
University College London
Department of Computer Science

M.Sc Data Communications, Network and Distributed Systems

Extensible Secure Event and
Report Toolkit

Group Report

Group Members
Shaohua Yan
Yang Wang
Xiaoyue She
Ping Liang

Supervisor
Dr. Saleem Bhatti

30 Aug 2005

Page 1

Abstract

This report mainly describes the design and implementation of a toolkit based

on the system architecture developed by last year’s project group. Last year’s system

architecture was proved to be suitable to resolve the problem of crossing

heterogeneous platforms among different IXPs. However, it is still not easy to

achieve this in terms of software implementation such as retrieving data from

different platforms, processing and parsing different kind of data, and designing

general and flexible data transmission protocol. In order to resolve above problems, a

compiler is created this year, which can generate common code for system

components. In addition, the provided API functions for data processing can be

invoked to meet different requirements from clients. Therefore, this combination of

compiler and API provides a very easy and convenient way to create different

network monitoring toolkits. Furthermore, this project uses Python and XML for

program implementation and data encapsulation so that the toolkit is easy to be

interacted, to cross platform and to process different type of data. Moreover, this

project also exploits many significant aspects of project management such as

iterative and incremental development method, progress monitoring and risk

management. Finally, this report discusses the future work that lights the road for

further development of this project.

Page 2

Acknowledgement

We group members appreciate the dedicated work of our supervisor Dr. Saleem

Bhatti sincerely. His invaluable suggestions, feedback, resources and ideas during the

whole project work contribute significantly to the success of this project.

In addition, we would like to thank Felipe Huici for his kind assistance during

all stages of this project.

Page 3

Table of Contents

Abstract .. 2

Acknowledgement ... 3

Table of Contents ... 4

List of Figures .. 8

List of Tables ... 8

Chapter 1 Introduction ... 9

1.1 Purpose... 9

1.2 Problem Space and Work Motivation.. 9

1.3 Objectives and Scope ... 10

Chapter 2 Background.. 11

2.1 Internet Exchange Point ... 11

2.2 Secure Socket Layer... 12

2.3 Simple Network Management Protocol ... 12

2.4 ASN.1... 13

2.5 XML... 14

Chapter 3 Requirement .. 15

3.1 Functional Requirement ... 15

3.1.1 Represent similar data in a common format ... 15

3.1.2 Create a compiler to generate common classes and code 15

3.1.3 Provide a common APIs for data analysis and data representation 16

3.2 Non-Function Requirement.. 16

3.2.1 Implement the system using Python ... 16

3.2.2 Easy to use, deploy and extend ... 16

3.2.3 Secure access and communications .. 17

3.2.4 Release the software as open source ... 17

Chapter 4 System Architecture .. 18

4.1 System Architecture ... 18

4.2 Advantages... 21

Chapter 5 Design and Implementation... 22

5.1 Data Representation ... 22

5.2 Validation... 24

5.3 Data Types ... 25

Page 4

5.3.1 Basic data type .. 25

5.3.2 User-defined type .. 26

5.4 Binary Encoding... 27

5.5 Glue .. 31

5.5.1 G-RS.. 31

5.5.2 G-RI .. 32

5.6 PoD... 33

5.6.1 Event Infrastructure... 33

5.6.2 Data transmission model ... 34

5.6.3 Multiple clients’ connections .. 34

5.6.4 Implementation ... 36

5.6.5 Protocols.. 38

5.6.6 Configuration file .. 39

5.7 Security .. 39

5.7.1 Implementation ... 40

5.7.2 Certificate management in OpenSSL.. 41

5.8 PoDRegistry ... 42

5.8.1 Implementation ... 43

5.8.2 Protocols.. 44

5.9 Compiler... 45

5.9.1 Architecture... 45

5.9.2 ExSERT Schema... 46

5.9.3 Implementation ... 46

5.9.4 Directory structure .. 47

5.10 API ... 47

5.10.1 ThresholdRTT... 48

5.10.2 LinkStatus ... 50

5.10.3 LinkUtilization .. 51

5.10.4 StatisticRTT .. 52

5.11 Database ... 53

5.11.1 Table design .. 54

Chapter 6 Testing ... 56

6.1 Test Strategy... 56

6.2 Test Case Summary.. 58

Page 5

6.2.1 Resources involved ... 58

6.2.2 Single model/function test .. 58

6.2.3 Whole model integration test .. 58

6.2.4 Exceptional case test ... 59

6.2.5 Stress and performance test... 59

Chapter 7 Project Management.. 60

7.1 Project Scope.. 60

7.2 Team Organization and Communication Plan ... 62

7.3 Project Schedule and Progress ... 63

7.4 Risk Management... 66

7.5 Status Control and Monitoring... 67

7.5.1 Version control.. 67

7.5.2 Defect code root cause tracking .. 68

7.5.3 Re-factoring code and program naming standard 68

7.5.4 Test process standardization ... 69

7.6 Report... 69

Chapter 8 Development Tools & Technologies... 71

8.1 Programming Languages ... 71

8.2 Tools... 72

8.2.1 Fping ... 72

8.2.2 CVS... 72

8.2.3 Pydoc... 73

8.2.4 MySQL.. 73

8.2.5 OpenSSL ... 74

8.2.6 Twisted.. 74

8.2.7 Rational Rose .. 75

8.2.8 Visio .. 75

Chapter 9 Future work ... 77

9.1 Network Error Prediction... 77

9.2 Future Development of the Compiler .. 77

9.3 Super PoD .. 78

9.4 Validation between DTD and XML schema.. 78

9.5 Separation of Glue and PoD... 78

Chapter 10 Conclusion... 80

Page 6

References .. 83

Appendix A: Class Diagram .. 85

1 Basic Data Types .. 85

2 LinkMeasure RMF.. 86

3 Compiler.. 87

4 PoDRegistry .. 87

5 Data Analysing Function... 88

6 Example VFClient... 89

Appendix B: Sequence Diagram.. 90

Page 7

List of Figures

Figure 2.1: SNMP System Architecture .. 13

Figure 4.1: System Architecture .. 18

Figure 5.1: Data Representation and Mapping .. 23

Figure 5.2: Class Diagram for the PoD.. 36

Figure 5.3: Class Diagram for the PoD and Glue .. 38

Figure 5.4: Mutual Authentication Architecture.. 39

Figure 5.5: Compiler Architecture ... 45

Figure 5.6: Directory Structure of Generated Files.. 47

Figure 5.7: Package Structure .. 48

Figure 6.1: Client Output ... 59

Figure 7.1: Phase 1 and Part of Phase 2 ... 63

Figure 7.2: Phase 2 and Part of Phase 3 ... 64

Figure 7.3: Phase 3... 64

Figure 7.4: Part of Phase 4 ... 64

Figure 7.5: Part of Phase 4 and Phase 5 ... 65

List of Tables

Table 5.1: Basic Data Types .. 25

Table 5.2: Data Type.. 30

Table 5.3: Binary Encoding ... 30

Table 5.4: TLV... 30

Table 5.5: Data Packet Architecture .. 30

Table 5.6: RP Protocol ... 44

Table 5.7: RC Protocol... 44

Table 7.1: Risks Management.. 66

Page 8

Chapter 1 Introduction

1.1 Purpose

This project is to design and implement an Extensible Secure Event and Report

Toolkit (ExSERT) based on the system architecture developed by the last year’s

project group. Unlike the previous project, there is no static Remote Monitoring

Function (RMF) that has been implemented. Instead, the new ExSERT provides a

way that the developer can easily create a new RMF using the integrated library

functions and data types. The purpose of this document is to provide a

comprehensive description of the project, and to explain the principals that are vital

to the future follower of this project. It aims to give a detailed account of the

development processes adopted and decisions that were made by the group during

different phases of the development lifecycle. Furthermore, this report includes a

detailed outline of the requirements, design, implementation, and testing. The report

also discusses the project management techniques employed. Finally, the report

concludes with a section on an evaluation of whether the objectives have been met,

and future enhancements to the system.

1.2 Problem Space and Work Motivation

As part of DCNDS weekly seminar, John Souter from the London Internet

Exchange (LINX) gave a presentation on the issues of monitoring network traffic at

the LINX. During this presentation it was apparent that many IXPs have similar

network monitoring requirements and all have semantically similar tools that are

developed in house. The tools often differ in the presentation of the information. For

instance, they have different hardware logs for data source since each IXP runs

different types of hardware. The IXPs also use different scripts for processing these

logs. As a result, they retrieve, store, and analyse the traffic data in a variety of

different ways. These differences make it difficult for the IXPs to share information

directly, to use common information for troubleshooting, to make comparisons of

multi-site data, or to perform analysis using this multi-site data. Most of IXPs in

Europe recognise that this is a growing problem.

Last year’s project group has already tackled the problems outlined above. Data

representation and format has been standardised by defining a set of protocols for the

Page 9

information exchanged between the IXPs. System architecture has been designed and

a working prototype has been implemented to provide the proof of the concept for

this architecture. A toolkit has also been created for data analysis purpose. This

year’s project therefore aims to re-engineer the ExSERT based on the system

architecture, and to provide an easy way for the new RMF creation.

1.3 Objectives and Scope

The project has one main aim that is to re-engineer the ExSERT based on the

system architecture developed by last year’s project group, but to use completely

different programming language from last year. The project aim has been identified

to establish a definite goal. In order to reach the goal a number of objectives have

been identified. These are smaller sub goals that are significant steps towards

achieving the project aim. The project objectives are:

• To re-engineer all the system components based on the system architecture

defined by the last year’s project group by using Python.

• To implement a new toolkit that is easy to use, easy to deploy and easy to

extend, that allows integration of existing data source such as ping, Fping,

SNMP etc and proprietary such as log files.

• To create a compiler that allows the easy creation of the new RMFs.
• To add more data analysis functionalities to the existing toolkit.
• To provide secure data transmission between the IXP and its clients.
• To provide sufficient testing on the complete toolkit and to write down

detailed report in order to lay a good foundation to the future project handlers.
As this project is suggested by LINX, the project mainly concentrated on the

requirements of this client. Due to the time limitation and lack of access to the

relevant resources, the testing and deployment of this toolkit was not performed in

LINX or other IXPs. However, relevant documentation was created that gives

detailed instructions on how to deploy and use this toolkit. The detailed instructions

are included in the user manuals. More specific project scope can be found in

Chapter 7 Project Management.

Page 10

Chapter 2 Background

This chapter provides the reader with some background information on general

and technological aspects that are relevant to this project. Since the project was

carried out on behalf of the IXP, some background information on IXPs is included.

In addition, an example network management tool and two standard data

representation techniques have been evaluated and discussed.

2.1 Internet Exchange Point

According to Wikipedia, an Internet Exchange Point (IXP) is “a physical

infrastructure that allows different Internet Service Providers (ISPs) to exchange

Internet traffic between their autonomous systems by means of mutual peering

agreements”. The IXP allows the ISPs to exchange domestic Internet traffic locally

without having to send those messages across multiple international hops to reach

their destinations. Normally there is a single physical connection from each ISP to

the IXP. This infrastructure reduces the cost of the Internet connectivity and

bandwidth, and improves the quality of the service, resulting in better and cheaper

service for the end user.

Peering is “the interconnection mutual business arrangement between at least

two ISPs whereby each directly exchanges traffic to and from each other’s clients”

(AfNOG 2001 Meeting Presentation). An IXP does not normally take part in the

negotiations of the peering agreements, and it only acts as a neutral interconnection

point where ISPs are physically interconnected with each other and where traffic is

forwarded to the peering partners. The peering relationship not only reduces cost and

reliance on purchased Internet bandwidth and transit, but also lowers inter-AS traffic

latency.

According to Wikipedia, an autonomous system (AS) is “the unit of router

policy, either a single network or a group of networks that is controlled by a common

network administrator (or group of administrators) on behalf of a single

administrative entity”. The single entity is usually assumed to be an ISP, a university,

or a business enterprise. Networks within an AS communicate routing information to

each other using an Interior Gateway Protocol such as RIP or OSPF. An AS shares

routing information with other ASs using the Exterior Gateway Protocol such as

BGP.

Page 11

2.2 Secure Socket Layer

The Secure Sockets Layer (SSL) is a protocol developed by Netscape for

transmitting private documents via the Internet. In terms of the protocol stack, SSL

sits directly above transport layer protocol and below application layer protocol, and

provides a secure end-to-end connection. The functionality provided by SSL is

intended to allow server authentication, client authentication, and encrypted

connections. The server authentication allows a user to confirm a server’s identity

using standard public key mechanisms, and the client authentication allows a server

to confirm a user’s identity in a similar way. The encrypted connections allow all

communications between the client and server to be encrypted and singed.

2.3 Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is the Internet standard

protocol developed to manage nodes (such as servers, routers, switches and hubs etc.)

on an IP network. SNMP enables network administrators to manage network

performance, find and solve network problems, and plan for network growth.

SNMP contains two primary elements: network management systems (NMSs)

and agents. The NMS is the console through which the network administrator

performs network management functions. Agents are the entities that interface to the

actual device being managed. Routers, bridges, hubs, or network servers are

examples of managed devices that contain managed objects. These managed objects

might be hardware, configuration parameters, performance statistics that directly

relate to the current operation of the device in question. These objects are arranged in

what is known as a virtual information database, called a management information

base (MIB). SNMP allows managers and agents to communicate for the purpose of

accessing these objects. The following figure taken from Cisco’s Internetworking

Technology Handbook illustrates the system architecture of an example SNMP

implementation:

Page 12

Figure 2.1: SNMP System Architecture

SNMP must account for and adjust to incompatibilities between managed

devices. Different computers use different data representation techniques, which can

compromise the capability of SNMP to exchange information between managed

devices. SNMP uses a subset of Abstract Syntax Notation One (ASN.1) to

accommodate communication between diverse systems.

2.4 ASN.1

Abstract Syntax Notation One (ASN.1) is an International Standards

Organization (ISO) data representation format designed to describe the structure and

syntax of transmitted information content. ASN.1 provides for the definition of the

abstract syntax of a data element (or data type). The abstract syntax describes the

syntactical structure and typed contents of data that are subsequently to be

transmitted across some medium such as the Internet. The language is based firmly

on the principles of type and value, with a type being a set of values. The type

defines what values can be sent at runtime, and the value is what is actually

transmitted across the medium at runtime.

The values are encoded before transmission using one of a number of different

encoding mechanisms such as the Basic Encoding Rules (BER). The encoding rules

specify how the values of the abstract data types are converted into byte string ready

for transfer. The recipient must usually be aware of the type definition before receipt,

Page 13

as this is not transferred but must be inferred from the context in which the message

exchange takes place. During the transmission the data stream is never in a form

readable by human operators. Only when it has been transformed into some local

data display format, prior to encoding or after decoding, can it be easily read by

humans.

2.5 XML

The Extensible Mark-up Language (XML) is a W3C-recommended general-

purpose mark-up language for creating special-purpose mark-up languages. It is a

simplified subset of Standard Generalized Mark-up Language (SGML) and is used

widely for exchange of structured information over the Internet. XML supports the

definition of a set of mark-up tags relating to the content of documents, thus

delivering both extensibility and potential for validation. Mark-up tags can be

defined for different type constructors so that complex data structures can be built.

XML uses a Document Type Definition (DTD) or an XML Schema to describe the

data.

XML is transferred in textual format with no binary encoding or compression,

remaining in a constant human readable format throughout the transmission. The

recipient has to examine every byte received in order to determine the end of a data

value. Constraints can be imposed on the XML document structure with the

provision of DTDs or XML schemas, which describe the allowed mark-ups that a

conformant XML document can contain.

Page 14

Chapter 3 Requirement

This chapter gives an overview of the requirements of the system that will be

developed. Since last year’s group have already implemented a working prototype to

provide the proof of the concept for the system architecture, one key function

requirement for this year is to re-engineer the system based on this system

architecture. The functional requirements are concerned with representing similar

data in a common format, generating the common code from ExSERT schema,

providing a common APIs for data analysis and data representation, and securing the

communication between the client and server. The non-function requirements have

also been detailed, including implementing the system using Python and releasing

the software as open source, and requirements that drives the development of this

toolkit. For instance, the toolkit needs to be easy to use, to deploy and to extend as

well as easy integration with the existing back-end tools such as Ping, Fping or

SNMP.

3.1 Functional Requirement

3.1.1 Represent similar data in a common format
Last year’s group has standardized the data representation for the network

traffic exchanged between the IXPs. A set of protocols has been defined to provide

communication over the network between different components in the system. These

protocols also resolved the data heterogeneity generated by different back-end

network tools. However, these protocols are not standardised by any standardisation

organization, resulting in these protocols may not be accepted by other IXPs.

Therefore a standard way to represent data is required to be adopted.

3.1.2 Create a compiler to generate common classes and code
The compiler is required mainly to generate the common code for the system

components. By having a compiler would certainly speed up the development of new

RMF tools. Furthermore, regarding the VP protocol defined in last year’s project,

given a set of types to transmit, the functions that convert these types into the array

of bytes to send would be written by hand. This problem is also outlined as a future

work in last year’s report. To improve this deficiency, this compiler is also required

to generate these functions automatically according to the ExSERT schema which

Page 15

acts as a report format for the compiler. In other words, IXPs could deal with their

different data formats from back-end tools by using this complier rather than writing

a fixed program. The report format specifies the information structure transferred

across the network between different IXPs. As a whole, the compiler is used for the

auto-generation of the protocol and information processing.

3.1.3 Provide a common APIs for data analysis and data representation
Last year’s group has developed a set of functionality for data analysing based

on the working prototype. Since the data representation for this year’s toolkit is

different from the previous one, all the functionality needs to be re-engineered

according to the new data format. Furthermore, additional functionalities are required

to be built in order to provide a complete toolkit. After the common code has been

generated from the compiler, the code for data analysing can be added by the

application programmer. By providing a common API, application programmers can

insert these functionalities easily.

Another part the API should provide is the concrete implementation of the

basic data types that are used to represent the network traffic, such as IP address. In

terms of the system architecture, these concrete implementations would be used by

both the IXP and its clients to process the data transmitted across the network.

3.2 Non-Function Requirement

3.2.1 Implement the system using Python
Most of IXPs prefer scripting language for their data processing and

particularly LINX uses Python for its existing monitoring system. This is due to the

fact that Python is interpreted language, which is easy to implement, easy to use,

multi-platform, flexible, and efficient. Therefore the toolkit is required to be

implemented in Python.

3.2.2 Easy to use, deploy and extend
As the toolkit will be used mostly by the site administrator who might not be an

experienced application developer, the toolkit is required to be easy to use and easy

to deploy. In addition, the toolkit is required to be extended easily, allowing the

simple adding of new report and event types. The compiler tool mentioned in the

functional requirement would certainly help to achieve this requirement.

Page 16

3.2.3 Secure access and communications
As the data that LINX or other IXPs generate from monitoring their customers’

traffic and their own hardware have to be kept confidential, there is a requirement to

ensure its confidentiality through encryption as well as providing mutual

authentication of the parties involved in the exchange of these data. Furthermore, the

secure access (on the wire or site level) would be controllable by the site

administrator.

3.2.4 Release the software as open source
This monitoring toolkit will be released as open source. Open source offers a

radically different and exponentially better software development model. With many

open source projects, a virtual community of developers grows around the software.

Everybody contributes to produce a higher quality product than could have been

produced independently. Furthermore, more programmers are better since the more

people looking at a piece of code, the more likely one of them is to fined a bug

before it gets to be a major problem.

Page 17

Chapter 4 System Architecture

As the system architecture has been well developed in the last year’s project,

this year’s project mainly focuses on the auto-generation of the system components

and common APIs that provides the easy creation of the functionalities of the

Remote Monitoring Function (RMF) or the toolkit. This chapter provides an

overview of the system architecture, and a brief discussion on how this auto-

generation is achieved.

4.1 System Architecture

The RMF consists of several components that are real resource, Glue, PoD, and

Visualization (front-ends). The following figure shows a typical RMF, and the

subsequent paragraphs outline a brief description of these components.

VF
Client PoD Glue

G-RI G-RS

Real Resource

Auto-generated protocol processing

Auto-generated information processing

RMF

 Handwritten code for data analysing

Figure 4.1: System Architecture

The real resource acts as an input for the RMF. It might come from the IXP,

which uses some network monitoring tools to gather network information from its

customers such as an ISP. It could also be the information generated from a switch or

Page 18

a router. The real resource can be obtained either at run time or from the log file

supported by a particular IXP in a certain time period.

The next component is called Glue as it provides the “glue” between the real

resource and the rest of the system. There are two logical parts in the Glue namely,

Glue resource specific part (G-RS) and Glue resource independent part (G-RI)

respectively. G-RS is responsible for dealing with network information in a non-

standard format obtained from the IXP, switches or routers and storing it. G-RI is

responsible for parsing received data from the G-RS into a standard format and

saving it to a file. XML has been adopted for the standard representation of the data,

and will be discussed in more detail in the next chapter. For the ease of reading,

XML is notated in the following discussion instead of the standard representation.

The standardised data will be passed to the PoD for further data processing.

The next component, called PoD, performs three functions: it analyses the data

supplied by the G-RI, acts as server that accepts connections from authorized clients,

and pushes all the processed data to the clients. A set of functions contained in the

API can be used for data analysing.

The last component is called visualization component. It can be a graphical

user interface, a web page or just a plain text file. In a word, it is up to the end users

to choose one of the display types, which can tailor their requirements perfectly. In

fact, XML document is already well formatted and can be displayed in a current web

browser without any changes. XML can also be combined with other layout

languages (such as HTML based web documents) to produce highly readable output.

Unlike last year’s project, no particular GUI has been implemented to display the

information received from the PoD. However, a client demo has been implemented,

which converts the received XML document to HTML format, which then can be

displayed by the browser.

The whole process starts when one or more clients connect to the PoD server,

which triggers the Glue to begin requesting and retrieving data from the real resource.

While there is no client connected to the server, the Glue stops requesting and

retrieving data. Of course, the PoD server is still running to accept new clients.

The compiler is used to auto-generate the code of protocol processing and data

processing for system components, which has been shown on the above diagram. To

the end users, what they need to do is just to modify the input ExSERT schema and

the configuration file of the compiler initially, and then the complier will generate all

Page 19

the common source files. After appending the code for retrieving the back-end data

for the G-RS and the data analysing code in the PoD, a completed network monitor

tool is generated and ready to use.

As discussed in the last year’s report, the system needs to have some

mechanisms whereby the clients can find the specific PoDs. In order to solve this

problem, a PoDRegistry has been designed. Each IXP has its own PoDRegistry,

which is empty at the very beginning. When a PoD starts running, it connects to the

PoDRegistry and registers itself with the PoDRegistry by informing the registry of its

host name, port number, types of PoD and a short description of what it does. The

PoDRegistry runs at a well-known port 5555 and at a well-known address

determined individually by each IXP, so that the PoD knows where to contact the

registry. For the clients, they must initially connect to the PoDRegistry server rather

than any PoD server. Then the clients can obtain a list of current registered and

connected PoD servers from the PoDRegistry in which they can choose one and set

up a connection with the specific PoD. After the connection has been established

between the clients and the PoD server, the data transmitting from the PoD server to

the clients have been built and kept running. PoD server will stop transmission while

there is no client connected to the PoD server. The PoDRegistry can be in different

locations with a well-known socket port number 5555 or use different mechanism

such as a URL web site.

Since the data being transmitted is likely to be confidential, according to one of

the client’s requirements, all communication between the PoD servers and the clients

are done using SSL and mutual authentication. Communications between the PoD

server and PoDRegistry, and between the client and the PoDRegistry are

unencrypted since the location and registry information of a PoD is not confidential.

In fact, in order to established a SSL connection between a client and a PoD, a

Certificate Authentication (CA) has to be set up by which both clients and PoD

server can verify each other’s certificate before encrypting and transmitting data.

Due to the complexity, a CA is running in the same machine with the PoD server in

order to simplify the CA operation. This part can be improved in further

development.

Page 20

4.2 Advantages

The most significant advantage of the compiler and API is that it allows the

users to easily create a new RMF to meet their needs. To create a new RMF, the

users only need to make slight modifications on the common code generated by the

compiler. Without the compiler, the development of a new RMF normally takes

more time since all the common code needs to be re-written for different RMFs. To

further ease the creation of the new RMF, a common API is developed which

provide both the functions used to analyze the data and the basic data types for the

data representation. The developer can use the libraries in the API to add different

functionalities of the RMF.

Page 21

Chapter 5 Design and Implementation

This chapter provides a detailed discussion on the issues aroused during the

design and implementation phase of the project, and many decisions made by the

group. The design and implementation is based on the system architecture developed

in the last year’s project. A prototype as a simple RMF has been designed and

implemented first in order to determine the structure and sources of the target that

will be generated by the compiler. After the development of the compiler, more

functionalities of the RMF have been built up in order to refine the compiler. These

functionalities are included in a common API, which also contains the

implementation for basic data types. This chapter also includes the discussion about

the re-engineered PoDRegistry server and its communication protocols, the SSL used

between the client and PoD server, and the binary encoding scheme.

5.1 Data Representation

A number of standardised protocols can be used to represent data for the

network traffic exchanged between IXPs. Two most popular techniques XML and

ASN.1 have been examined and detailed in the background chapter. XML was

chosen for the toolkit because it has many advantages over other techniques.

Firstly, over the past couple of years, XML has become the preferred syntax for

the transfer of information across the Internet. XML has received the wide spread

backing and endorsement from major IT industry organisations like Sun

Microsystems, IBM and Microsoft.

Secondly, constraints can be imposed on the XML document structure with the

provision of Data Type Definition (DTD) or XML schema, thus XML is easier for

validation. Validation is an important process for the recipient of XML documents

that might be corrupted during the transmission. XML provides a set of element

types, which serve to define types of documents. DTD or XML schema contains set

of rules to control how documents and tags are structured, which elements are

presented and the structural relationship between the elements for documents of a

particular type.

Thirdly, XML is transferred in textual format with no binary encoding or

compression, remaining in a constant human readable format throughout the

transmission. Application programmers can build simple parsers to read XML data,

Page 22

making it good format for interchanging data. XML is easier to debug since the data

stream can be read without any special software tools. XML seeks to “achieve a

compromise between flexibility, simplicity and readability by both humans and

machines” (Emmerich 2000).

Finally, XML can be combined with other layout languages (such as HTML

based web documents) to produce highly readable output.

On the other hand, XML presents a disadvantage as XML is very verbose, and

consequently create large data streams during transmission. As a result, this might

hinder the performance of the transfer and consequently, the effectiveness of

displaying real-time data on the recipient side. A binary encoding scheme has been

defined to solve this overhead, and the detailed description about how binary

encoding works will be discussed in the following section. In addition, this encoding

scheme also alleviates some of the performance penalties suffered from the use of

SSL-encrypted communications.

XML is the abstraction or specification defining the data types and structured

information transferred across the Internet. Concrete implementation is needed to

allow the machine to understand and store the data. Due to the requirement, the

implementation is done in Python. XML elements are mapped to the Python classes

and each Python class has a method that converts the data to a XML format. The

XML document can also be parsed and converted back to the Python implementation

using the program from the standard Python library. The following figure illustrates

the architecture of this two-way mapping:

Sender

XML
Document

Parsed to

XML Document

Python
Implementation

C
on

ve
rts

 to

Python
Implementation

XML
Document

Receiver

Figure 5.1: Data Representation and Mapping

Page 23

5.2 Validation

Validation is the process to check whether the XML document is “well-

formed” and “valid”. A "well-formed" XML document is a document that conforms

to the XML syntax rules and a "valid" XML document is a "well-formed" XML

document, which also conforms to the rules of a DTD or an XML schema. Most of

high-level programming languages have built-in libraries for XML validation, and

the validation process can be easily performed.

Relating to the system architecture, the validation process needs to be

performed before the PoD sending the XML document and after the client receiving

it. The DTD or XML schema is normally predefined and distributed to both the PoD

and client before data transmission has been taken place. The XML document was

created by the Glue and passed to the PoD for data processing, thus the first

validation phase is required to check whether the XML document is valid. If it is not

valid, the PoD will not process the data, and consequently the document will not be

sent the client. The occurrence of the error in this stage is nearly impossible as the

document was automatically generated by the Glue rather than being written by hand.

The validation process is very important on the client side since the XML data might

be corrupted or damaged during the transmission across the network. If the XML

document is not valid, the client will ignore it to avoid unnecessary transformation

for displaying its contents.

According to the W3C recommendation, there are two types of validation rules

as discussed previously: DTD and XML schema. The purpose of DTD is to define

the legal building blocks of an XML document. It defines the document structure

with a list of legal elements. A DTD can be declared inline in the XML document, or

as an external reference. XML schema is an XML based alternative to DTD.

Compared to DTD, XML schema has a number of advantages. One of the greatest

strengths of XML schemas is the support for data types. With the support for data

types, it is easier to define restrictions on data in programs using regular expressions.

In other words, XML schema can check semantic errors as well as verifying

syntactic mistake, whereas DTD only support the latter.

Although XML schema is more mature than DTD, DTD has been chosen for

this toolkit instead. The reason is that one of the requirements is to implement the

system using Python, which only supports the DTD validation in the current

Page 24

implementation. Alternative way is to use third party tools for XML schema

validation. This has not been adopted due to the fact that either the kinds of tools are

too complex or lack of supported documentation, or the tools has copyright

legitimacy.

5.3 Data Types

5.3.1 Basic data type
XML provides a set of element types, which serve to define types of documents.

An XML element is everything from (including) the element's start tag to (including)

the element's end tag. An element can have element content, mixed content, simple

content, or empty content. Relating to the data representation of the toolkit, elements

with a single content are used to represent the basic data types. The basic data type is

the basic unit of the network information. For instance, an output from ping

measurement look likes “64 bytes from 64.233.183.104: imcp_seq=0 ttl=238

time=29.8 ms”, and the IP address can be seen as a basic unit. The following table

summarised the basic data types defined in the toolkit:

Basic Data Type Description
Year A string with a specified format, e.g. 2005

Month A string with a specified format, e.g. 10
Day A string with a specified format, e.g. 29
Hour A string with a specified format, e.g. 20

Minute A string with a specified format, e.g. 30
Second A string with a specified format, e.g. 45

IPv4Address A string with the format specified in IPv4
IPv6Address A string with the format specified in IPv6
MACAddress A string with the format specified in MAC address

RTT A integer represents the round trip time
NumOfBytes A integer represents the number of bytes transferred
PacketLoss A percentage represents the packet loss rate

Table 5.1: Basic Data Types

There are two universal types String and Integer, from which all other data

types (including basic and user-defined types) are derived. In particular, the Integer

type is just a signed integer type, as the network information usually does not have

the format of a negative integer. Year, Month, and Day are defined individually and

combined together to represent date information. The reason why they are defined

Page 25

individually is that it is easier for data processing in the case of a client requires

certain monitoring information in a particular time period. Hour, Minute, Second are

defined and combined together to represent time information in a similar way. RTT

and NumOfBytes are not supposed to be classified as the base data types because

they are just types of an integer with no special format. However, there is a limitation

when using DTD since DTD only supports for character data. There is no way to

define RTT as an Integer in DTD, thus RTT and NumOfBytes need to be predefined

for the purpose of validation. IPv4Address, IPv6Address, MACAddress are three

address formats commonly used in the network information.

As discussed in section 4.2, unlike XML schema, DTD only supports for

checking the syntactic error for a given XML document. The semantic checking is

also required to be performed in a way that the data has a correct meaning. As

discussed, the abstract data types defined in XML/DTD have corresponding

implementation Python classes; the semantic checking is also carried out in these

Python classes. Regular expressions have been used for this checking since it is a

powerful and standardized way of searching, replacing, and parsing text with

complex patterns of characters.

5.3.2 User-defined type
The user-defined type is the data type constructed by the application

programmer. It can be a structured type or just a type directly derived from String or

Integer. The latter is often used to store the result calculated from other data types.

The structured type can also include other structured types. The network information

usually consists of a set of basic data types in the structural way. For instance, the

Time information is composed of Hour, Minute, and Second, which are three basic

data types. Time is referred to a user-defined type that is constructed using basic data

types. In terms of an XML document, the structured type can be represented by

elements with element contents. The following XML tag shows an example of a

structured type:

<Time>

<Hour></Hour>
<Minute></Minute>
<Second></Second>

</Time>

Page 26

In terms of the concrete implementation, the structured type is also represented by a

Python class that is composed of other classes.

5.4 Binary Encoding

This section describes the related concept of binary encoding, explains the

reason why binary encoding is necessary and specifies how to use it.

XML is a useful, portable format for exchanging data between different

applications. While XML solves the problem of data heterogeneity, XML’s

processing overhead, storage requirement, and bandwidth consumption become quite

problematic when transaction volumes are high. In many cases wireless networks are

slow (data throughput possibly as low as 4KB per second), passing XML documents

between a server and a J2ME-enabled device might be too slow to be workable. Also,

parsing large documents can easily cause out-of-memory errors on very constrained

devices.

One approach to improve the performance of XML is to compress XML

directly. Although compression may solve the bandwidth issues in the most

straightforward approach to reducing the size of XML documents, it worsens the

processing problem at both sides of the sender and recipient to apply compression

technologies. Furthermore, compression formats like zip or base64 offer an “all or

nothing” approach. So any marginal gains in network bandwidth are also lost in

processing time. To resolve the limitations of all-or-nothing compression and its

processing overhead, we developed the binary representation of XML.

The binary format was designed to allow compact transmission with no loss of

functionality or semantic information. The binary format encodes the parsed physical

form of an XML document, for instance, the structure and content of the document

entities. Meta-information, including the document type definition and conditional

sections, is removed when the document is converted to the binary format.

Furthermore, high throughput transaction processing systems, low bandwidth

communications and low-power processors with small memory are not generally

places where complex compression algorithms are worthwhile. So this encoding uses

binary, rather than text-based, means for serializing and transmitting XML

information. It promises to significantly alter the processing, bandwidth, and storage

penalties that currently plague XML.

Page 27

Moreover, binary encoding is faster than textual encoding. Also, the binary

format is not proprietary and is supported by a lot of tools. The binary encoding is

already standardized, mature and stable, high performance, and supported by large

scale of commercial and free software. It reduces the message size and provides

interoperability and self-describing format. In addition, it can be accessed randomly

by using binary tags.

Therefore, encoding or transforming XML into a binary format is usually a

better solution.

In order to understand binary encoding more, ASN.1 has to be introduced

herewith. As described in the background chapter, ASN.1 is used to describe

messages exchanged between communicating application programs. It provides a

high-level description of messages that frees protocol designers from having to focus

on the bits and bytes layout of messages.

One of the main reasons for the success of ASN.1 is that it is associated with

several standardized encoding rules such as the Basic Encoding Rules (BER) - X.209,

Canonical Encoding Rules (CER), Distinguished Encoding Rules (DER), Packed

Encoding Rules (PER), and XER Encoding Rules (XER). These encoding rules

describe how the values defined in ASN.1 should be encoded for transmission,

regardless of machine, programming language, or how it is represented in an

application program. ASN.1's encodings are more streamlined than many competing

notations, enabling rapid and reliable transmission of extensible messages - an

advantage for wireless broadband. Because ASN.1 has been an international standard

since 1984, its encoding rules are mature and have a long track record of reliability

and interoperability.

Closely associated with ASN.1 are sets of standardized encoding rules that

describe the bits and bytes layout of message as they are in transit between

communicating application programs. The encoding rules provide a means of going

from the local concrete syntax to the transfer syntax and reverse.

The basic data structure format is called TLV that describes XML data as

triplets <data Tag, data Length, data Value> by which specifications of information

can be handled by high-level protocols with no loss of generality, regardless of

software or hardware systems.

Page 28

There are compact binary encoding rules (BER, CER, DER, PER, but not XER)

are considered alternatives to the more modern XML. In this project, BER is

considered based on the following analysis.

BER stands for Basic Encoding Rules. These rules describe how to encode and

decode basic data types and composite data structures to and from TLV streams. A

TLV hence may be primitive (atomic) or constructed (nested) where the value

component contains other TLVs. The T is for the Tag a numeric type identifier; the L

is for the length of the data carried in the third V component, the value. TLV

structure must be maintained throughout. Unlike XML, BER tag and value are

binary rather than textual. For instance, XML is like <tag>value</tag>

(<IPv4Address>127.0.0.1</IPv4Address>) whereas BER is like tag/length/value

(0x23/0x33/0xFE). Therefore, the XML data is encoded using the TLV-style BER

for transmission - a binary format. The entire PDU (data and "header information") is

a single BER entity.

In addition, endianness like big endian or little endian has to be indicated since

some kind of data such as IPv4Address and RTT would take account of multi bytes.

In case of the binary encoding, it is essential that which endian will be adopted. In

fact, it does not matter either big endian or little endian is used as long as encoding

and decoding are consistent. In other words, if encoding uses big endian, decoding

has to use big endian too. In this project, big endian was used due to human reading

habit.

In the following, detailed definition and design of tables such as data type table

and encoding rules table are demonstrated respectively. There are currently three

types of data such as integer, string and IPv4Address. It is obvious that more data

types might be added in the future. At the moment, the length for encoding data type

is four bits. This means the current encoding rules can deal with sixteen kinds of data

at most.

In the case of concrete element data encoding in XML, the length of encoding

bits for each element totally depends on the dedicated data type and data value range.

Page 29

Number in decimal Binary code Type name
0 0000 Integer
1 0001 String
2 0010 IPv4
3 0011 IPv6
4 0100 MAC address

Table 5.2: Data Type

Data Field Name Length (bits) Range From Range To
YEAR 6 000000 111111

MONTH 4 0001 1100
DAY 5 00001 11111

HOUR 5 00001 10111
MINUTE 6 000000 111011
SECOND 6 000000 111011

NUMOFBYTES 8 00000000 11111111
RTT 16 0x0000 0xFFFF

IPV4ADDRESS 32 0x0.0x0.0x0.0x0 0xFF.0xFF.0xFF.0xFF
THRESHOLD 2 00 11

Table 5.3: Binary Encoding

Tag Length Value

Table 5.4: TLV

Tag Len T L V T L V T L V

Table 5.5: Data Packet Architecture

In order to explain the binary encoding further, a concrete XML file in the

following will be taken as an example. This XML file acts as the input of the binary

coding function, and the output is an encoded binary string that will be written into a

binary file before being sent over the network.

Input file:

<RTTMeasure>
<Timestamp>

<Date>
<Year>2020</Year>

 <Month>10</Month>

Page 30

 <Day>30</Day>
 </Date>
 <Time>
 <Hour>13</Hour>
 <Minute>35</Minute>
 <Second>29</Second>
 </Time>
 </Timestamp>
 <NumOfBytes>100</NumOfBytes>
 <IPv4Address>192.168.100.9</IPv4Address>
 <RTT>15</RTT>
 <Threshold>INFO</Threshold>
</RTTMeasure>

Result:

00010000000001100101000000000001001010000000000101111100000000001010

11010000000001101000110000000001100111010000000010000110010000100010

00001100000010101000011001000000100100000001000000000000000011110001

0000001000

5.5 Glue

5.5.1 G-RS
The purpose of the G-RS is to process the network information in a non-

standard format obtained from the IXP, switches or routers and to store it in the

Python objects. The implementation of the G-RS is specific to IXPs since different

IXP might have network information in a different format. If the real resource is the

log file, the G-RS processes the file directly. If the real resource is the runtime data

obtained from the IXP, the program that can acquire this data is integrated into G-RS.

The command to run the program is usually called a back-end tool, which can be

specified in the configuration file of this particular RMF. It is usually an ICMP or a

SNMP command. The real resource is parsed line by line, and the corresponding

Python objects are created to store the processed result. Here are five lines produced

by an ICMP tool (fping) command:

[2005-07-08-144433.656091] www.google.com : [0], 84 bytes, 30.1 ms (30.1 avg, 0% loss)

[2005-07-08-144433.664449] www.google.com : [1], 84 bytes, 30.1 ms (30.1 avg, 0% loss)

[2005-07-08-144433.673309] www.google.com : [2], 84 bytes, 30.1 ms (30.2 avg, 0% loss)

[2005-07-08-144433.675252] www.google.com : [3], 84 bytes, 30.1 ms (30.1 avg, 0% loss)

[2005-07-08-144433.684907] www.google.com : [4], 84 bytes, 30.1 ms (30.1 avg, 0% loss)

Page 31

For each line, the required information is extracted and stored in a Python object.

This object may contain other Python objects. As discussed in the 5.1, these Python

objects refer to the concrete implementation of the data types.

Since the back-end tool generates the output continuously, piping has been to

pass the output to the G-RS. A pipe is essentially a channel in which one program

can communicate with another by sending or receiving text string. Using the pipe,

the back-end tool pushes the output into one end of the pipe, and the G-RS pulls the

output from the other end of the pipe. However, one problem is found when using the

pipe in Python. The problem is that the back-end tool does not push the output until

the pipe buffer is full. The pipe buffer is 47 by default, and there is no way to modify

the size of the buffer in Python. As the toolkit requires the continuous data, the delay

produced by the pipe is not suitable. To solve this problem, the back-end tool has to

terminate after producing a number of outputs and restarts. If the number of outputs

is less than the pipe buffer size, the pipe will be forced to push the data to the G-RS.

Therefore, this solution prevents the real time data from delaying with the tradeoffs

of consuming more CPU usage, as terminating and restarting the back-end tool

consumes the kernel usage. The number of outputs that the back-end tool produce

can also be specified in the configuration file.

The interval between terminating and restarting the back-end tool also allows

the G-RS to pass the result to the G-RI. Otherwise, threading technique needs to be

used for the intercommunication between these two Glue components.

One alternative way to pass the generated output to the G-RS is to store the

output in a file, which will be accessed later by the G-RS. This technique has not

adopted since the file will not be read by the G-RS until the back-end tool finishes

writing, resulting in the latency of the real time data.

5.5.2 G-RI
The purpose of the G-RI is to parse received data from the G-RS into a

standard format and to save it to a file, which will be accessed by the PoD. As

described before, the standard format is an XML document. A list of Python objects

representation data types has been passed from the G-RS, and the G-RI process one

object a time. The getXML() method in these objects are called to construct the XML

representation of the data type. After building these data types, the root of the XML

Page 32

document is added. Other XML parameters including the version, the encoding, and

the DTD schema are also inserted to produce a well-formed XML document. These

parameters are specified in the configuration file, and the constructed XML

document is saved to file that will be accessed by the PoD later.

If the back-end tool does not work properly or there are errors in retrieving the

real resource, it will generate an empty file. When the PoD detects an empty file, the

PoD will notify clients that it cannot produce any monitoring information.

As the G-RS part is implementation specific, the G-RI provides a well-defined

interface to handle diverse G-RS implementations. It is designed in a way that all G-

RS implementations encapsulate their code for processing non-standard format data

in a particular method that will be called later by the G-RI.

5.6 PoD

As described in Chapter 4, the PoD has three main responsibilities: analyses the

data supplied by the G-RI, acts as server that accepts connections from authorized

clients, and pushes all processed data to the clients. This section details the different

design strategies for the PoD and the design decisions made by the group.

5.6.1 Event Infrastructure
The current toolkit has been implemented using push model and TCP

connection. At the first beginning, an event infrastructure was considered. In case of

event infrastructure, the PoD server pushes data into the event channel by which data

will be forwarded to different clients using IP multicast technology. This form of

asynchronous messaging is a far more scalable architecture than point-to-point

alternatives such as message queuing, since message senders need only concern

themselves with creating the original message, and can leave the task of servicing

recipients to the messaging infrastructure. It is a very loosely coupled architecture, in

which senders often do not even know who their subscribers are.

However, the above publish/subscribe architecture is not suitable for this

project based on the following reasons. Firstly, unlike TCP, IP multicast uses UDP

that provides unreliable data transmission between the server and client (the IXP and

its clients in terms of the toolkit). Thus, it would be essential to add reliability if the

event infrastructure is adopted. Secondly, data communication in event-driven

architecture is asynchronous; the current network monitoring toolkit is real time and

Page 33

synchronous. For instance, it will be meaningless if PoD server pushes data

continuously without any client receives it simultaneously. In addition, it is not easy

to implement a mediator server that accepts message from PoD server and multicasts

it to eligible clients. In fact, this would add one more layer into original system

architecture. Finally, in terms of data security, it might not be preferred by LINX

since both PoD server and client do need to know each other in publish/scribe

architecture. Obviously this could not be accepted according to requirements.

Furthermore, implementing SSL is more complicated in event architecture since

multicast is not compatible with SSL. Therefore, a point-to-point TCP connection

and push model is adopted.

5.6.2 Data transmission model
There are two kinds of data transmission model named pull and push, which

can be used between clients and the PoD. Both of them have their own advantages

and disadvantages.

In general, the pull model means that clients send request to the server and get

dedicated result from the server based on their requirements. As different clients may

have different requirements, the server will deal with them differently. As a result, it

might cause overhead on the server while thousands of clients connect to the server

at the same time. The advantage of this model is that it can satisfy all the clients with

different requirements.

On the other hand, the push model means the server pushes the same data to all

connected clients simultaneously. This model improves the performance significantly

although it cannot meet some clients’ specific requirements. However, API functions

can be used to make different kinds of PoD, which can satisfy different clients with

diverse requirements. In other words, clients with different requirements can connect

to different PoD servers. Therefore, inside one particular PoD server, the push model

is more suitable than the pull model and preferred for the transmission between

clients and the PoD.

5.6.3 Multiple clients’ connections
TCP has been selected for the implementation of the push model since it

requires reliable and continuous connections between clients and the PoD. The PoD

server also needs to be a concurrent server to deal with multiple connections from the

Page 34

clients. Three techniques can be used to design a concurrent server when using TCP:

forking, multi-threading, and using non-blocking sockets.

The simplest way to write a concurrent server in Unix is to fork a child process

to handle each client. When a connection is established, the server calls fork(), and

the child process services the client and the parent process waits for another

connection. The parent process closes the connected socket since the child handles

the new client. If plenty of clients connect to the server simultaneously, the server

needs to create a large number of processes, which will decrease the performance of

server rapidly, and even worse, make the server crash. Therefore, the forking

paradigm is not suitable since the PoD server needs to handle a great number of

clients’ connections.

Multi-threading is another way to implement a concurrent server. By multi-

threading, it means the server has each client served by a separate thread of control.

Multi-threading is far more advantageous than forking due to a number of reasons.

Firstly, thread is sometimes called lightweight process since thread creation can be

ten to one hundred times faster than process creation. Secondly, multi-threading is

less expensive since all threads within a process share the same global memory,

whereas in forking, the memory is copied from the parent to the child and all

descriptors are duplicated in the child. However, the synchronization among different

threads might reduce the server performance as well when there are a huge number

of clients’ connections.

By default, sockets are blocking; this means that the process will not resume

execution until the socket call has completed. With non-blocking sockets, the socket

call returns immediately, even if it cannot be completed. The non-blocking socket

and select function often combines to serve as a concurrent server to handle multiple

clients. When accepting incoming connections on the non-blocking socket, if the new

connection is not available, the error is returned instead of putting the process to

sleep with the blocking socket. The select function is used to determine when a

socket descriptor is readable, and is often called within a loop. In other words, if this

is a client ready for connecting, the server will establish this connection. If problem

occurred during the establishment of this connection, the server process will not

block but process the next client request.

The third technique has been chosen to handle multiple clients’ connections,

since it overcomes the overhead discussed in the previous paradigms. It is also

Page 35

proved that this technique has better performance of simultaneous connections than

using threads.

5.6.4 Implementation
Three classes have been designed for the PoD component: PoDServer,

PoDProcesser and PoDDataAnalysier. PoDServer is responsible for registering the

PoD with the PoDRegistry server and accepting connections from the clients.

PoDProcesser is responsible for processing the XML document received from the

Glue and pushing processed XML data to the connected clients. The processing is

actually done by PoDDataAnalysier that invokes the API functions for data analysing.

The class diagram shows the relationship between these classes, and a detailed

version is included in Appendix B:

PoDServer PoDProcesser

PoDDataAnalysier

1

1

1 1

API
Functions

Figure 5.2: Class Diagram for the PoD

Firstly, the PoDServer initialises two sockets. One socket is used for sending

the PoD information to the PoDRegistry, and the other is used for handling the client

connections. After that, it uses a combination of non-blocking and select function to

deal with multiple clients’ connections. When the connection is detected by the select

function, it is added to a list, which is then passed to the PoDDataProcesser object for

data processing. When the PoDServer starts, it creates an object of the PoDProcesser,

which will be running until the PoDServer shuts down. The PoDProcesser object is

initialised only once and resides in the memory all the time. This strategy is better

than using a separate thread to deal with the data processing because the thread

requires the synchronization with the PoDServer. Another reason to use this method

is that all the clients have the same requirements when using the push model.

Page 36

When there is at least one client, the requestAndSend function in the

PoDProceser class will be invoked with the connection list as a parameter. This

function firstly triggers the Glue to return a formatted XML document, and then

processes and pushes the new XML document to all connected clients. Instead of

pushing the whole XML document, the PoDProcesser sends the file line by line. In

this way, it avoids the delay introduced by the large XML document, providing a real

time data to the clients. After pushing data successfully, the requestAndSend

function returns an updated connection list to the PoDServer in which all clients are

currently connecting. In other words, all disconnected clients have been deleted in

the process of pushing the XML document. Normally, when calling socket functions

such as send, an integer is returned indicating the success of this operation or other

status. However, Python socket functions do not operate in this way. Thus the only

way to determine the status of socket function in Python is to use exceptions. When

an exception is caught in the process of pushing the XML document to the client, it is

assumed that this client has a bad connection or even been terminated. This particular

connection will be removed from the connection list. In addition, this exception

catching technique has also been used in other places such as the situation while

client or server crashes.

PoDDataAnalysier is responsible for analysing the data received from the Glue.

In different RMFs, the data analysing is different. A number of API functions can be

used for this data analysing, and will be discussed in details shortly. The

PoDDataAnalysier object is also instantiated when the PoDProcesser object is

created by the PoDServer.

The communication between the PoD and Glue is very flexible; several

techniques can be taken based on the real situation. For instance, if both the PoD and

Glue are in the same host, the communication can be done by sharing a common file

or just embedding one process into another one’s main process. In addition, if they

are separated in different locations, they have to communicate with each other by

using sockets.

In the current system architecture, the PoD and Glue are located on the same

machine. The synchronization between the PoD and the Glue is implemented by

sharing a common file. When a PoD server starts, it creates one PoDProcesser object,

which subsequently creates a G-RI object that triggers the back-end tool to start

retrieving the output from real resource. The XML document can be obtained by

Page 37

calling a dedicate function in G-RI, which writes a formatted XML document into a

file. The calling function will return a value to indicate the success or failure of

writing XML files. Afterwards, other functions will proceed. Thus, this mechanism

guarantees that data access conflict will not happen during the whole process. In

other words, the PoD cannot send the data until it has received it from the Glue,

otherwise an error will be noted to both the PoD and clients. Furthermore, this

synchronization method improves the performance of the PoD, and reduces the usage

of CPU and memory. The following class diagram shows the relationships between

these system components:

PoDServer PoDProcesser

PoDDataAnalysier

1
1

1 1

Glue-RS

Glue-RI

1 1

1
1

Figure 5.3: Class Diagram for the PoD and Glue

In order to avoid PoD server’s overloading, the maximum connection number

can be specified to restrain the number of connected clients. In fact, this is a very

common way used by many other well known web servers like apache, otherwise the

quality of service of the PoD is difficult to be guaranteed especially when system is

running in a heavy mode.

5.6.5 Protocols
In order to notify clients of the current status of the PoD, two communication

protocols have been defined. If the number of the current connections exceeds the

limitation of the PoD, the PoD will send a “FULL” flag to the client. If the Glue

cannot retrieve the back-end data or there is an exception raised by the back-end tool,

the PoD will send an “EMPTY” flag to the client. All client implementations should

focus on dealing with this flags as well as receiving the correct XML documents.

Page 38

5.6.6 Configuration file
 In general, the configuration file is a repository that contains all the

information necessary to boot and run an application. The configuration file

discussed here contains the configure information for the whole RMF. The PoD

initially reads this configuration file and passes to the G-RI, which then hands over to

the G-RS. The configuration includes three sections of information. One section

includes the system information such as the name of the XML DTD schema. Another

section contains the information to configure a PoD server such as the PoD

description and location of SSL certificates. The final section contains the host and

port information of the PoDRegistry. One of the advantages of the configuration file

is that it allows the administrator to view the system specification; the other

advantage is that the parameters should not be hard coded in the source code since

the variable such as number of client, port number, etc. will be changed as the

environment changes.

5.7 Security

This section describes the detailed application and implementation of SSL in

Python with the support of third party libraries. One of the third party libraries is

named OpenSSL that is actually a tool that can be used to generate self-signed

certificate authentication, public and private keys for the communication parties

using SSL. The other third party library is called Twisted that provides necessary

functions used in SSL such as certificate verification and data encryption.

In contrast to single authentication, mutual authentication is preferred since it

can allow both of server and client verify identities each other. Of course, mutual

authentication is more complicated than the single authentication in terms of

certificate verification and management.

 CA

Server Client

Figure 5.4: Mutual Authentication Architecture

Page 39

This figure describes the architecture of mutual authentication and the

relationship within three parties including CA, client and server that will be

explained in the following. CA is a short of certificate authentication, which will sign

certificates for communication parties by using their public keys and verifying their

certificates at the beginning of SSL connection. In other words, the client will send

server’s certificate to CA for verification and vice versa as long as they get each

other’s certificate. Therefore, SSL connection can only be set up when both

communication parties’ certificates are verified successfully, otherwise an error

indicating bad certificates will be notified to both communication party, and

consequently the SSL connection between client and server will be closed.

5.7.1 Implementation
According to the client’s requirements, data transmission over the public

network should be encrypted since it is confidential. In addition, the client must

ensure that the PoD could authenticate the clients before pushing any data and vice

versa. Therefore, a SSL tunnel should be set up between the PoD and client. In the

case of communication between PoD and PoDRegistry, again between client and

PoDRegistry will not be necessary to use SSL since information between them is not

considered confidential such as the location of PoD. CA currently resides in the

server side so that it simplified the implementation significantly. Otherwise the

whole system architecture will be more complicated since the CA in this project is a

self-signed certificate authority and an official recognized CA centre is not necessary

currently.

As described in the requirement session, this project will be written in Python.

But the problem we met is that Python has no enough packages to support SSL.

Therefore, the third party libraries have to be used to accomplish mutual

authentication.

In fact, Python only supports SSL client side, whereas other third party libraries

support SSL server side. Currently, there are four popular third-party libraries

namely, M2Crypto, PyOpenSSL, TLSlite and Twisted. These libraries have different

advantages and disadvantages since they are written by thousands of programmers all

over the world. Most of the third party libraries do not provide specific and sufficient

documents. Therefore, a comparison among them has to be done through testing the

libraries one by one. Eventually, Twisted library seems more suitable to this project

Page 40

since it has relative more documentation to explain the SSL interfaces and it is not

very difficult to be implemented in the program either.

Unlike java key tool, another third party tool named OpenSSL is used to

generate necessary certificates, public and private keys. OpenSSL is a toolkit which

implements SSL v2, v3 and TLS protocols with full-strength cryptography

worldwide. The whole process of using OpenSSL includes creating self-signed CA

certificate, creating public and private keys and signing certificates. At the first place,

a self-signed CA certificate will be created, which means that CAKey.pem and

CACert.pem files are generated with x.509 option. Then a server key file named

ServerKey.pem and a server certificate request file named ServerReq.pem will be

created. The latter one will be signed to become a sever certificate file named

ServerCert.pem by CA. Before signing certificates, the ServerReq.pem must be cat

into a file named Server.pem for later certificate management and search. The same

process happens in the client side. Eventually, both client and server will use its own

private key file and certificate file for communicate with each other.

During the application processing, the server must indicate where CA is, so that

CA can help client and server to verify certificates. Before SSL communication starts,

both client and server must have their own private keys and certificates signed by CA

based on their public keys.

Once the certificates have been verified successfully, a SSL connection will be

started immediately between a client and a server. In order to make sure the

transferred data have already been encrypted, both TCPdump and ethereal tools in

Unix can be used to capture the data and see whether the data is encrypted or not.

5.7.2 Certificate management in OpenSSL
The Secure Socket Layer protocol was created by Netscape to ensure secure

transactions between web servers and browsers. The protocol uses a third party, a

Certificate Authority (CA), to identify one end or both ends of the transactions. The

paragraph below details how CA works.

A certificate contains information about the owner of the certificate, such as e-

mail address, owner's name, certificate usage, duration of validity, resource location

or Distinguished Name (DN) which includes the Common Name (CN) (web site

address or e-mail address depending of the usage) and the certificate ID of the person

who certifies (signs) this information. It contains also the public key and finally a

Page 41

hash to ensure that the certificate has not been tampered with. Usually the web

browser or application has already loaded the root certificate of well known

Certification Authorities (CA) or root CA Certificates. The CA maintains a list of all

signed certificates as well as a list of revoked certificates. A certificate is insecure

until it is signed, as only a signed certificate cannot be modified. Signing a certificate

using itself, it is called a self-signed certificate. All root CA certificates are self-

signed. A self-signed CA was created in this project in order to sign certificates for

communication parties. A commercial PKI is alternative for self-signed CA that will

be explained below.

The Public Key Infrastructure (PKI) is the software management system and

database system that allows to sign certificate, to keep a list of revoked certificates

and to distribute public key etc. In order to secure individual applications, a well-

known commercial PKI as their root CA certificate is most likely to be inside a

browser or an application. The problem is that it is so expensive.

At the moment there are two choices between a commercial PKI and our own

PKI. The commercial PKI were created at the beginning to enable secure commerce

over the Internet, basically securing HTTP. The pricing of certificates was calculated

on a per host basis. The cost is more expensive than that for a domain name because

of the costs to identify the owner of the certificate. Unfortunately when this project

needs thousands of certificates, costs start to skyrocket as well as the administrative

burden to register all these certificates to the Certificate Authority increases

dramatically. Therefore, building our own Certificate Authority is preferred at the

moment although it has certain limitations for users. This allows flexible

management of certificates. In addition, a global PKI will be expected in the future.

5.8 PoDRegistry

As described in requirements, the PoDRegistry as a registry server accepts the

registry information from PoDs which may reside anywhere. Therefore, clients can

then contact the PoDRegistry to obtain the registered PoDs’ profiles. In other words,

the PoDRegistry will act as an agent that can also provide clients a very convenient

way to find their preferred PoD servers. In order to achieve this, the PoDRegistry has

to store PoD servers’ information into a log file currently. Furthermore, the registry

information can also be saved into MySQL database since the necessary tables have

Page 42

been drawn, and in the future standard SQL statements can be used to retrieve data

from the large tables.

5.8.1 Implementation
The current implementation of the PoDRegistry is written in Python. In

addition, there are two additional communication protocols between the PoDserver

and the PoDRegistry, again between clients and PoDRegistry have been done so that

the data can be analysed correctly in both ends.

The PoDRegistry runs on well-known port 5555 when it starts. When a PoD

server starts, it connects to the PoDRegistry and registers its server type, server

hostname, server socket number and a short server description that indicates what the

server does. In detail, the PoDRegistry accepts connections from both clients and

PoD servers using the same socket. That means it is up to the client and PoD server

to tell the PoDRegistry the identification through adding connection type in the data

packet. For instance, in the first element of registry information of the PoD, it will

store information like “I am a server”, so that the PoDRegistry can know that a

server wants to register. However, it is not allowed for one PoD server to register

twice in the same PoDRegistey. Therefore, before adding new PoDRegistry

information into the log file, the PoDRegistry will check whether the PoD server has

already registered. If yes the server will not be added. Meanwhile, the PoDaRegistry

can accept any client’s connection since the PoDRegistry has started. Therefore,

when a client connects to the registry server, the client will tell the registry server

whom he or she is by using the same way as server such as “I am a client and I want

to find a PoD server”. Then the registry server will know that a client wants to collect

PoD server information, and consequently send the PoD server profiles to the client.

Another important technique that the program uses is that the PoDRegistry

spawns a new thread to detect the disconnected links with PoD servers timely, and

consequently updates the registry information in log files. In detail, the separate

thread tries to send idle message to the PoD servers timely and catch exceptions

whenever the idle message is not sent successfully. Then, the PoDRegistry will know

the disconnection status while the PoD server cannot accept message or has closed

the connection. However, it is so difficult to locate the reason why the PoD server

disconnects from the registry server since Python is a high-level programming

language although we can guess some possible reasons such as a network crash or

Page 43

computer restart. Whereas in low level programming language C, the error can be

located by matching the socket result value. Due to the uncertain disconnection

reasons, a PoD deregister is not developed. Instead, PoDResgitry will delete the

dedicated PoD server information in the log file when a thread detects a disconnected

TCP link. The thread repeats this process for all the entries in the registry log file and

then goes to sleep for a constant number of milliseconds, currently set at 1000. Of

course, the time interval can be changed to be any value based on the real system.

The separate thread performs this operation as long as the PoDRegistry is running.

Unlike the connection between PoD server and PoDRegistry, the connection

between client and PoDRegistry is not necessary to be maintained after finish

transmitting data. This is simply because that client will normally only connect to

PoDRegistry only to get PoD information. In other words, the connection between

client and the PoDRegistry will be closed when information is transmitted

successfully.

5.8.2 Protocols
The PoDRegistry protocol is designed to provide communication over a

network between the different components defined in the system architecture. This

PoDRegistry protocol here is served for clients, the PoDRegistry and a PoD server.

Therefore, it includes two protocols, one is for the PoDRegisetry and a PoD server

named RP protocol, and the other is for the PoDRegisetry and clients named RC

protocol. Both RP and RC are simple and convenient communication protocols.

Field description Field type

Protocol version ID = 1 Integer
Identify message String

PoD type String
Socket number Integer

Host name String
Socket description String

Table 5.6: RP Protocol

Field description Field type

Protocol version ID = 1 Integer
Identify message String

Searching key String

Table 5.7: RC Protocol

Page 44

5.9 Compiler

5.9.1 Architecture
Generally speaking, a compiler is a computing tool that reads a program written

in a first (source) language and translates it into second (target) language, which is

closer to the machine architecture; it is often assembler or some machine-oriented

language. The compilation usually involves four stages: lexical analysis, parsing,

semantic analysis, and target language code generation. The purpose of compiler in

the toolkit is to generate the user-defined types and the common code of system

components, which include the code for the Glue and PoD. The following diagram

explains the architecture of this compiler:

Report.xml Base.dtd Configuration.ini

Compiler

Report.dtd Python classes for
user-defined types

Common code
for the Glue

Common code
for the PoD

Figure 5.5: Compiler Architecture

There are three input files Report.xml, Base.dtd, and Configuration.ini for the

compiler. Report.xml is a XML file that acts as an ExSERT schema containing the

definition of the information format transferred across the network. The schema

consists of a number of user-defined types, which may be composed of other user-

defined types or basic data types. Base.dtd is a DTD file that contains the basic data

types. The implementation of basic data types is stored in the package of the API

which will be discussed in the following section. Configuration.ini is the

configuration file, in which the user can set the location of the Report.xml, Base.dtd,

Page 45

and the package of basic data types. The user can also define the name of a generated

monitoring tool in this configuration file.

There are four types of output files as shown in the diagram. Report.dtd is a

DTD file that will be used for the validation purpose by both the PoD and Client.

Report.dtd is constructed in the way that the relationship of the elements is taken

from the Report.xml and the types of the elements are obtained from Base.dtd.

Python classes for the user-defined types are generated according to the generated

Report.dtd. Before creating these classes, a checking on the Base.dtd is performed

since Report.dtd also includes the basic data types which do not need to be generated.

Common code for the Glue contains a complete generation of G-RI part. The

implementation for G-RS would not be generated by the compiler since the output

from diverse back-end tools is different, requiring specific processing. Most

implementations of the PoD are generated by the compiler except for the data

analysing part.

5.9.2 ExSERT Schema
There are a number of reasons why XML has been chosen for the specification

of input ExSERT schema. One obvious reason is that it directly mapped the

transferring syntax described in Section 5.1; thus it provides an overview of the

report format. Subsequently, XML has a very simple syntax, which can be easily

handled by the user when creating the ExSERT schema.

To further ease the creation of the ExSERT schema, a graphical development

environment could be used for defining this input. For instance, GUI components

like “textbox” could be applied to represent an XML tag. Drag and drop operations

could be adopted for manipulating elements within the GUI. Due to the time

constraint, this graphical environment has not implemented in this toolkit, but it can

be potentially useful when the toolkit has more users.

5.9.3 Implementation
The iterative and incremental development method has been adopted for the

implementation of the compiler. As it is quite difficult to determine the common

code for the system components, it is not easy to find out the correct target for the

compiler at one time. The initial version of the compiler is implemented based on the

common code derived from the example RMF, which is implemented prior to the

Page 46

compiler based on the system prototype defined by the last year group. Every time a

new type of RMF was developed, the common code is revised, and then the compiler

is refined in order to meet this change. Sometimes, the compiler also needs to be

refined when the implementation of the system components has modified.

5.9.4 Directory structure
The compiled files are structured in a way that the user can easily find it and

make modifications. The following diagram shows the directory structure of

generated files:

RTTMeasure

Common Class Glue PoD

Figure 5.6: Directory Structure of Generated Files

RTTMeasure is the root of all compiled files, and it is also the name of the tool

specified in the Configuration.ini. RTTMeasure contains four sub folders which are

Common, Class, Glue, and PoD. Common folder includes Report.dtd and

Configuration.ini which are shared between the PoD Server and Client. Class folder

contains the Python implementation for the user-defined types. Glue and PoD folders

contain the implementation of the common Glue and PoD source files respectively.

5.10 API

The API contains two packages: Class that includes the implementation of all

basic data types and Function that includes functions which allow the developer to

add the functionality of the PoD. The implementation of the data types have been

discussed in Section 5.3, and this section mainly concentrates on the discussion of

provided functions in details. The following figure shows the structure of the

package:

Page 47

Lib/ Top-level package
 __init__.py Initialise the Lib package
 Class/ Sub package for basic data

types
 __init__.py
 Integer.py
 String.py
 Year.py
 Month.py
 Day.py
 Hour.py
 Minute.py
 Second.py
 IPv4Address.py
 IPv6Address.py
 MACAddress.py
 RTT.py
 NumOfBytes.py
 PacketLoss.py
 Function/ Sub package for functions
 __init__.py Initialise the Function package
 ThresholdRTT.py
 LinkStatus.py
 Utilization.py
 StatisticRTT.py
 BinaryEncoding.py

Figure 5.7: Package Structure

The “__init__.py” files are required to make Python treat the directories as

containing packages.

5.10.1 ThresholdRTT
The purpose of this function is to provide the user to create a RMF that

monitors the network’s health in terms of the status of round-trip times (RTTs). A

number of thresholds between different status zones can be defined, which makes the

RTTs fall into these status zones. As far as the RMF developed by last year’s group,

four thresholds exist, making RTTs fall into one of four categories: “INFO”,

“WARNING”, “ERROR” and “CRITICAL”. One refinement has been made

compared to the function in the ThresholdRTT PoD developed by the previous group.

The improvement is that the new function allows the thresholds to be configurable,

which means the user can specify the value of thresholds, whereas there are four

Page 48

static threshold values in the previous RMF. This improvement provides a very

general and flexible way to set up the thresholds that might not be fixed in different

IXPs. For example, 60 milliseconds may fall into the “INFO” zone at one IXP, but

may fall into the “ERROR” zone at another one. The threshold values can be defined

in the RMF configuration file, and the following code shows how it can be done:

threshold : 500, 1000, 1500, 2000

Threshold values are defined as a string separated with commas, and this string will

be passed as a parameter to the function.

When this function is called in the PoD, an unprocessed XML file is also

passed as a parameter. In fact, all the functions discussed here take a raw XML as the

input. As discussed before, the XML file is created by the G-RI. After this XML file

has been parsed, the function takes each RTT value and assigns a dedicated status to

it based on its value, and then a XML document is returned. The following code

block shows the processed XML document with threshold for each RTT:

<TextToXML>
<RTTMeasure>

<Timestamp>
<Date>

<Year>2005</Year>
<Month>08</Month>
<Day>15</Day>

</Date>
<Time>

<Hour>14</Hour>
<Minute>25</Minute>
<Second>30</Second>

</Time>
</Timestamp>
<IPv4Address>66.102.7.104</IPv4Address>
<NumOfBytes>84</NumOfBytes>
<RTT>450</RTT>
<Threshold>INFO</Threshold>

</RTTMeasure>
<RTTMeasure>

<Timestamp>
<Date>

<Year>2005</Year>
<Month>08</Month>
<Day>15</Day>

</Date>

Page 49

<Time>
<Hour>14</Hour>
<Minute>25</Minute>
<Second>31</Second>

</Time>
</Timestamp>
<IPv4Address>66.102.7.104</IPv4Address>
<NumOfBytes>84</NumOfBytes>
<RTT>800</RTT>
<Threshold>WARNING</Threshold>

</RTTMeasure>
</TextToXML>

5.10.2 LinkStatus
The purpose of this function is to provide the user to create a RMF that

monitors the status of each interface. This function is built on top of the

ThresholdRTT function, but instead of assigning a status to each RTT, it counts the

number of each status and shows the percentage of different statuses for a particular

interface. For example, for a given interface, a link status looks like:

INFO50.00% WARNING50.00% ERROR0.00% CRITICAL0.00%

When “ERROR” or “CRITICAL” zones take a large percentage, it means the current

network performance is poor, and consequently, the network administrator needs to

pay attention to this measurement. As the back-end can generate RTTs for a number

of interfaces constantly, the function can also deal with multiple interfaces at the

same time. The user can specify how often to refresh the link status information in

the RMF configuration file according their needs.

Like ThresholdRTT function, this function also takes an XML file and a

threshold string as inputs, and returns a new XML document with link status. The

following code block shows a processed XML document. This link status is

calculated every five round trip times:

<TextToXML>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>300</RTT>
<LinkStatus>

INFO60.00%WARNING0.00%ERROR50.00%CRITICAL0.00%
</LinkStatus>

Page 50

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>350</RTT>
<LinkStatus>

INFO60.00%WARNING0.00%ERROR50.00%CRITICAL0.00%
</LinkStatus>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>400</RTT>
<LinkStatus>

INFO60.00%WARNING20.00%ERROR20.00%CRITICAL0.00%
</LinkStatus>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>600</RTT>
<LinkStatus>

INFO60.00%WARNING20.00%ERROR20.00%CRITICAL0.00%
</LinkStatus>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>1200</RTT>
<LinkStatus>

INFO60.00%WARNING20.00%ERROR20.00%CRITICAL0.00%
</LinkStatus>

</LinkMeasure>
</TextToXML>

5.10.3 LinkUtilization
The purpose of this function is to provide the user to create a RMF that

monitors the utilization of each interface. Again, the link utilization is another

parameter for measuring network performance. The link utilization is calculated from

the packet loss rate over a period of time, and the packet loss rate can be generated

by the back-end tool such as fping. For a given link, if a remote switch or router is

monitored by the fping tool ten times and packet loss happens three times, no matter

how many packets lost each time, the utilization is 70% for this link. Similar to

LinkStatus function, this function can also deal with multiple interfaces, and the

refresh time can be specified in the RMF configuration file as well.

Page 51

Unlike the previous two functions, this one only takes an XML as input, and

returns a new XML as output. The following code block processed one XML

document, and this link utilization is calculated based on five packet losses:

<TextToXML>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<PacketLoss>0%</PacketLoss>
<LinkUtilization>80%< /LinkUtilization>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<PacketLoss>0%</PacketLoss>
<LinkUtilization>80%< /LinkUtilization>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<PacketLoss>20%</PacketLoss>
<LinkUtilization>80%< /LinkUtilization>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<PacketLoss>0%</PacketLoss>
<LinkUtilization>80%< /LinkUtilization>

</LinkMeasure>
<LinkMeasure>

<IPv4Address>66.102.7.104</IPv4Address>
<PacketLoss>0%</PacketLoss>
<LinkUtilization>80%< /LinkUtilization>

</LinkMeasure>
</TextToXML>

5.10.4 StatisticRTT
The purpose of this function is to provide the user to create a RMF that

provides statistic measurements including maximum, minimum and average of RTTs.

This function is very useful because it gives the user the range of RTT values,

alerting the administrator that there might be a network problem.

This function only takes an XML as input, and returns a new XML with

maximum, minimum, and average of RTTs for each RTT. The following code block

shows the processed XML document:

 <TextToXML>
<StatisticRTT>

<IPv4Address>66.102.7.104</IPv4Address>

Page 52

<RTT>500</RTT>
<MinRTT>500< /MinRTT>
<MaxRTT>700</MaxRTT>
<AvgRTT>600</AvgRTT>

</StatisticRTT >
<StatisticRTT >

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>550</RTT>
<MinRTT>500< /MinRTT>
<MaxRTT>700</MaxRTT>
<AvgRTT>600</AvgRTT>

</StatisticRTT >
<StatisticRTT >

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>600</RTT>
<MinRTT>500< /MinRTT>
<MaxRTT>700</MaxRTT>
<AvgRTT>600</AvgRTT>

</StatisticRTT >
<StatisticRTT >

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>650</RTT>
<MinRTT>500< /MinRTT>
<MaxRTT>700</MaxRTT>
<AvgRTT>600</AvgRTT>

</StatisticRTT >
<StatisticRTT >

<IPv4Address>66.102.7.104</IPv4Address>
<RTT>700</RTT>
<MinRTT>500< /MinRTT>
<MaxRTT>700</MaxRTT>
<AvgRTT>600</AvgRTT>

</StatisticRTT >
</TextToXML>

5.11 Database

This section describes the detailed database design that will be beneficial for

future data analysis and processing. Given the operating system platform and data

flow size, MySQL database was chosen since it has following advantages.

Firstly, MySQL database server is the world's most popular open source

database. Secondly, Python provides plenty of libraries to support operations on

MySQL database. Therefore, it is a better combination between Python and MySQL.

In addition, MySQL is an attractive alternative to higher-cost, more complex

database technology. Its award-winning speed, scalability and reliability make it the

right choice for the current medium-size project.

Page 53

5.11.1 Table design
This table is used to store data retrieved from XML file. The reason to save

those data is to make it as historic data and examples that will be necessary for future

statistic processing using complex mathematic algorithms.

FPING TABLE:

Field Type Null Key Default Extra
YEAR INT(11) YES NULL

MONTH INT(11) YES NULL
DAY INT(11) YES NULL

HOUR INT(11) YES NULL
MINUTE INT(11) YES NULL
SECOND INT(11) YES NULL

NUMBER_OF_BYTES INT(11) YES NULL
IP_V4_ADDRESS VARCHAR(40) YES NULL

RTT INT(11) YES NULL
THRESHOLD VARCHAR(10) YES NULL
PACKETLOSS VARCHAR(10) YES NULL
UTILIZATION VARCHAR(10) YES NULL

MINRTT INT(11) YES NULL
AVGRTT INT(11) YES NULL
MAXRTT INT(11) YES NULL

This table is used to save registry information from PoD servers. Therefore, the

function of searching PoD information can be implemented by using a searching key

such as PoD address or PoD type in a SQL statement. This will significantly improve

the efficiency in terms of thousands of PoD records in the database.

POD_REGISTRY TABLE:

Field Type Null Key Default Extra
POD_TYPE VARCHAR(10) YES NULL

POD_IP_ADDRESS VARCHAR(50)
POD_SOCKET_PORT INT(11) 0
POD_DESCRIPTION VARCHAR(50) YES NULL

Page 54

In the case of certificate management, database is an easy and effective

mechanism since it is capable of providing account authority mechanism and

certificate search or modification service by using SQL statement.

SSL_CA:

Field Type Null Key Default Extra
NAME VARCHAR(20) YES NULL

CERT_DIR VARCHAR(50)
CERT_TYPE VARCHAR(10)

EXPIRE_DATE DATE
DESCRIPTION VARCHAR(50) YES NULL

SSL_CLIENT:

Field Type Null Key Default Extra
NAME VARCHAR(20) YES NULL

PRIVATE_KEY_DIR VARCHAR(50)
CERT_DIR VARCHAR(50)

CERT_TYPE VARCHAR(10)
EXPIRE_DATE DATE
DESCRIPTION VARCHAR(50) YES NULL

SSL_SERVER:

Field Type Null Key Default Extra
NAME VARCHAR(20) YES NULL

PRIVATE_KEY_DIR VARCHAR(50)
CERT_DIR VARCHAR(50)

CERT_TYPE VARCHAR(10)
EXPIRE_DATE DATE
DESCRIPTION VARCHAR(50) YES NULL

Page 55

Chapter 6 Testing

This chapter details the type of testing that was carried out on the system. A test

document has been produced which contains a selection of test cases, and the

expected outcome and the actual outcome of the tests. The test document is included

in a separate file.

6.1 Test Strategy

There are a number of techniques available that are used to discover program

faults and to show that system meets its requirements.

One form of testing is defect testing. Sommerville (2001) states “The goal of

defect testing is to expose latent defects in a software system before the system is

delivered.” The emphasis of defect testing is on showing the presence of program

faults and not the absence.

Sommerville (2001) suggests that exhaustive testing, which is “where every

possible program execution sequence is tested” is impractical. Therefore testing of a

subset of cases is needed. This is effectively functional testing or black box testing.

With this form of testing the tester is only concerned with the functionality of the

software. The inputs and related outputs are studied. According to (Sommerville

2001) black box testing can be applied just as well to systems that are organized as

functions or as objects. The functional or black box testing approach will suit the

testing of the system because the system has functional features and the system is

organized as class, which is the model from which an object is created. As a result,

black box testing will be one of the techniques used to test the system.

As stated above black box testing is carried out before the system is delivered.

However, as the system was being developed the author has already carried out

testing. This was done after the completion of every class. Sommerville (2001)

writes, “Programmers take responsibility for testing their own code”. These tested

components were then integrated to build the larger system. This is known as

integration testing. The integration testing was based on the use. After completion of

these classes they were integrated together to complete the use case. This effectively

creates a module to test.

Once this module was tested the next use case was analyzed resulting in

another module to be tested. Sommerville (2001) states this forms an incremental

Page 56

approach to system integration and testing. The purpose of this incremental approach

is that it is easier to locate errors. This is desirable because due to the interactions

between system components it is sometimes difficult to find the error. By using the

incremental approach this difficulty will be minimized.

Exceptional case test includes exceptional conditions that occur in a system that

are not expected or are not a part of normal system operation. When the system

handles these exceptional conditions improperly, it can lead to failures and system

crashes. Exception failures are estimated to cause two thirds of system crashes and

fifty percent of computer system security vulnerabilities. Exception handling is

especially important in embedded and real-time computer systems because software

in these systems cannot easily be fixed or replaced, and they must deal with the

unpredictability of the real world. Robust exception handling in software can

improve software fault tolerance and fault avoidance, but no structured techniques

exist for implementing dependable exception handling. However, many exceptional

conditions can be anticipated when the system is designed, and protection against

these conditions can be incorporated into the system. Traditional software

engineering techniques such as code walkthroughs and software testing can

illuminate more exceptional conditions to be caught, such as bad input for functions

and memory and data errors. However, it is impossible to cover all exceptional cases.

It is also difficult to design a dependable system that can tolerate truly unexpected

conditions. In these cases, some form of graceful degradation is necessary to safely

bring down the system without causing major hazards.

The last but not least test case is the performance test. The main purpose of

performance test is to reduce the application response time without incurring

additional hardware costs, to improve customer satisfaction due to prompt response

of the organization's application, and to fix bottlenecks before costly problems occur

in production. Load and Stress Testing services include testing an application for

normal load, heavy load (stress), sudden increase in load (spike) and sustained load

(endurance). Monitors are deployed on all the systems being tested and vital data is

collected during these tests. We analyse the data collected to identify the

performance bottlenecks.

Page 57

6.2 Test Case Summary

This section details a selection of test cases that were carried out on the system.

Please refer to the testing manual for each test case, the expected outcomes and

actual outcomes.

6.2.1 Resources involved
We developed and run our program on Red Hat Enterprise Linux WS software

related:

Python version 2.3.3 used for coding

CVS: Used for version management

Besides the basic library in the installed Python, there are some extra library

needed, such as OpenSSL, Twisted.Python, Twisted.internet, wisted.internet.protocol,

MySQL,etc.

6.2.2 Single model/function test
Every single function, such as Fping, write file, read file, output user interface,

TCP connection, TCP disconnection and error communication etc, should have

results printed on screen.

For example, one unit test is to test the single function of PoDRegistry server.

The output below shows the situation while the PoD server connects to the

PoDRegistry server.

[pliang@skinner PoDRegistry]$ Python PoDRegistry.py
PoDRegistry server is waiting for connections...
Closed-connection-detection thread is running...
Connected by ('127.0.0.1', 1289)
A PoD server has connected.
PoD server info has been saved.
PoDServer(localhost, 5000) has closed its connection.

6.2.3 Whole model integration test
The purpose of this test is to integrate all functions included in the programs

and run the whole programs by using different input.

In order to test whether the whole programs can work smoothly or not, we have

made a client interface to get the final transmitted data.

Page 58

Figure 6.1: Client Output

6.2.4 Exceptional case test
The exceptional cases are mainly happened during the interaction with

applications/files out of programs and network communication. Although it is

impossible to catch all the exceptions, we still need to check the exception messages

in order to make our program more users friendly.

6.2.5 Stress and performance test
Based on the unit test and integration test, stress and performance test check the

system performance while making system load as heavy as possible.

Page 59

Chapter 7 Project Management

7.1 Project Scope

The scope for this particular project has roughly been defined in previous

chapter of this report, which introduced the objectives. In this chapter, we detail the

scope in the view of project management in order to make project assignment and

tasks more clear.

 Internet Exchange Points (IXPs) have been developing network-monitoring

toolkits that are specifically suited to their needs, requirements and infrastructure.

However, this approach has rarely been possible for one IXP to use a monitoring tool

developed by another IXP. Many IXPs have similar monitoring requirement, and

have semantically similar tools. The tools often differ in the presentation of

information, such as different data structures, different coding for processing data

and logs, and different visualisation front ends, etc. IXPs recognize that this is a

growing problem in the aspects such as sharing information directly, making

comparison of multi-site data, using common information for troubleshooting, and

performing analysis using multi-site data. The last year’s LINX network-monitoring

project, conducted with the collaboration of the London Internet Exchange Point,

addressed precisely to this problem.

The reason why we will continue to do this project is to refine the system, to

improve coding efficiency by using code auto-generation and to increase more useful

and dedicated functions in order to make our achievements more valuable and

realistic for the LINX and other IXPs.

This project is mainly the re-engineering and further developments based on

the last year’s project. The importance of the last year’s project is that they

developed a new system architecture on which future network monitoring tools can

be based, so that new tools can be deployed on Internet Exchange Points (IXPs)

which have different hardware and software infrastructures. The following

extensions will be beneficial from the underlying architecture, which has been

proved and achieved.

First of all, the project needs to be recapped by the scripting language Python

rather than previous Java or C++. This takes fully advantages of Python namely,

powerful, neat and independent. Like most scripting languages, Python features

Page 60

excellent text and file manipulation capabilities. Yet, unlike most scripting languages,

Python sports a powerful object-oriented environment with a robust platform API for

network programming, threads, and graphical user interface development. It can be

extended with components written in C and C++ with ease, allowing it to be

connected to most existing libraries. To top it off, Python has been shown to be more

portable than other popular interpreted languages, running comfortably on platforms

ranging from massive parallel connection machines to personal digital assistants and

other embedded systems. The efficiency of Python programming greatly saves the

time of coding.

Second, this project made a compiler that takes basic input – XML file and

generates auto Python codes. Since the heterogeneous raw data gained by using

different network commands, such as SNMP, Fping etc have different format, we can

convert those disparate raw data into a common form through using this tool

regardless of the underlying hardware and software infrastructure. This also means it

will make crossing IXPs applications easier than before. In order to achieve this, an

XML and XML schema is necessary. And Python is an excellent choice for XML

programming and distributed application development. The creation of compiler

effectively save the time of future programmer while there is a new requirement

Third, Binary encoding was added into this year’s project. While XML solves

the problem of data heterogeneity, XML’s processing overhead, storage requirement,

and bandwidth consumption become quite problematic when transaction volumes are

high. Our approach for improving the performance of XML is to compress XML

directly. Although compression may solve the bandwidth issue in the most

straightforward approach to reducing the size of XML messages, it worsens the

processing problem at both sides of the sender and recipient to apply compression

technologies. Furthermore, compression formats like zip or base64 offer an “all or

nothing” approach. So any marginal gains in network bandwidth are also lost in

processing time. To resolve the limitations of all-or-nothing compression and its

processing overhead, we developed the binary representation of XML. This encoding

uses binary, rather than text-based, means for serializing and transmitting XML

information. It promises to significantly alter the processing, bandwidth, and storage

penalties that currently plague XML.

Forth, in order to make network controlling more secure and easy to be

managed, the registry PoD is needed to make itself as a registry server which can let

Page 61

different remote monitors to watch the network as long as they can pass the secure

checking of the registry server. This registry POD can provide necessary information

for the registered clients, such as the IP address and network port number.

The last but not least function is Secure Socket Layer (SSL). The network

communication between PoD server and clients should be as secure as possible. SSL

uses the public-and-private key encryption system from RSA, which also includes

the use of a digital certificate. When an SSL session is started, the server sends its

public key to the user's browser, which the client uses to send a randomly generated

private key back to the server in order to have a secret key exchange for that session.

We use database to store the certificates of clients this year.

Finally, this project will discuss future work that could be carried out to

improve on the achievements of this project due to there have been potential valuable

and as yet underdeveloped idea.

7.2 Team Organization and Communication Plan

Every Tuesday there is a project meeting with our supervisor. Before and after

the meeting the meeting agenda and meeting minutes will be sent by project manager

respectively in order to make project topics and weekly work plan more organized.

In general the group met and worked together on a daily basis. Part of the

planning phase of this project was to design and agree on a weekly work schedule,

which roughly outlined the working hours as well as what general tasks needed to be

accomplished in the week. The work break down was planed just after the weekly

project meeting. So the tasks were made clear and performed by assigning one or two

owners according to group member’s interest and experience. In addition, the

schedule called for a stop on every Wednesday or Thursday while the respected

owners do have issues to complete his or her tasks. After the first two weeks’

cooperation, each member in the group had a rough learning about each member’s

strength and weakness, so the strategy called work in pair was adopted. The pair

programming not only makes people learn from each other more conveniently, but

also is very helpful to facilitate the schedules while one member is absent.

The communication plan includes Emails of general information such as

function requirement and specific instructions forthcoming, web blob of meeting

agenda and minutes and MSN messenger, etc.

Page 62

The weekly project meeting provided the basic working guidelines for the team

and resolved the issues with the help of supervisors. The first half time of the

meeting is mainly for weekly work review and issue resolution, and the second half

time of the meeting is for scheduling new weekly tasks. The web blob

(http://spaces.msn.com/members/dcnds-groupB) records every meeting agenda and

minutes, which provides the basic information of work progress.

7.3 Project Schedule and Progress

The ideal project goes through a short initial development phase, followed by

years of simultaneous production support and refinement, and finally graceful

retirement when the project no longer makes sense. For our project, the lifecycle

does not include the future refinement and maintenance because of the time

constraint. Basically our project lifecycle includes 5 phases, investigation, initial

simple prototype, complete coding, testing and documentation.

Phase 1: Investigation and learning stage, around two weeks

Phase 2: First simple proto type, around two weeks

Phase 3: Develop structured program and unit test, around one and a half month

Phase 4: Integration test, around two weeks

Phase 5: Documentation, around one month

In every phase, we have detailed work break down and schedules, which shows

the progress of our work.

Figure 7.1: Phase 1 and Part of Phase 2

Page 63

http://spaces.msn.com/members/dcnds-groupB

Figure 7.2: Phase 2 and Part of Phase 3

Figure 7.3: Phase 3

Figure 7.4: Part of Phase 4

Page 64

Figure 7.5: Part of Phase 4 and Phase 5

Milestones:

 2nd of May: Kick off meeting with supervisor

 11th of May: Project management presentation.

 3rd of June: Fist simple prototype complete.

 30th of June: Structured prototype complete

 29th of July: Coding and test complete

 1st of August: Begin documentation and report.

 19th of August: Complete group documentation.

 31st of August: Complete individual documentation.

 2nd of Sep: Project submission

This process results in a project schedule that can be tracked and monitored.

The information identifies what resources are needed, when the resources are needed

and for how long. It defines the timeframes and dates for key project deliverables and

for project completion. It sets expectations for project progress. Work is broken

down into small, more manageable pieces and reduces the overall complexity of the

project. Creating a project schedule will also provide a tool for performing critical

path assessments and more effective analysis of problem areas. Without a project

schedule, the project manager won't know all that must be completed, who needs to

complete it, how to make effective adjustments to get things completed, nor when to

expect the project to be complete.

Page 65

7.4 Risk Management

Throughout the project life cycle, we have to face several potential risks which

might impact the success of this project, and several strategies were adopted to

minimize risks. Since this project was dealing with a real client, it was apparent that

many risks would be directly associated with the client. This chapter gives an

explanation of the project risks identified and the actions taken to address them.

Each risk was classified to have low, medium or high seriousness and

likelihood. A few of these risks are in the table below:

H MContinuing stream of
requirements changes

H M Demo not ready at deadline

M MFunctions and properties of
application not precise

H LUnrealistic schedules and budgets

H HReal-time performance shortfalls

M MUser interface not handy

M MFail unit-testing repairing

H

M

M

Probability

M Version control confusion

H Misunderstanding of
customer requirement /

H No enough
testing/monitoring resource

Impact Risks

Table 7.1: Risks Management

After tacking and measuring risks, we need to take actions to mitigate risks.

The Extreme Programming methodology adopted for this project proved to be very

useful, as it mitigated many of these risks. For example, pair programming ensured

that an individual was assisted by a second member of the team while he or she was

facing a difficult task. Working in pairs reduced the risk of not being able to

accomplish tasks and also reduced the likelihood of bugs in the code. Another

Page 66

helpful method is the weekly feedback meetings. It was particularly useful in

addressing any new issues during programming and to assess existing ones to see if

they had been overcome or not.

Secondly, version control is also on top of anything for either coding or

documentation. We use CVS to manage our programs and documents. CVS means

Concurrent Versions System. It keeps track of all work and all changes in a set of

files, typically the implementation of a software project, and allows potentially

widely separated developers to collaborate. Every Monday there is a weekly release

in a new CVS folder in order to keep the relatively stable programs. The

modification and addition programs/files will be done in a temporary folder first in

order not to impact the whole integration of programs.

Thirdly, careful task plan and proper communication plan is top of anything.

The importance and details of task plan were already introduced in the section of

schedule. Communication plan was also mentioned in the section of team

organization. Frequently contact with our supervisor proofs very useful to our project.

Furthermore, emergency plan needs to take into consideration. For all those risks

which are deemed to be significant, emergency plan was put in place before it

happens. For example, in the case of server shut down, we have all files/programs

backup and are able to run our program in another system which has the similar

environment as the server.

Lastly, learning to drive is the key to manage and reduce risks. The drive of a

software project is the customer. If the software doesn’t do what they want to do, this

project is failed. As a programmer, the job is to give the customer a steering wheel

and give them feedback exactly where we are on the road.

7.5 Status Control and Monitoring

7.5.1 Version control
CVS was used for version control for both coding and documentation. Using

CVS, we can record the history of our source files. Instead of save every version of

every file, CVS stores only the differences between the versions. CVS helps a lot for

working in a group on the same project: CVS merges the work when each developer

has done its work and avoids concurrent modification conflicts.

Page 67

7.5.2 Defect code root cause tracking
The root cause tracking of the defect code provides reports highlighting priority

issues, showing the most recently reported bugs, and summarizing problems by

categories. And most importantly, we need a solution that saves us valuable hours by

automating the existing internal processes for escalating and resolving program

concerns.

The submitter of issue could include additional helpful information such as:

What is the priority (in the submitter’s opinion) for this issue?

Is this issue on the critical path to meeting another milestone?

How was this issue found?

Has the submitter already found any work-around?

Name Sub

Function
Defected
Number

Defect
Cause

Estimated
Date

Scheduled
Date

Impact
/Priority

7.5.3 Re-factoring code and program naming standard

In software engineering, the term re-factoring is often used to describe

modifying source code without changing its external behaviour, and is sometimes

informally referred to as "cleaning it up". Re-factoring is often practiced as part of

the software development cycle: developers alternate between adding new tests and

functionality and re-factoring the code to improve its internal consistency and clarity.

Testing ensures that re-factoring does not change the behaviour of the code.

Re-factoring is the part of code maintenance which does not fix bugs or add

new functionality. Rather it is designed to improve the understand ability of the code

or change its structure and design, and remove dead code, to make it easier for

human maintenance in the future. In particular, adding new behaviour to a program

might be difficult with the program's given structure, so a developer might re-factor

it first to make it easy, and then add the new behaviour.

An example of a trivial re-factoring is to change a variable name into

something more meaningful, and to make the variable name standard. The class

name, file name, variable name, const name, etc, need to be defined according to the

naming standard.

Page 68

Re-factoring is done as a separate step, to simplify testing. At the end of the re-

factoring, any change in behaviour is clearly a bug and can be fixed separately from

the problem of debugging the new behaviour. Re-factoring is an important aspect of

extreme programming.

7.5.4 Test process standardization
Test-driven development (TDD) is a programming technique heavily

emphasized in Extreme Programming. Essentially the technique involves writing

your tests first then implementing the code to make them pass. The goal of TDD is to

achieve rapid feedback and to implement the "illustrate the main line" approach to

constructing a program.

It is good to emphasize the fact that TDD is not a method of testing, but a

method of designing software. While we are running the test, several steps must

strictly abide, such as test manual follow up, test result tracking, bug cause tracking

etc. The detailed test process can refer to our testing manual.

7.6 Report

In our web blob, weekly meeting minutes are basically a kind of report which

records the weekly work assignment, completeness and issues, and final

documentation.

The purpose of the final report is to provide a comprehensive description of our

entire project. The intended audience for the document should be the client, which

may include people who are not intimately familiar with all aspects of our particular

project. Because of this, we should make sure that the background and context for

the project (in the introduction section) are clearly explained and that the motivation

for the project is clear.

The following items should be included in our document; the details of each

section correspond to the chapters in our final report:

• Abstract. The abstract might be used by someone who wanted a quick

overview of the project

• Introduction to the Project. This section gives a high-level description of the

project, in narrative form. It includes the background and motivation for the

project.

Page 69

• Requirements and Specifications. This section corresponds to the main body

of our Software Requirements Specification. It includes both functional and

non-functional requirements.

• Design or Solution Approach. This section corresponds to the main body of

our Software Design Document. It includes graphical and/or formal

representations of your design, such as UML diagrams, use case scenarios,

database table layouts, sequence diagrams, state transition diagrams, data

flow diagrams, etc.

• Implementation Details and Results. This section provides additional

information about our implementation and/or results. Some possible items to

include are:

o Design decisions regarding language and/or tool used

o Design decisions regarding writing vs. using code.

• Project Progression/Project management. This section includes flexible

scope, possibly with identified milestones or a number of optional items.

• Conclusions and Future Directions. For many projects it will be useful to

include lessons learned.

Page 70

Chapter 8 Development Tools & Technologies

8.1 Programming Languages

Due to the requirement, Python was selected for the implementation of the

toolkit. Python is a scripting language and very easy to use and easy to implement.

The properties such as multi-platform, interpreted, interactive, object-oriented

programming language make Python very suitable and powerful for this project.

Python is fully dynamically typed and uses automatic memory management.

Through the successful carrying out of this project, it is proved that Python is very

suitable for the implementation of the toolkit, which is also the reason why the LINX

or other IXPs prefer it. A number of detailed advantages of Python have been

discussed below:

 The implementation of the toolkit requires plenty of shell scripting (such as

text and file manipulation), and network programming. Like most scripting

languages, Python features excellent text and file manipulation capabilities. Unlike

most scripting languages, Python sports a powerful object-oriented environment with

a robust platform API for network programming and threads. Without Python,

developers were forced to rely on a variety of tools used in awkward combination

with one other. One scenario would be using Perl for text and file manipulation and

using Java for network programming.

In addition, Python's power and ease of use combine to make it an excellent

choice for writing programs that process XML data. As a high-level language,

Python includes many powerful data structures as part of the core languages and

libraries. The more recent versions include excellent support for Unicode and an

impressive range of encoding, as well as an excellent and fast XML parser that

provides character data from XML as Unicode strings. Python standard library also

contains implementations of the industry standard DOM and SAX interfaces for

working with XML data.

Of course, there are many languages capable of doing what can be done with

Python, but it is rare to find all the qualities of Python in any single language. For

instance, Java has a powerful API’s for processing XML and network programming,

but it is not a good choice for text and file manipulation. These qualities do not so

much make Python more capable, but they make it much easier to apply, reducing

Page 71

programming hours. This allows more time to be spent finding better ways to solve

real problems or just allows the programmer to move on to the next problem.

8.2 Tools

8.2.1 Fping
Fping is a ping like program, which uses the Internet Control Message Protocol

(ICMP) echo request to determine whether a host is up. Fping is different from ping

in that you can specify any number of hosts on the commanded line, or specify a file

containing the lists of hosts to ping. Instead of trying one host until it timeouts or

replies, Fping will send out a ping packet and move on to the next host in a round-

robin fashion. If a host replies, it is noted and removed from the list of hosts to check.

If a host does not respond within a certain time limit and/or retry limit it will be

considered unreachable. Unlike ping, Fping is meant to be used in scripts and its

output is easy to parse.

In this project, we used a modified version of Fping. The new tool adds a

precise timestamp to the output of each request, and this timestamp is very useful for

the monitoring information.

8.2.2 CVS
Concurrent Versions System (CVS) is a powerful method of allowing many

developers to work on the same source code. It is used extensively within the project

in order to make every user accessible to all the files and avoid modification conflicts

The work process of CVS is also not complicate. Each developer checks out a

copy of the current version of the source code from CVS and then is able to work on

their own personal copy separately from other developers. When they have made

changes, they commit them back to the CVS repository. The CVS server is then able

to merge all the changes that the developer has commit back. Sometimes this

merging is not always successful, the developers are notified and they will have to

manually fix any possible conflicts that arise before trying to commit their changes

again.

CVS was proved to be very helpful for version control for both coding and

documentation and become one of the most important tools for project management.

Page 72

8.2.3 Pydoc
The Pydoc module automatically generates documentation from Python

modules. The documentation can be presented as pages of text on the console, served

to a web browser, or saved to HTML file.

It is imperative to provide clear and detailed documentation to IXP in case that

they want to modify the APIs and develop more functionality. Pydoc is easy to use

and can provide a description of the classes, When Pydoc generates documentation;

it uses the current environment and path to locate modules. The usage of Pydoc is the

shell command line outside of Python. We used the pydoc.py written by Ka-Ping

Yee. The command is “python pydoc.py –w filename”. Filename is the Python file

name.

Glue, PoD, Client sample codes are all easy to read the check the classes and

data through the HTML generated by PyDoc.

8.2.4 MySQL
The MySQL database server is the world's most popular open source database.

The Structured Query Language (SQL) is a very popular database language, and its

standardization makes it quite easy to store, update and access data. One of the most

powerful SQL servers out there is called MySQL and surprisingly enough, it is free.

Since we are using SSL to secure the data transmission between PoD server

and client, the certificate management becomes a problem while there are more than

hundreds of clients. We have considered about the different solutions to manage

certificates. The first choice is to store certificate into files in a fixed directory. The

advantage of storing as files is that it is fast to get data from files, but the trade off is

the scalability. When there are too many clients, it will be difficult to search a certain

file for a certain user. The second choice is to store files into database. Although the

database programming is comparatively complicated compared with file storing, the

biggest advantage is that it solved the problem of scalability. While there are

hundreds or thousands of users, it is quite efficient to search by using database. So

finally we decide to use database. MySQL is a stable, fast, easy to learn relational

database that runs across a wide variety of operating systems and is available under

both Open Source and more conventional licenses. MYSQL is multi threaded and

multi user. It is arguably the most popular database used for adding and processing

Page 73

large amounts of data on the Internet. And MySQL has very friendly interface with

Python. The use of MySQL proved to be very successful during our programming.

8.2.5 OpenSSL
OpenSSL is a free toolkit that is used to generate self-signed certificate

authentication, public and private keys for the communication parties who are

interested in SSL connection.

One of the reasons that we use OpenSSL is just because it is free. The

OpenSSL toolkit is licensed under an Apache-style licence, which basically means

that it is free to get and use it for commercial and non-commercial purposes subject

to some simple license conditions. OpenSSL is managed by a worldwide community

of volunteers that use the Internet to communicate, plan, and develop the OpenSSL

toolkit and its related documentation.

Another reason to use OpenSSL is that it can provide the correct format of key

files and certificates that is compatible with Python SSL interface. Python has very

friendly SSL interface, it just need the .pem format files that OpenSSL can generate.

OpenSSL can create both server and client key files and certificate request files.

Then it can sign certificate for both server and client.

In addition to the SSL implementation, OpenSSL toolkit includes utilities for

certificate management. It also includes a public key implementation which may be

used outside the United States. In the United States, RSARef or BSAFE3.0 must be

used due to patent requirements. OpenSSL offers an inexpensive way to get started

with SSL.

So in our ExSERT project, OpenSSL is installed in order to generate key files

and certificates in both server and client in this project. This tool was downloaded

from OpenSSL organization’s web link.

8.2.6 Twisted
Python native SSL package only supports SSL in client side rather than server

side. So we have to find a third party library that provides more network application

functions to provide SSL server side securities.

Twisted package is a third party library that provides plenty of network

application functions including SSL for Python language. The most useful advantage

for our project is that Twisted package support SSL in both server and client side.

Page 74

Twisted is an open source networking framework, implemented in Python which can

run on multiple operating systems and platforms.

Twisted is an attempt to build a framework capable of supporting the needs of

modern network applications, from simple custom protocol development to large-

scale multi-protocol integrated systems. It provides:

• Multiple levels of abstraction, starting with a low-level platform-specific

networking event loop, and moving up to generic networking code, common

protocol implementations, and high-level frameworks.

• Cross platform (Windows and Unix) support while still allowing platform-

specific code (as opposed to Java's design decision to provide only the lowest

common denominator).

• Integration and ease of use.

• “Batteries included." The framework includes everything necessary to build a

network application.

Twisted is divided into several packages such as twisted.internet,

twisted.application and twisted.protocols, each providing different services. Both

twisted.internet and twisted.protocol are used in this project in order to implement

SSL between clients and PoD server.

8.2.7 Rational Rose
Rational Rose is a tool that automates and simplifies the creation and

modification of UML designs. It supports two essential elements of modern software

engineering: component based development and controlled iterative development.

Models created with Rose can be visualized with several UML diagrams.

The tool was used to create the packet hierarchy, structure and dependencies of

classes, state diagram. So in our ExSERT project, classes in Glue, Compiler, PoD

were illustrated by using Rational Rose.

8.2.8 Visio
Visio is the leading business-drawing tool for creating diagrams, flowcharts,

and schematic drawings. Learn to create timelines, office layout plans, workflow

diagrams, organizational charts, maps, flowcharts and more with speed and precision.

In addition, Visio helps us communicate our ideas visually. While Rational Rose

Page 75

provides excellent UML diagram, Visio was used to draw any other diagram used in

our report.

Page 76

Chapter 9 Future work

Due to time and resource constrains of this project, especially in terms of the

toolkit design and implementation; there are several interested and valuable

functionalities are worth of being refined or improved in the future such as network

error prediction, compiler, super PoD, XML validation methods and separating of

PoD and Glue.

9.1 Network Error Prediction

The purpose of the network error prediction is to alarm the network

administrator before network error or disaster happens. Until now an effective and

suitable algorithm still has not been found to forecast the network error or disaster. In

fact, in order to achieve this, a combination of a set of algorithms rather than a single

one have to be made since the prediction may depend on multiple kinds of network

data. Furthermore, it is obvious that the prediction algorithm must have a higher

accuracy and less complexity. At the moment, all historic data generated by fping

tool can be saved in the MySQL database. Then, further analysis can be done based

on the raw data in the database. In addition, it will be significantly useful if this error

prediction algorithm can locate the dedicated network error and provide correspond

and effective solutions as well.

9.2 Future Development of the Compiler

The aim of the compiler is to generate basic classes and common code in Glue

and PoD. It had not been started until the first prototype of the project was finished,

which can provide concrete input and target of the compiler. Therefore, the

development lifecycle of the compiler should be an iterative and incremental process

that will be improved and modified based on different kinds of data analysis and user

requirements. In other words, a general and flexible compiler can only be made by

considering more and more requirements from users and system.

In addition, more data types such as Ethernet address and IPv6 address should

be generated as a basic class beforehand in order to satisfy heterogeneous hardware

and operating system platforms.

Page 77

9.3 Super PoD

A super PoD is a PoD that collects data from different individual PoD on which

future data analysis and comparison can be done. It provides a high level prospective

for the network administrator by using distributed monitor architecture. In other

words, this is a communication among different PoDs rather than clients. Therefore,

pull model seems suitable since it guarantees the super PoD get desirable data from

the preferred PoDs.

In addition, if historic data in each PoD is saved in a database, the data share or

exchange between the super PoD and individual PoD should be implemented

according to the table structures. However, it cannot be guaranteed that different PoD

has same table structures such as data field name and type. Therefore, data analysis

will be a big issue in future.

9.4 Validation between DTD and XML schema

Due to lack of enough libraries of supporting XML schema in Python, DTD is

chosen in this project although it does not provide data restriction, which has to be

tackled in our own program. Some third party packages also can solve this problem,

but they are so large and lack of necessary document. Therefore, the best way of

solving this is that there are Python libraries that can support validation for XML

schema, which is obviously not practical at the moment but may be truth in the future.

9.5 Separation of Glue and PoD

Currently, both Glue and PoD are in the same location. However, they are very

possibly separate in different locations due to the different system architecture

requirements. In fact, it is relative easy to accomplish this in the internal network.

The problem is that SSL has to be used over the public network, as the data is

confidential. Of course, SSL does not need to be used in the case of data transmission

only happens within internal network of an IXP and bandwidth should not be a

problem as well.

However, some issues have to be considered when data is transmitted over the

public network such as packet delay, packet loss and so on.

Page 78

Finally, other possible extensions may be developed by cooperating with other

universities or organizations in near future such as looking at routing information

with university of Cambridge, checking the problem space in more detail with IXP

community and deploying the monitoring more widely with Euro-IX network.

Page 79

Chapter 10 Conclusion

The primary objective of this project is to re-engineer the ExSERT project

based on last year’s system architecture. Basically last year’s project already solved

the problems such as data heterogeneity between different ISPs. The main purpose of

this year’s project is to design and implement a toolkit in order to achieve more

objectives such as easy creation of RMFs, excellent extension ability, and easy

deployment. This project is also different from other DCNDS projects since it will

have final customer such as LINX and many other potential users such as other

member IXPs of Euro-IX. So as an integrated project, the whole project lifecycle

from design to testing and report was under the control of project management.

One of the most import novel parts of this year is to develop a toolkit including

a compiler, which is able to generate basic classes and common code. This toolkit

provides a more convenient way to build RMF. At the beginning, it is difficult to

make sure the input of the compiler although XML is the optional candidate of input.

And the output of the compiler is also not very clear until the initial prototype was

created. Then, after a long iterative and incremental development process, the

compiler was implemented successfully and generated the main components such as

PoD and Glue near perfectly. Generally, the compiler has fulfilled its original goals

such as generality, flexibility and scalability. In a word, the design and

implementation of the compiler is the biggest achievement of this year’s project.

The other accomplishment is that XML is used to represent the similar data and

to transmit in the network in a common way. This resolves the data heterogeneity

generated by different back-end network tools effectively. Compared to the data

communication protocols developed by last year, XML provides an enterprise

standard way that makes different kind of data embedded into dedicated XML tags

defined by end users and uses XML schema or DTD to verify the different data type.

This brings much convenience for both data transmission and data analysis especially

in the case of dealing with complicated data types. Moreover, XML is a common

standard recognized in the filed of industries. This will be a huge support for XML,

and consequently beneficial to our project.

Another breakthrough of this project is the use of Python. Python is an open

source and cross platform scripting language, which is easy to use and implement,

effectively saving the programming time and resource. It is a complete object

Page 80

oriented language that is beneficial to the programming and code management. More

significantly, unlike java or c++, the Python program is very clean during the whole

running process without any other intermediate files.

Moreover, binary encoding is added into this project. It converts the XML file

into a binary file and transmits it over the public network. Meanwhile XML solves

the problem of data heterogeneity, XML’s processing overhead, storage requirement,

and bandwidth consumption become quite problematic when transaction volumes are

high. The encoding uses binary, rather than text-based, means for serializing and

transmitting XML information. It promises to significantly alter the processing,

bandwidth, and storage penalties that currently plague XML. That will be helpful for

data transmission among heterogeneous hardware and operation system platforms.

Especially in the scenarios such as wireless network, binary encoding provides great

efficiency of data transmission.

The secure communication between IXP and clients is one of the core

requirements of this project. SSL is implemented with X.509 certificate to provide

secure communication between client and server. A third party tool named OpenSSL

is used together with a third party library named Twisted. It is not a hard issue to

understand SSL; however, it is difficult to master the third party libraries or tools

because of the various options and the lack of help menus. Therefore, plenty of

research was done in order to choose the most suitable one from a serial of third

party libraries and to test the relative functions provided by the third party libraries.

On the other hand, the successful completeness of the project doesn’t mean that

we did not meet any challenges along the way. Firstly, it took a long time to do

research including scripting language Python, the validation method comparison

between DTD and XML schema and the architecture of compiler. Secondly, it is also

a big challenge to choose one library from some of the third party libraries. Thirdly,

an effective algorithm still has not been found to predict the network error although

some research has been done. Lastly, although we realize that the application would

benefit aesthetically from a more attractive user interface as a demo to the final user,

we opted to focus on issues such as functionality rather than user interfaces.

Fortunately, those challenges make us know better how important the

teamwork is and the importance of project management. Great team work with

professional project management laid good foundation to the current success of our

project. Everyone in our group feels the team spirit deeply that drives out project go

Page 81

forward constantly, especially when we are facing difficult problems and need to

decide what the next step is.

In conclusion, it is a big success to re-engineer the ExSERT project of building

an easy and fast toolkit based on previous proved successful system infrastructure.

All the team members contributed hugely to gain the achievement of the project. We

are fully confident that this project will be deployed very soon and operate smoothly

on LINX. We also give the best wishes to the future groups that continue the future

works of our project.

Page 82

References

AfNOG 2001 Meeting Presentation, Peering and Internet Exchange Points [online],
Available at: http://www.afnog.org/2001/peering-and-internet-exchange-points.ppt

Beck K., 1999, Extreme Programming Explained: Embrace Change, Addison-
Wesley

Bradley N., 2003, The XML Schema Companion, Addison Wesley

Cisco, Internetworking Technology Handbook [online], Available at:
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm

Collins G., Lecture slides [online], Available at:
http://www.cs.ucl.ac.uk/external/g.collins/postgrad

Dubuisson O., 2000, ASN.1 Communication between Heterogeneous Systems,
Morgan Kaufmann

Emmerich W., 2000, Engineering Distributed Objects, 1st Edition, John Wiley &
Sons

Farthing D. W., Software Project Management [online], Available at:
http://www.comp.glam.ac.uk/pages/staff/dwfarthi/projman.htm

Goerzen John, 2004, Foundations of Python Network Programming, Apress

Jones C. A. and Drake F. L., 2002, Python and XML, 1st Edition, O’Reilly

Larmouth J., 1999, ASN.1 Complete, Morgan Kaufmann

OpenSSL Home [online], Available at: http://www.openssl.org

Perkins D. T. and McGinnis E., 1996, Understanding SNMP MIBs, Prentice Hall

Pilgrim M., 2004 Dive Into Python, Apress

Project Management Schedule [online], Available at:
http://www.dof.ca.gov/HTML/IT/PMM/OPTIMIZED/PM3.4%20Planning%20Proje
ct%20Schedule.pdf

Priestley M., 2003, Practical object-oriented design with UML, 2nd Edition,
McGraw-Hill

Royce W., 1998, Software Project Management: A Unified Framework, 1st Edition,
Addison Wesley

Schmelzer, R. D., 2002, Understanding Schemas and DTDs Presentation, ZapThink
LLC

Page 83

http://www.afnog.org/2001/peering-and-internet-exchange-points.ppt
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm
http://www.cs.ucl.ac.uk/external/g.collins/postgrad
http://www.comp.glam.ac.uk/pages/staff/dwfarthi/projman.htm
http://www.openssl.org/
http://www.dof.ca.gov/HTML/IT/PMM/OPTIMIZED/PM3.4%20Planning%20Project%20Schedule.pdf
http://www.dof.ca.gov/HTML/IT/PMM/OPTIMIZED/PM3.4%20Planning%20Project%20Schedule.pdf

Souter J., IXP Network Monitoring Tool Portability Presentation [online], Available
at: http://www.cs.ucl.ac.uk/teaching/dcnds/seminars/2003-11-25-linx.pdf

Stallins W., 1999, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd Edition,
Addison Wesley

Stevens R. W., Fenner B., and Rudoff, M. A., 2003, Unix Network Programming,
Vol.1: The Sockets Network API, 3rd Edition, Addison Wesley

Summerville I., 2001, Software Engineering, 6th Edition, Addison-Wesley

W3C (World Wide Web Consortium) Schools [online], Available at:
http://www.w3schools.com/

Wiegers K., Peer Reviews in Software: A Little Help From Your Friends [online],
Available at: http://www.informit.com/articles/article.asp?p=24370

Wikipedia (the free encyclopedia) [online], Available at:
http://en.wikipedia.org/wiki/Main_Page

Page 84

http://www.cs.ucl.ac.uk/teaching/dcnds/seminars/2003-11-25-linx.pdf
http://www.w3schools.com/
http://www.informit.com/articles/article.asp?p=24370
http://en.wikipedia.org/wiki/Main_Page

Appendix A: Class Diagram

1 Basic Data Types

+__init__()
+validate()
+getXML()

-year

Year

+__init__()
+validate()
+getXML()

-moth

Month

+__init__()
+validate()
+getXML()

-day

Day

+__init__()
+validate()
+getXML()

-hour

Hour

+__init__()
+validate()
+getXML()

-minute

Minute

+__init__()
+validate()
+getXML()

-second

Second

+__init__()()
+validate()()
+getXML()()

String

+__init__()
+validate()
+getXML()

-ipv4Address

IPv4Address

+__init__()
+getXML()

-rtt

RTT

+__init__()
+getXML()

+numOfBytes
NumOfBytes

+__init__()()
+validate()()
+getXML()()

-packetLoss
PacketLoss

+__init__()()
+validate()()
+getXML()()

Integer

+__init__()()
+validate()()
+getXML()()

-macAddress
MACAddress

+__init__()()
+validate()()
+getXML()()

-ipv6Address
IPv6Address

Page 85

2 LinkMeasure RMF

The light-blue classes are generated by the compiler, the light-green classes are
added by the user, and the light-yellow classes are provided by the API.

+__init__()
+requestAndSend()
-dataProcessing()

-xmlFile
-encoding
-threshold
-glueRTTMeasureRI
-podDataAnalysier

PoDProcesser

+__init__()
+verify()
+serverSocketInit()
+clientSocketInit()
+sendPoDInfo()
+initSSL()
+connChecking()

-blocksize
-numOfClients
-host
-port
-type
-description
-clientPort
-caFile
-keyFile
-podRegHost
-podRegPort
-podServer
-podDataProcessor

PoDServer

+__init__()
+generateXML()

-xmlFile
-version
-dtd
-glueRTTMeasureRS

GlueLinkMeasureRI

+__init__()
+getResult()

-command
GlueLinkMeasureRS

+__init__()
+validate()
+getXML()

-ipv4Address

IPv4Address

+__init__()
+getXML()

-timestamp
-ipv4Address
-numOfBytes
-rtt
-linkStatus

LinkMeasure

+__init__()
+getXML()

-rtt

RTT

+__init__()
+validate()
+getXML()

-year

Year

+__init__()
+validate()
+getXML()

-moth

Month

+__init__()
+validate()
+getXML()

-day

Day

+__init__()
+validate()
+getXML()

-hour

Hour

+__init__()
+validate()
+getXML()

-minute

Minute

+__init__()
+validate()
+getXML()

-second

Second

+__init__()
+getXML()

-year
-month
-day

Date

+__init__()
+getXML()

-hour
-minute
-second

Time

+__init__()
+getXML()

-date
-time

Timestamp

VFClient

1

1

+__init__()
+getXML()

-linkStatus
LinkStatus

+__init__()
+getXML()

-numOfBytes
NumOfBytes

11

1

1

1

1

1 1

1

11

1

1 1

1

1

1

1

1
1

1

1 StatusDict

+__init__()
+getLinkStatus()
-setLinkStatus()

-dom
-encoding
-info
-warning
-error
-critical
-statusDict

LinkStatus

1

1

0..*

1

SSL

1

1

+__init__()()
+dataAnalysing()

PoDDataAnalysier

1 1

1 1

Page 86

3 Compiler

+__init__()
+compile()
-generateDTD()
-parseXML()
-parseXMLRecursive()
-generateInit()
-generateClass()
-toAttribute()
-writeAttribute()
-writeAttributeRecursive()
-generateGlueRI()
-generateConfig()
-generateProcesser()
-generatePoDServer()

-reportFile
-baseFile
-podName
-libDir
-rootName
-elemList
-baseList
-parentDict
-dom

Compiler

4 PoDRegistry

+__init__()
+socketInit()
+connChecking()
+setPoDRegistry()
+sendPoDRegistry()

-blocksize
-hostname
-number
+connPoDDict
+connPoDList

PoDRegistry

+__init()()
+run()()

+connPoDDict
+connPoDList
-lock

ConnDetectThread

Page 87

5 Data Analysing Function

+ _ _ in it_ _ ()
+ in i tA llD ic t()
+ u p d a te In fo ()
+ u p d a te W a rn in g ()
+ u p d a te E rro r ()
+ u p d a te C r it ic a l()
+ g e tL in k S ta tu s ()
+ to P e rc e n ta g e ()

- in fo D ic t
-w a rn in g D ic t
-e r ro rD ic t
-c r i t ic a lD ic t

S ta tu s D ic t

+ _ _ in it_ _ ()
+ g e tL in k S ta tu s ()
- s e tL in k S ta tu s ()

-d o m
-e n c o d in g
- in fo
-w a rn in g
-e rro r
-c r i t ic a l
- s ta tu s D ic t

L in k S ta tu s

+ _ _ in i t_ _ ()
+ in itD ic t()
+ u p d a te D ic t()
+ g e tU til iz a t io n ()
+ to P e rc e n ta g e ()

-d ic t

U tiliz a t io n D ic t

+ _ _ in it_ _ ()
+ g e tU til iz a t io n ()

-d o m
-e n c o d in g
-u ti l iz a tio n D ic t

L in k U tiliz a t io n

+ _ _ in i t_ _ ()
+ in itD ic t()
+ u p d a te D ic t()
+ g e tM in ()
+ g e tA v g ()
+ g e tM a x ()

-d ic t

S ta t is t ic D ic t

+ _ _ in it_ _ ()
+ g e tS ta tis t ic ()
- s e tS ta tis t ic ()

-d o m
-e n c o d in g
-s ta tis t ic D ic t

S ta t is t ic R T T

+ _ _ in it_ _ ()
+ e n c o d e X M L F ile ()
+ g e tE n c o d in g ()
+ c o v e r tT o B in a ry ()
+ d e n a ry T o B in a ry ()
+ c o v e r t8 b its B in a ry ()

-X M L d o m
B in a r y E n c o d in g

+ _ _ in it_ _ ()
+ g e tT h re s h o ld ()
- s e tT h re s h o ld ()

-d o m
-e n c o d in g
- in fo
-w a rn in g
-e rro r
-c r i t ic a l

T h r e s h o ld R T T

1 1

1 1

1 1

Page 88

6 Example VFClient

+__init__()
+showPoDInfo()

+type
+host
+port
+description

PoDInfo

+__init__()
+socketInit()
+receivePoDRegistry()
+processKeyboardInput()
+receiveData()
+writeToFile()
+validateXML()
+showXML()

-blocksize
-host
-port
-certFile
-keyFile
-xmlFile
-xslFile
-podRegFile
-podRegHost
-podRegPort
-client
+xmlToHtml
-xmlValidator
-podList

Client

1

0..*

+__init__()
+transform()
+load()

-processeer
XmlToHtml

+__init__()
+validateXML()

XMLValidator

1

1

1

1

Page 89

Appendix B: Sequence Diagram

This diagram shows the interaction between the client and system components,
and some classes have been excluded for the simplicity of drawing.

Page 90

	 Abstract
	 Acknowledgement
	 Table of Contents
	 List of Figures
	List of Tables
	 Chapter 1 Introduction
	1.1 Purpose
	1.2 Problem Space and Work Motivation
	1.3 Objectives and Scope
	 Chapter 2 Background
	2.1 Internet Exchange Point
	2.2 Secure Socket Layer
	2.3 Simple Network Management Protocol
	2.4 ASN.1
	2.5 XML

	 Chapter 3 Requirement
	3.1 Functional Requirement
	3.1.1 Represent similar data in a common format
	3.1.2 Create a compiler to generate common classes and code
	3.1.3 Provide a common APIs for data analysis and data representation

	3.2 Non-Function Requirement
	3.2.1 Implement the system using Python
	3.2.2 Easy to use, deploy and extend
	3.2.3 Secure access and communications
	3.2.4 Release the software as open source

	 Chapter 4 System Architecture
	4.1 System Architecture
	4.2 Advantages

	 Chapter 5 Design and Implementation
	5.1 Data Representation
	
	
	
	5.2 Validation
	5.3 Data Types
	5.3.1 Basic data type
	5.3.2 User-defined type

	5.4 Binary Encoding
	5.5 Glue
	5.5.1 G-RS
	5.5.2 G-RI

	5.6 PoD
	5.6.1 Event Infrastructure
	5.6.2 Data transmission model
	5.6.3 Multiple clients’ connections
	5.6.4 Implementation
	5.6.5 Protocols
	5.6.6 Configuration file

	5.7 Security
	5.7.1 Implementation
	5.7.2 Certificate management in OpenSSL

	5.8 PoDRegistry
	5.8.1 Implementation
	5.8.2 Protocols

	5.9 Compiler
	5.9.1 Architecture
	5.9.2 ExSERT Schema
	5.9.3 Implementation
	5.9.4 Directory structure

	5.10 API
	5.10.1 ThresholdRTT
	5.10.2 LinkStatus
	5.10.3 LinkUtilization
	5.10.4 StatisticRTT

	5.11 Database
	5.11.1 Table design

	 Chapter 6 Testing
	6.1 Test Strategy
	6.2 Test Case Summary
	6.2.1 Resources involved
	6.2.2 Single model/function test
	6.2.3 Whole model integration test
	6.2.4 Exceptional case test
	6.2.5 Stress and performance test

	
	 Chapter 7 Project Management
	7.1 Project Scope
	7.2 Team Organization and Communication Plan
	7.3 Project Schedule and Progress
	7.4 Risk Management
	7.5 Status Control and Monitoring
	7.5.1 Version control
	7.5.2 Defect code root cause tracking
	7.5.3 Re-factoring code and program naming standard
	7.5.4 Test process standardization

	7.6 Report

	 Chapter 8 Development Tools & Technologies
	8.1 Programming Languages
	8.2 Tools
	8.2.1 Fping
	8.2.2 CVS
	8.2.3 Pydoc
	8.2.4 MySQL
	8.2.5 OpenSSL
	8.2.6 Twisted
	8.2.7 Rational Rose
	8.2.8 Visio

	 Chapter 9 Future work
	9.1 Network Error Prediction
	9.2 Future Development of the Compiler
	9.3 Super PoD
	9.4 Validation between DTD and XML schema
	9.5 Separation of Glue and PoD

	 Chapter 10 Conclusion
	 References
	
	
	 Appendix A: Class Diagram
	1 Basic Data Types

	
	2 LinkMeasure RMF
	 3 Compiler
	4 PoDRegistry
	5 Data Analysing Function
	6 Example VFClient

	 Appendix B: Sequence Diagram

