defined types
 Common/ Contains RMF configuration file

and DTD file
 Glue/ Contains generated code for Glue
 PoD/ Contains generated code for PoD

3.2 Key Pairs and Certificate Creation
1. Modify file openssl.cnf to substitute default directory using your own specific

directory.

2. Running the openSSL program by typing openSSL on the command line.

3. Create the self-signed CA certificate, which can sign the certificates for

communication parties.

openssl> req –new –x509 –keyout $dir/private/CAKey.pem –out

 $dir/private/CACert.pem –config /ssl/openssl.cnf

4. Create a server key file and certificate request file.

openssl> req –new –keyout ServerKey.pem –out ServerReq.pem.

5. Concatenate these two files for the signing.

Cat ServerReq.pem ServerKey.pem > Server.pem

Page 4

6. Sign the server certificate.

openssl> ca –policy policy_anything –out ServerCert.pem –config

 $dir/ssl/openssl.cnf –infiles Server.pem

7. Create and sign the client certificate in the same way.

Openssl> req –new –keyout ClientKey.pem –out ClientReq.pem

Cat ClientReq.pem Client.pem > Client.pem

Openssl> ca –policy policy_anything –out ClientCert.pem –config

$dir/ssl/openssl.cnf –infiles Client.pem

8. Copy CACert.pem ServerKey.pem and ServerCert.pem to ExSERT/PoD/Cert

directory.

9. Copy ClientKey.pem and ClientCert.pem to Client/Cert.

10. Example certificates are included in Demo/LinkMeasure/PoD/Cert and

Demo/Client/Cert folders for both the server and client respectively. The

passwords for these two example certificates are “111111”.

3.3 Code Modification
1. Edit GlueLinkMeasureRS.py and copy it to the Glue directory. A sample

implementation can be found in the Demo/LinkMeasure/Glue/.

2. Edit PoDDataAnalysier.py and copy it the PoD directory. For data analysing

functions of the API, see Section 5.8 and the documentation. A sample

implementation can be found in the Demo/LinkMeasure/PoD/.

4 Running the Program

1. Start the PoDRegistry in PoDRegistry directory by typing:

python PoDRegistry.py

2. Configure the PoDServer by modifying the configuration.ini in LinkMeasure/PoD.

3. Start the PoDServer in /LinkMeasure/PoD directory by typing

python PoDServer.py

The password should be the one entered in A.2.2. For the example certificates,

passwords are 111111 for both the client and server.

4. Run the sample client program in Demo/Client directory by typing

 python VFClient.py

Page 5

	1 System Requirement
	2 Installation
	3 RMF Toolkit Creation
	3.1 Common Code Generation
	3.2 Key Pairs and Certificate Creation
	3.3 Code Modification
	4 Running the Program

