
2004 – DCNDS – Group Report

Dynamically Routed VPNs with
Policy Distribution

Supervisor: Dr Stephen Hailes
Group members: Kai Duan

Ying Shi
Qian Yang
Oliver Priest

For the Degree of Master of Science

Department Of Computer Science
University College London

Gower Street, London.

September 2004

 1

2004 – DCNDS – Group Report

Acknowledgements

The project group would like to thank Dr Stephen Hailes and Manish Lad for their
support and valuable assistance over the course of our project. Their opinions have

helped guide us clearly over the course of the project.

The project members would also like to thank their family and friends for their ongoing
love and support that helps so very much in the learning process.

 2

2004 – DCNDS – Group Report

Contents
1. INTRODUCTION... 5

1.1. OVERVIEW OF VPNS.. 5
1.2. PROJECT PURPOSE .. 6
1.3. MOTIVATION.. 6
1.4. SCOPE .. 7
1.5. REPORT OVERVIEW .. 7

2. BACKGROUND ... 10
2.1. DIFFERENT VPN TECHNOLOGIES ... 10
2.2. EXTENSIBLE MARKUP LANGUAGE (XML).. 12
2.3. ROUTING INFORMATION PROTOCOL (RIP)... 12
2.4. RELATED PROJECT: AKENTI .. 13

3. PROJECT OBJECTIVES.. 14
3.1. MANAGEMENT SUMMARY.. 14
3.1.1. SOFTWARE COMPONENTS... 14
3.1.2. SECURITY POLICIES .. 14
3.1.3. DYNAMIC ROUTING.. 14

4. DESIGN ... 16

4.1. DESIGN OBJECTIVES... 16
4.2. DESIGN ASSUMPTIONS AND CHOICES.. 16
4.3. INITIALISATION & UPDATING... 17
4.4. THREATS ANALYSIS ... 20
4.5. POLICY SPECIFICATION .. 23
4.6. SECOND PHASE DESIGN CONSIDERATIONS .. 25

5. IMPLEMENTATION .. 28
5.1. SOFTWARE LIBRARIES USED... 28
5.2. MODULE: XML PARSER & GENERATOR ... 32
5.3. MODULE: SCHEDULER ... 34
5.4. MODULE: VIRTUAL INITIALISATION SERVER... 36
5.5. POLICY HANDLER MODULES... 38
5.6. MODULE: COMMUNICATION MONITOR.. 41

6. TESTING... 45
6.1. UNIT TESTING .. 45
6.2. INTEGRATION TESTING... 48
6.3. OVERALL SYSTEM TESTING.. 51

7. EVALUATION AND FUTURE WORK .. 56
7.1. EVALUATION OF RESEARCH METHODS ... 56
7.2. EVALUATION OF PROJECT OBJECTIVES ... 57
7.3. EVALUATION OF PROJECT MANAGEMENT TECHNIQUES 57

 3

2004 – DCNDS – Group Report

7.4. EVALUATION OF DESIGN, IMPLEMENTATION AND TESTING 59
7.5. SECURITY EVALUATION... 60
7.6. FUTURE WORK ... 61

8 CONCLUSION ... 64

APPENDIX A: PROJECT MANAGEMENT .. 65

1. TEAM CONSTITUTION AND STRUCTURE .. 65
2. WORK BREAKDOWN STRUCTURE ... 66
3. EXTREME PROGRAMMING OVERVIEW... 68
4. SCHEDULING.. 70
5. PROJECT DOCUMENTATION .. 72
6. RISK MANAGEMENT ... 73

APPENDIX B: XML SCHEMA... 75
1. XML SCHEMA FOR ACCESS CONTROL POLICY... 75
2. XML SCHEMA FOR INITIAL POLICY.. 76
3. XML SCHEMA FOR UPDATING POLICY... 77

APPENDIX C: TECHNICAL USER GUIDE .. 78
1. FILES AND DESCRIPTION .. 78
2. INTERFACE SPECIFICATION... 79
3. BUILDING PROCESS .. 82

 4

2004 – DCNDS – Group Report

1. Introduction

1.1. Overview of VPNs

Secure computer networking has risen in popularity over the last 20 years seeking to
address the security concerns of individuals and organisations alike. With the
introduction of advanced encryption and decryption algorithms and the decreasing cost of
powerful microprocessors, the Virtual Private Network (VPN) has become a popular
choice for decision makers who own and maintain secure computer networks. The term
“Virtual Private Network” can be broken down into 3 separate words each of which has a
specific meaning in the IT world. “Virtual” implies that something is in fact simulated
and performs the functions of something that doesn’t fully exist. In the case of VPNs, a
virtual network service will be in operation over a real existing network infrastructure.
The traffic flowing over a real network is actually partitioned into separate discrete secure
tunnels each of which has no interaction with the other. “Private” simply means that any
data that flows over the logical tunnels between two endpoint devices may be considered
secret in some way. One of the best features of VPNs is the fact that it is possible to send
data to intermediate nodes that have no need to examine the contents of the data. They
simply have to forward the data to the next device in the tunnel. Although the data that
transits a VPN is private the infrastructure used to transport the data can be public. This
allows for large tunnels to be created over the Internet through service providers and third
party networks. Private data allows the VPN to use its own network addressing and
routing mechanisms. “Network” refers to the simple fact that a VPN is in fact a set of
interconnected devices that communicate with each other in some predefined manner
often transmitting and sharing data.

VPNs have now started to mature and the technology now exists on numerous platforms
in many different guises. Various standards have also been drafted to help support the
rapid development of VPN software and hardware and much progress has been made in
the area. Good research, coupled with viable commercial products has allowed VPNs to
become a popular enabling technology providing security solutions to individuals and
organisations. VPN technology is also moving at a staggering pace and developments and
improvements to the technology are occurring extremely frequently.

 5

2004 – DCNDS – Group Report

1.2. Project purpose

For our group project, we have decided to focus on dynamically routed VPNs. Our group
project will attempt to look at the area of dynamic routing and policy distribution
mechanisms in more detail providing a software framework that deals with some of the
shortcomings in current VPN technologies and implementations. Offering dynamic
routing in overlay models using traditional VPN standards and VPN software is not
feasible for a number of reasons that will be discussed in detail in another part of this
report. The only real solution is to break the mechanism and propose a new novel way of
solving the issue. As well as analysing the requirements of our software, the group
needed to design, implement and test the software using a variety of project management
techniques.

1.3. Motivation

Current VPN implementations are effectively based on fixed static routing. The problem
also becomes worse when the use of fully meshed network endpoints introduces an N
squared scaling problem. As the number of VPN endpoints increases, so too does the
number of VPN tunnels to the power of the endpoints. A fully meshed VPN with 5
endpoints requires 10 VPN tunnels to create a fully meshed network while a fully meshed
network with 20 endpoints requires 190 separate tunnels to create the same fully meshed
infrastructure. Obviously, there are serious scaling issues with fully meshed VPNs.
Partially meshed VPN overlay networks is one viable alternative that provides partial
connectivity between selected endpoints in the VPN. A traditional approach to dealing
with the problem requires the use of backbone endpoints that connect major nodes in the
VPN that carry more data. The rest of the endpoints effectively form tunnels with one or
more of the backbone nodes. Routing table information allows data to be passed through
a VPN tunnel towards the backbone. Once the data arrives, dynamic routing can occur
and the packet can make its way to a destination indirectly without the need for a directly
connected VPN tunnel to the endpoint. Providing a dynamic routing service to VPNs is
the primary motivation for the whole project. However there are other important
secondary motivations. Providing more granular VPN security policies is another key
motivation for the group. Allowing high-level security policies to be defined and applied
to an overlay network is a particularly difficult challenge. Although, the group did not
fully implement high level policy enforcement we were able to construct distributed
access control policies based upon XML that were applied to VPN endpoints.

 6

2004 – DCNDS – Group Report

One important motivation for the group is to help to come up with new ideas at solving
the above problems and to allow our ideas to be used in any future research work. The
motivation for producing dynamically routed VPN software stems from the fact that the
group is passionate about the subject and would like to see the technology grow.

1.4. Scope

The scope of the project was dictated by a list of project objectives and goals that the
group had initially set at the start of the project. The group decided that they would
develop a VPN framework that can support numerous types of security policies. Data
communication and routing and security updates would be passed through the software
framework. One project deliverable was to produce software that incorporates a dynamic
routing mechanism for VPNs. Another was to test this software with a number of
computers that would act as VPN nodes. The scope of the project also included
distributing access control policy information in the second iteration of the design process.
The group did not attempt to create a brand new VPN standard but instead chose to use
existing technologies and APIs. In the course of the project the group created various
XML structures that could be transmitted and parsed. The XML data structures were used
to store routing information and security policies in an efficient manner.

1.5. Report overview

The rest of the group report will be broken down into the following sections:

Chapter 2 – Background

This chapter gives an overview of the currently existing standards and VPN technologies
available at present in both the academic and business arenas. A brief summary of the
technology that has influenced the project group is listed here.

Chapter 3 – Project objectives

This chapter examines what exactly the project is trying to achieve. The objectives will
be discussed in detail.

 7

2004 – DCNDS – Group Report

Chapter 4 – Design

This chapter covers software design and provides an overview of the software
components and how they work together. Reasoning for the system design is also covered
in detail.

Chapter 5 – Implementation

This chapter covers software implementation including any important novel software
coding features that are of interest.

Chapter 6 – Testing

This chapter covers unit testing, integration testing and overall software testing. Testing
methodologies and techniques that the group used will also be mentioned along with the
results of the tests.

Chapter 7 – Evaluation and future work

This chapter provides a critical evaluation of every aspect of the group project. Future
follow up work will also be discussed.

Chapter 8 – Conclusion

The final chapter covers the project conclusion and a summary of what was achieved
throughout the lifetime of the project.

Appendix A – Project management

This appendix covers the group project management strategy, allocation of
responsibilities, team communication and software engineering methodology.

Appendix B – XML Schema

This appendix covers details of the XML schemas that the security policies use.

 8

2004 – DCNDS – Group Report

Appendix C – Technical User Guide

This appendix covers the technical user guide and includes important information about
using the software.

 9

2004 – DCNDS – Group Report

2. Background

The background section gives a basic overview to some of the most important VPN
technologies and standards that currently exist. The purpose of including these
technologies is to give an indication of the influence they had on our project. By
examining existing successful technologies we were subsequently able to evaluate the
pros and cons of each technology and look for potential improvements therefore making
our research more valid and useful.

2.1. Different VPN technologies

2.1.1. IPSec

IPSEC (Internet Protocol security) is a set of VPN standards that have emerged over the
last nine years to create secure IP networks that can guarantee data confidentiality and
integrity. The technology is popular with many software and hardware vendors adopting
the standards creating products and implementations. IPSec is particularly complex and
cumbersome. The software implementations that exist in academia and industry never
fully utilise all of the proposed features proposed in the standard. However, there is
strong interoperability between competing software products allowing for a mixed
software environment when creating VPN tunnels between endpoints and gateways that
can often reside on different operating system and machine architecture. At the heart of
IPsec are a set of protocols that handle data encapsulation and the exchange of public key
data. These include the Authentication Header Protocol (AH) and the Encapsulating
Security Payload protocol (ESP). Both protocols effectively create security headers
providing security and tunneling information that are appended to the original IP
datagrams. Key distribution is handled by the OAKLEY and ISAKMP protocols (Internet
security association key management protocol). IPSEC also makes use of two small
databases that reside on a VPN endpoint. These are the security association database
(SAD) used to monitor secure traffic flows and the security policy database (SPD) used
to apply and enforce specific security policies at VPN endpoints. IPSec operates in two
different modes when transmitting data. The first mode is tunnel mode that effectively
creates a brand new IP header and appends it to the existing IP packet effectively
masking the original IP address information along with any other fields in the header and
data payload. This technique is similar to the Generic Routing Encapsulation standard.

 10

2004 – DCNDS – Group Report

(GRE). The second mode, known as transport mode allows the original IP header to be
used while the security information is inserted between the IP header and the data
payload. Both modes have the own purposes while tunnel mode is generally required
when creating a tunnel from/to a VPN gateway.

IPSec is particularly important because our project is focused on some important
shortcomings found in traditional IPsec VPNs. Although the IPSec standards allow
routing protocols to be carried across the tunnels the security association databases
actually have the “final say” about where the data is routed. Therefore routing protocols
carried across the tunnels become useless and the security associations and their security
policies act like static routes. Another problem exists concerning the amount of time that
a security association takes to be established or changed when compared to a routing
protocol update. The difference is a few orders of magnitude making security association
updating seem inappropriate for large complex network designs.

Overuse of static routes in large computer network designs can lead to many different
kinds of networking problems. Static routes make the network unscalable and prone to
configuration and failover problems. Providing an adaptive secure network is a key
requirement for many organisations and static routing in one form or another does help to
meet these requirements. Although IPSec has many novel features, the lack of dynamic
routing support is a big problem that needs to be addressed in the long term.

2.1.2. SSL VPNs

Secure Socket Layer VPNs are beginning to appear over the last few years and present a
different approach to VPNs. Whereas an IPSec VPN works at the IP layer (network layer),
SSL VPNs operate at the application layer effectively providing secure connectivity to
remote applications. At the heart of SSL VPNs is the SSL API that utilises a public key
certificate system to transmit encrypted data over TCP sockets. Just like IPSec, SSL is
designed to provide data confidentiality and integrity. SSL technology is available as
open source software libraries so the project group instantly took an interest in the
availability of APIs and other open source SSL projects. Because SSL is relatively simple
when compared with IPSec the project group began to look at ways in which SSL could
play a part in our software design. Because SSL uses a socket based application interface,
it is possible to design and code applications based upon a client/server framework. Such

 11

2004 – DCNDS – Group Report

a simple framework turned out to be a good starting block for our project providing us
with some stable starting components.

2.2. Extensible markup language (XML)

XML has become the de facto standard for storing structured information in documents
that can be transmitted between different software entities. The language makes use of
text-based documents that can be read by humans and computers. XML is a flexible and
popular language used by many different types of organisations to store structured
information. One of the best features of XML is the software engineer’s ability to create
their own unique structured information. The project group looked at many different
ways of representing structured information and felt that XML provided an excellent
framework for transmitting our routing and policy information messages between VPN
nodes. XML can be easily parsed using a wide variety of open source libraries making
the technology available to meet our needs.

2.3. Routing Information Protocol (RIP)

Routing Information Protocol is one of the oldest and most popular dynamic routing
protocols used on the Internet in the 1980 and 90’s. The routing protocol is a traditional
distance vector protocol where reachability information is passed between routing
devices. Each router maintains a routing table of all the IP networks it learns from its
connected interfaces and from routing updates received from neighbours. The routes are
usually based on some kind of hop-based metric. A typical RIP implementation has a
routing table that contains destination addresses and next hops. The protocol has seen
numerous improvements over the years. The second version of the protocol contained
numerous fixes, the most important of which was to make the protocol handle classless
routing by allowing the routing table to contain subnet mask information used to make
routing decisions based on the longest match of an IP address instead of the matching by
class of address. Multicasting was also incorporated into the second version eliminating
broadcasting. Because RIP is well documented and available as open source code, the
project group felt that the protocol was particularly suited to our small-scale project. RIP
is suitable for small computer networks because it is simple to implement. The algorithm
can be easily modified and used in routing engine software and this made the protocol
interesting to the project group.

 12

2004 – DCNDS – Group Report

2.4. Related Project: AKENTI

AKENTI is a research project based upon distributed access control in distributed
computer network environments. The project aims to remove the concept of centralised
access control and replace it with a system that achieves the same level of expressiveness
but allows system stakeholders to enforce their access control requirements
independently of other stakeholders. Access control is maintained by digital certificates
that contain user information, resource usage requirements, user attribute assertions and
delegated authorisation information. The AKENTI project looks at novel ways of
controlling access control. The project enabled the group to look at different novel
approaches to providing access control in our VPN project.

 13

2004 – DCNDS – Group Report

3. Project objectives

3.1. Management summary

The overall goal of the project is to design and implement an expandable software
infrastructure that will support dynamic routing and policy distribution within a
VPN network containing numerous endpoints.

The project goal can be further broken down into following three aspects:

3.1.1. Software components

z The design and creation of a set of software daemons used for VPN communication

between a set of VPN endpoints.

1. To analyse the system requirements and create a software design that allows VPN
endpoints to send data in a secure, reliable and efficient manner.

2. To create a suitable software implementation based on the above design.
3. To fully test all software implementations in a real world environment.
4. To produce detailed user documentation to assist with understanding and using

our software.

3.1.2. Security policies

z The design and creation of low-level security policy structures used to enforce

security policies with the VPN.

1. To design a suitable policy structure that will enable to VPN to transport and
enforce a wide variety of VPN security policies.

2. To allow the policy structure to be easily expandable and modifiable.

3.1.3. Dynamic routing

z The implementation of a dynamic routing mechanism used to maintain reachability

information between VPN endpoints.

 14

2004 – DCNDS – Group Report

1. To design a routing mechanism that can be used in a small scale VPN.
2. Where possible use an existing implementation of a routing protocol to save

project time.
3. Implement the code in a software module.
4. Fully test the routing algorithm in with a small amount of VPN endpoints.

 15

2004 – DCNDS – Group Report

4. Design

4.1. Design objectives

As mentioned previously in the project objectives section of the report, the group aims to
develop a framework including a set of daemons that can be installed and used on
selected computers that act of VPN endpoint nodes to accomplish dynamic routing and
security policy distribution within a VPN domain.

Dynamic routing in a VPN setting is achieved when a VPN network contains more than 2
endpoints. Data can be routed dynamically along an indirect logical tunnel instead of
being passed directly to the destination endpoint. The data traffic may pass through a
certain number of endpoints before reaching its destination. While at first glance it may
appear that this kind of routing is inefficient it ultimately allows VPN tunnels to scale
when a large number of endpoints exist within the VPN. Dynamic routing can help to
avoid a fully meshed VPN by allowing VPN nodes at the edge of the VPN domain to
maintain a smaller number of logical tunnels with central VPN nodes.

Policy distribution provides granular control of network behaviour and resources. Policies
can be applied to a VPN domain that affect how data is forwarded between VPN
endpoints, whether dynamic routing is used or not, what security coverage levels are
being enforced, what access controls are applied to the VPN, what routing and security
algorithms are used etc. Policies allow for tighter control within the computer network
and can allow a network to operate under more stringent security requirements.

4.2. Design assumptions and choices

Before the group could begin to design our software prototype several assumptions were
made. In our first prototype, it was assumed that all the VPN nodes were known by the
network administrator before the VPN was established. We also had to make the
assumption that the size of our VPN network was relatively small. Therefore the logical
topology can be manually designed by administrators and is easy to manage and maintain.

Our software prototype would be fully independent from any kind of VPN standard
however the project will be based on a SSL VPN. The design reason for this is based

 16

2004 – DCNDS – Group Report

upon the simple library interfaces that SSL provides. Preliminary testing has also
confirmed that SSL scales quite well in a software based environment. (Please examine
the testing section on SSL establishment in section 7) VPN endpoints can be connected
up quite easily, which avoids the complicated configuration work at the VPN
establishment stage. The design will also make use of SSL tunnels to distribute our
security policies and we make the assumption that SSL tunnels are secure enough for this
purpose. The last and the most important assumption that the project group makes is that
all the participants are entirely trustworthy. (This assumption may raise problems like
internal security threats, which is addressed in the threats analysis section.)

4.3. Initialisation & updating

The software prototype consisted of two main parts; the Initialisation component in
charge of the establishment of policy distribution infrastructure and the distribution of
initial policies. The design makes use of an XML file that contains the logical layout of
the VPN. This is read by the component upon start up. After the VPN is established and a
logical topology had been established, the Updating component is started to receive and
send real-time security policies. During the first iteration of the design, the update
policies consisted of dynamic routing information however as the design was refined the
group were able to send access control security policy information.

4.3.1. Topology design

Before the VPN can be established, the layout and topology needs to be created and
stored in some way. The group decided that it would be the simplest solution if the
topology of the VPN were constructed manually. The topology information contained in
the initial policy file should be distributed from a centralised host. Therefore, a table
contains the entire topology table of the whole network and is stored in a central node
within the VPN network. This node can be any one of the endpoints but there must be the
only one central node.

An example of the table is shown over page:

 17

2004 – DCNDS – Group Report

IP Address 128.16.9.78 128.16.9.217 128.16.9.216 128.16.9.215 128.16.9.77
128.16.9.78 - Y N Y Y
128.16.9.217 Y - Y N N
128.16.9.216 N Y - Y N
128.16.9.215 Y N Y - Y
128.16.9.77 Y N N Y -

Table 4.1: Sample of topology information table

4.3.2. Initialisation

When initialisation occurs, the initial policy XML file is read and parsed. SSL tunnels are
then established between the central node and the other nodes waiting to receive the
initial policy. Information about every tunnel connection in the VPN is included in the
initial policy and is distributed from the central node.

We decided to choose a centralised method to distribute initial policies based upon a
“push” model for simplicity. The initial policy is sent from the central node when a
system administrator runs the initialisation component. As figure 4.1 shows, SSL tunnels
are used to distribute policies securely.

Figure 4.1: Initialization using SSL tunnels

 18

2004 – DCNDS – Group Report

After the initialisation, VPN has been established according to a logical topology, as
figure 4.2 shows.

Figure 4.2: Logical topology of VPN

4.3.3. Updating

After the initialization stage, updating of routing and policy information occurs on a
regular basis. The updating policies contain routing and security information that is
specified later under the policy specification section. The project group chose the RIP
routing algorithm to maintain the routing information. As figure 4.3 shows over page,
SSL tunnels were used distribute update policies.

 19

2004 – DCNDS – Group Report

Figure 4.3: Updating policy distribution

4.4. Threats analysis

4.4.1. Generic threats analysis

Any security policy distribution mechanism is the subject of numerous attacks and threats.
This next section of the report aims to highlight some of the potential threats the software
will face along with potential solutions to mitigate and remove the threats.

Security policy distribution will need to be secured against passive and active tap based
attacks intent on reading and modifying potentially sensitive security policy material
from the wire/airwaves. If an attacker is able to “snoop” the network traffic then s/he may
be able to gain a tactical security insight into the types of security policies a virtual
private network is using. This risk is mitigated using a mixture of traditional shared key
and public key cryptography techniques to secure any sensitive communication between a
set of endpoints. The level of encryption is an important point in modern networks

 20

2004 – DCNDS – Group Report

because if the shared key length of too low then it may be possible to use a brute force
attack to obtain sensitive policy information.

A second security threat can also be identified. An attacker may be able to modify the
contents of a policy to his/her own specific needs. It may be that a security policy could
be modified to specifically create security loopholes thus allowing an attacker to exploit a
potential opening in a VPN. This kind of attack could be based in a man in the middle
attack where by a legitimate host transmits a policy which is then intercepted by a third
party, modified and then sent on its way to appear as if it comes from another host. The
best way to mitigate or remove this kind of threat is to use some kind of hash function to
provide evidence that the data has not been modified in transit.

Replay of secure policy information is a further potential threat within the design of the
system therefore steps must be taken to provide security mechanisms to mitigate the
threats.

Denial of service (DOS) attacks must also be considered in our policy distribution
mechanism. We must look at the way that the protocol works so that it cannot be
manipulated to do more harm than good. In the wrong hands our mechanism could be
misused to repeatedly send out policy information to a host that has no requirement to
receive such policy information. Because secure policy exchange will be based on public
key cryptography it is feasible that the calculations required in policy exchanges could
overwhelm the processor resources of a VPN endpoint. It is therefore vital that steps are
taken to secure the mechanism against DOS attacks using some kind of cookie based
system so that non existent requesting hosts are able to force the receiving host into heavy
calculations. Although a single calculation does not present much of a challenge,
receiving thousands of policy requests is likely to heavily burden a receiving host’s
resources.

Secure policies affect how routing occurs within a VPN therefore there are a large
amount of potential threats pertaining to routing based attacks are particularly valid in the
context of our work. Some of the most serious threats can come in the form of default
routing issues and internal routing attacks. Misrouted data could be directed over an
unprotected path and it may be possible for an attacker to intercept traffic while it is on its
way to its destination. Another potential problem is for an attacker to redirect traffic
inside the VPN to a computer host that has already been compromised by a cracker in

 21

2004 – DCNDS – Group Report

some way. Securing routing information using hash functions is a small step in helping to
secure routing information running within a VPN. Configuration of routers and firewalls
to protect secure traffic from leaving the VPN is also an important step in securing the
VPN correctly.

Policy information must also be stored in some way. Many implementations spend a
large amount of time securing the transmission across the network but forget about
storing any policy information in a secure manner on a computer host. A skilled cracker
will have no trouble accessing the file system holding sensitive information if they are
able to gain some kind of insight into where the data is located. Perhaps one of the best
ways to mitigate this threat is to encrypt the contents of the policy store itself with a
suitable file encryption algorithm. That way even if the cracker is able to locate the policy
information, s/he will not be able to make any sense of the information.

So far we have discussed intentional threats based on traditional attacks. However, some
of the serious threats are caused by mistakes in policy configurations. This can lead to
erroneous low-level security policies being applied to security devices potentially
opening security holes in the VPN. One way to handle this kind of mistake-based threat is
to have some kind of security configuration hierarchy allowing specific users access to
configuration-based privileges. This will help to mitigate mistakes and allow only
authorised individuals to create or modify security policies. Policies can generally be
deemed to be correct if they do what they are supposed to do.

4.4.2. Specific project related threats

4.4.2.1. Initial policy storage

The storage of the initial policy and any other subsequent policies is a particular valid
security issue in the context of our project. Although policies may be transmitted using
SSL between hosts it is of paramount importance that the policy files (associated with
any kind of security policy) be stored in a secure manner on a hosts native file system.
This will help to protect the integrity of the VPN. In theory a good hacker will be able to
gain access to regular file systems and therefore be able to read the contents of files
pertaining to the security of the VPN. If an attacker is able to gain some understanding of
the logical topology of the VPN, the type of encryption used, the length of the keys, and
any other type of lower level security information then it will a lot easier to gain access to

 22

2004 – DCNDS – Group Report

the VPN. The storage of policy files must take into account some form of file encryption
used to protect sensitive policy files.

4.4.2.2. SSL tunnel creation DOS attack

Creating SSL tunnels between a small number of endpoints does not stress a modern
computer too much due to the high performance processors that most PC’s use. However,
scaling a VPN to support a large number of endpoints may start to pose processing
problems if there are a sufficiently large number of tunnels. Also of importance is the fact
that it may be possible to manipulate the initial policy mentioned above to attempt to
establish a tunnel to a non-existent host by modifying the initial policy. On a less
powerful host this may lead to resource starvation as the host attempts to open such a
large amount of tunnels. One way to deal with the DOS problem would be to implement
some kind of tunnel throttling mechanism to control the number of connections in our
software implementation.

4.4.2.3. Man in the middle SSL disruption attack

A traditional man-in-the-middle attack can be used to disrupt SSL communications with
the intent of causing unnecessary retransmissions by intercepting and slightly modifying
SSL payloads causing the integrity check to fail. The result is a packet drop followed by a
retransmission. If the attacker continues to intercept SSL packets and modify them as
they make their way to their actual destination then it is possible to disrupt tunnel
communication between two endpoints effectively isolating an endpoint from the rest of
the VPN. It is worth noting that this kind of attack is difficult to defend against but is also
highly unlikely to occur.

4.5. Policy specification

As described previously, the two policy distribution stages (initialisation and updating)
involve two different types of policies. These are the initial policy and updating policy.
The initial policies purpose is to provide the necessary topology information for VPN
establishment. The updating policy is for policy information updates and has sub-types
such as routing update policies and access control policies.

 23

2004 – DCNDS – Group Report

Policy distribution is achieved through SSL secure connections. As SSL includes
authentication mechanism and data encryption, secure policy distribution is ensured. We
decided to express our security policies in XML format as it is extensible and flexible.
There are ready-to-use XML parser libraries such as eXpat, which helped to simplify our
work on policy processing.

4.5.1. The initial policy

For simplicity the group decided to adopt a centralised approach for the initialisation
process in our software design. As the main purpose of the initial policy is to support
VPN establishment, we needed to distribute topology information inside the initial policy.
Based on our previous design assumptions that the administrator knows about all the
participants in the VPN and the associated connection topology, it is possible to distribute
neighbour information to each host allowing every node in the VPN to know whom it is
going to connect to. This neighbour information also constitutes the basis of successful
routing. An example of the Initial Policy is shown below. Inside routing_topology there is
a list of neighbours, which have two elements id and ip.

<policy type=”initial”>

 <routing_topology>
 <neighbor>
 <id></id>
 <ip></ip>
 </neighbour>
 </routing_topology>

</policy>

Figure 4.4 Initial policy XML file.

4.5.2. The updating policy

The updating policy is used during the second phase of policy exchange, after VPN
establishment, to update information on each host. The update information may take the
form of routing information or other security-related policy information. Updates may
take place periodically or just when it is policy change is necessary.

 24

2004 – DCNDS – Group Report

A routing update is implemented in a similar manner to a RIP update. Every VPN host
sends and receives routing update information from and to their neighbours. In fact, a
routing update policy imitates the contents of RIP header according to the RIP
specification. Below is an example of routing_update policy. The protocol element
indicates the routing protocol that is in use, which is RIP for the duration of our project.
The protocol field can make use of other protocols allowing our design to be future
proofed. The addr_family indicates the type of address being specified, and the cmd
corresponds to the command in RIP header. The metric attribute is normally a
measurement of number of hops, but here it is possible to assign it some security-related
values to facilitate security-based forwarding decision.

<policy type=”routing_update”>
 <protocol></protocol>
 <version></version>
 <addr_family></addr_family>
 <cmd></cmd>
 <route_entry>
 <ip></ip>
 <metric></metric>
 </route_entry>*
</policy>

Figure 4.5 Routing update XML file.

4.6. Second phase design considerations

Once the initial software design was completed and implemented the group were able to
look at ways to improve our design further. After a lot of discussion the group came out
up with a list of improvements to the original design. Please examine a summary list of
potential enhancements to our software prototype.

4.6.1. Access control policies

The first design had no specific XML structure for access control policies. This was
quickly addressed and a module to handle access control policies was designed and

 25

2004 – DCNDS – Group Report

implemented. Please view a sample XML file for an access control policy below. This
policy can be used to give VPN node the ability to specify its routing and forwarding
preferences. For example, node A may not want any traffic from node B, thus any traffic
node B wishes to pass through node A can only be forwarded through another node,
which could be node C. If node C is connected to both A and B and also is permitted by
A to forward its traffic. In order to enable these software functions to be carried out we
needed to extend the software parser and generator modules to add a process for the
access control policies. The group also needed to design a separate component to handle
access control. This was responsible for generating access control policies and
maintaining a separate access control table. This access control table will be consulted
before any traffic is going to be forwarded out of the VPN nodes network interface.

<policy type="access_control">

<subject>128.16.80.111</subject>
<allow />
<deny />

</policy>

Figure 4.6 Access control policy XML file

4.6.2. Application interface development

Our program should provide an interface to other applications, which can be easily used
to transfer data inside VPN without having to know about the VPN topology and routing
mechanisms. A dedicated module will be responsible for handling the application data. It
will look up both the access control table and forwarding table to make final forwarding
decision and set up secure SSL connection to next hop and forward the application data.

4.6.3. VPN visual monitor

At the suggestion of our project supervisor the group began designing a visual software
program that could show the VPN overlay network links graphically as they were
established between VPN nodes in real time. The purpose of this tool was to give a clear
presentation of what the network looked like from a graphical viewpoint. VPN nodes
would be represented with filled circles and lines would represent VPN links. The lines

 26

2004 – DCNDS – Group Report

simply connect to the circles to show logical links between nodes. While the software is
quite basic it could be used as a starting point for a visual network management tool. The
purpose of the tool in the context of our project is to give a simple visual illustration of
the VPN logical network at a given point in time. This helps an individual not
accustomed to the project to gain an insight into what is going on from a technical
perspective.

 27

2004 – DCNDS – Group Report

5. Implementation

The implementation section lists the software implementation approaches and techniques
that the group used throughout the course of the project. Special attention has been given
to an explanation of novel implementation decisions along with detailed module
information relating to the unique operation of our software.

5.1. Software libraries used

5.1.1. OpenSSL

OpenSSL is based on the excellent SSLeay library developed by Eric A. Young and Tim
J. Hudson. It is a collaborative effort to develop a robust, commercial-grade, full-featured,
and Open Source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and
Transport Layer Security (TLS v1) protocols as well as a full-strength general purpose
cryptography library managed by a worldwide community of volunteers that use the
Internet to communicate, plan, and develop the OpenSSL toolkit and its related
documentation. The group made use of the OpenSSL library to enable us to create secure
VPN tunnels for our SSL VPN implementation.

The following APIs were used:

z SSL_CTX *SSL_CTX_new(SSL_METHOD *method)

It creates a new SSL_CTX object as framework to establish TLS/SSL enabled
connections.

z int SSL_CTX_use_certificate_file(SSL_CTX *ctx, char *file, int type)

It lets the peer use certificate.

z int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, char *file, int type)

It lets the peer use private key..

z SSL *SSL_new(SSL_CTX *ctx)

It creates a new SSL object.

 28

http://www.ietf.org/html.charters/tls-charter.html

2004 – DCNDS – Group Report

z int SSL_set_fd(SSL *ssl, int fd)

It sets a descriptor to make it under monitoring.

z int SSL_accept(SSL *ssl)

It waits for a TLS/SSL client to initiate a TLS/SSL handshake.

z int SSL_connect(SSL *ssl)

Initiate the TLS/SSL handshake with an TLS/SSL server

z int SSL_read(SSL *ssl, void *buf, int num)

Read bytes from a TLS/SSL connection

z int SSL_write(SSL *ssl, const void *buf, int num)

Write bytes to a TLS/SSL connection

It’s necessary to set up TCP connection before establishing SSL connection. When that’s
done, a SSL connection can be set up like this:

 ssl = SSL_new (ctx);
CHK_NULL(ssl);

 SSL_set_fd (ssl, sd);
ret = SSL_connect (ssl);

 if (ret == -1)
 {
 SSL_shutdown (ssl);
 close(sd);
 SSL_free(ssl);
 continue;
 }

And an example showing how to transmit data with this SSL connection:

 ret = SSL_write (ssl, buf, size+1);
 if (ret == -1)
 {
 SSL_shutdown (ssl);
 close(sd);

 SSL_free(ssl);
 continue;
 }

 29

2004 – DCNDS – Group Report

5.1.2. Genx

Genx is a library, written in the C language, for generating XML. Its goals are high
performance, a simple and intuitive API, and output that is guaranteed to be well-formed;
the output is also guaranteed to be Canonical XML, suitable for use with digital-signature
technology. As XML played a key role in our policies distributed, the library was
essential.

The following APIs were used:

z genxWriter genxNew(void * (*alloc)(void * userData, int bytes), void (* dealloc)

(void * userData, void * data), void * userData);
Creates a new instance of genxWriter.

z genxStatus genxStartDocFile(genxWriter w, FILE * file);

Prepares to start writing an XML document, using the provided FILE * stream for
output.

z genxStatus genxEndDocument(genxWriter w);

Signals the end of a document.

z genxStatus genxStartElementLiteral (genxWriter w, constUtf8 xmlns, constUtf8

type);
Start writing an element.

z genxStatus genxEndElement(genxWriter w);
Close an element, writing out its end-tag.

z genxStatus genxAddAttributeLiteral(genxWriter w, constUtf8 xmlns, constUtf8 name,

constUtf8 value);
 Adds an attribute to a just-opened element.

z genxStatus genxAddText(genxWriter w, constUtf8 start);

Write some text into the XML document.

This is a typical example of how to create a simple XML element:

 30

2004 – DCNDS – Group Report

genxStartElementLiteral(writer, NULL, "version");
 sprintf(temp, "%d", rpPtr->version);
 genxAddText(writer, temp);
 genxEndElement(writer); /*version*/

5.1.3. eXpat

eXpat is an XML parser library written in C. It is a stream-oriented parser in which an
application registers handlers for things the parser might find in the XML document (like
start tags). It is widely used by Mozilla and other applications. Thus we chose it for XML
parsing purpose.

The following APIs were used:

z XML_Parser XML_ParserCreate(const XML_Char *encoding);

Construct a new parser.

z Void XML_ParserFree(XML_Parser p);

Free memory used by the parser.

z XML_Status XML_Parse(XML_Parser p, const char *s, int len, int isFinal);

Parse some more of the document.

z void XML_SetUserData(XML_Parser p, void *userData);

This sets the user data pointer that gets passed to handlers.

z XML_SetElementHandler(XML_Parser p, XML_StartElementHandler start,
XML_EndElementHandler end);
Set handlers for start and end tags with one call.

z XML_SetCharacterDataHandler(XML_Parser p, XML_CharacterDataHandler

charhndl)
Set a text handler.

z int XML_GetCurrentLineNumber(XML_Parser p);

Return the line number of the position.

 31

2004 – DCNDS – Group Report

z const XML_LChar * XML_ErrorString(int code);

Return a string describing the error corresponding to code.

Below is an excerption showing how to register related functions and data with eXpat:

XML_SetUserData(parser, array);
XML_SetElementHandler(parser, StartHandler,EndHandler);
XML_SetCharacterDataHandler(parser,CharacterHandler);

After being registered, those functions need to be implemented by programmer to specify
how to handle the data parsed from xml input. The UserData is used for communication
between different handlers.

5.2. Module: XML Parser & Generator

Before we give out the descriptions of each modules we developed in details, the overall
structure of the software components is as shown below:

SSL Library

SchedulerGenerator Generator

Parser

Legend:

policy stream

 xml policy
1

Ripd Access

Figure 5.1 overall stucture of software components

 32

2004 – DCNDS – Group Report

5.2.1. Module description

This module aims to provide unified interface for network transmission. Using XML
format to transmit data can guarantee the consistency of data and provide good portability.
The parser and generator are implemented in API mode. The program that needs them
just calls the functions and passes in the appropriate arguments. The third party libraries,
Genx & eXpat, are used.

5.2.1.1. Parser

The parser only provides a single entry for all kinds of policy. Firstly, it works out the
correct policy type, then the xml policy is parsed in a type-specific fashion, which means
every policy has a specific xml tag handler and character handler. The output is an object
that includes detailed policy information, which is globally stored.

int ParsePolicy (char* buf, int count)
Description

The only function for the user program to invoke. The incoming
buffer could contain any type of XML policy.
Arguments:

buf: Input buffer which contains policy XML text.
count: Length of buf.

Return value:
 int: Policy type indicator.

Table 5.1 Method description of Parser

5.2.1.2. Generator

There are several generator functions, each for a particular type of policy. Because the
group adopted the Genx library, the file descriptor is used by Genx to output the XML
content.

 33

2004 – DCNDS – Group Report

int GenerateInitialPolicy (CInitPolicy* ipPtr, FILE* xmlPolicy)
Description

Generate XML initial policy from CInitPolicy and put it into file
xmlPolicy.
Arguments:

ipPtr: Policy object.
xmlPolicy: File descriptor to put xml context in.

Return value:
 int: 0 if successful, otherwise –1.
int GenerateUpdatePolicy (TRipPacket* rpPtr, FILE* xmlPolicy)
Description

Generate XML routing update policy from TRipPacket and put it into
file xmlPolicy.
Arguments:

rpPtr: Policy object.
xmlPolicy: File descriptor to put xml context in.

Return value:
 int: 0 if successful, otherwise –1.
int GenerateAccessPolicy (AccessList* alPtr, FILE* xmlPolicy)
Description

Generate XML access control update policy from AccessList and put
it into file xmlPolicy.
Arguments:

alPtr: Policy object.
xmlPolicy: File descriptor to put XML context in.

Return value:
 int: 0 if successful, otherwise –1.

Table 5.2 Method descriptions of Generator

5.3. Module: Scheduler

5.3.1. Association among Modules

 34

2004 – DCNDS – Group Report

Expat Genx Asl_SSL

Scheduler

Figure 5.2 Scheduler modules association

5.3.2. Software operation stages

5.3.2.1. Initialisation process

The scheduler’s initialisation process includes several aspects:

9 Networking preparation

Set up sockets and secure sockets and prepare buffers. For secure sockets, an
encryption key or certificate may be needed.

9 System preparation

This includes global variable initialisation and structure creation. Also, all the
components and policy handlers should be started at this step.

9 Initial policy reception
There is a global flag in the scheduler indicates whether the system is initialised or
not. If it is not, the scheduler only waits for initial policy and ignores all other
policies. When an initial policy arrives, the scheduler configures locally according to
the initial policy and enters the next stage.

5.3.2.2. Dispatch process

After initialisation, the scheduler enters a simple dispatching loop. It waits for an
incoming policy packet and checks its policy type after parsing it. The scheduler then
dispatches the policy to corresponding handler.

 35

2004 – DCNDS – Group Report

 Scheduler

ripd accessd ……

Figure 5.3 Scheduler dispatching to separate policy handlers

5.3.3. Specification

System status The global flag indicates the system state. The system can be either
initialised or not initialised.

Socket operation The scheduler maintains a single socket for listening and accepting
connections. The connections should originate from other node’s policy handlers, used to
send policy messages. This socket for incoming packet always exists, while outgoing
sockets are set up as needed and torn down thereafter.

Daemon startup The scheduler is also the central controller for the system. It is in
charge of launching the daemons and handlers. It is also in charge of managing the sub-
threads’ status. The state of sub-thread can be detachable.

5.4. Module: Virtual Initialisation Server

5.4.1. Module description

This module runs only once each time before the whole VPN environment is set up and
aims to collect initial configuration information, such as routing topology and access
control information, and distribute it into the VPN nodes group.

 36

2004 – DCNDS – Group Report

9 Information collection

We assume that the configuration file is created in advance and we get the file name.
Currently, the file only contains topology information, which is composed of element
entry list. Each entry includes a node IP address and the node’s neighbour list.

9 Information distribution

After information collection, the server module encapsulates information of each
node separately in XML messages and sends them out.

 Neighbour list viserver

Node 1 Node 3
 Node 2

Figure 5.4 XML message distribution between VPN nodes.

9 Partial Set-up

The VPN network may be set up partially, that is, some nodes may fail or may be
deactivated at the initial stage so that server cannot connect to them. Under this
network condition, the VPN can work by ignoring the failed nodes as long as there
are only few nodes failed compared to the total number of nodes.

5.4.2. Input file requirement

Currently, we assume that the initial VPN topology is set up manually and information is
stored in a configuration file.

<node> <neighbour_num>
<neighbour_1> < neighbour_2> …
<node> <neighbour_num>
<neighbour_1> < neighbour_2> …
…

Figure 5.5 Topology configuration file

 37

2004 – DCNDS – Group Report

The file consists of entries, each of which contains the nodes own ip <node> and number
of neighbour <neighbour_num> and a neighbour ip list <neighbour_1> <neighbour_2>…

5.5. Policy handler modules

5.5.1. Overview

Policy processing is the major part of the overall system. The effect of policy distribution
is shown at each local node where different policies are applied. To achieve maximum
independency and extensibility, we designed different policy handlers for different type
of policies. The handlers may be implemented in different types, such as threads,
dynamic-linked libraries in order to facilitate using.

5.5.2. Module: Routing Policy Handler

The routing policy handler component is an independent component that is in charge of
sending out self routing information and processing incoming routing information. It is
subject to RIPv1 protocol.

5.5.2.1. Workflow description

Figure 5.6 Routing policy processing path

 38

2004 – DCNDS – Group Report

1) The incoming routing policy first reaches the scheduler and is recognised by the

scheduler. The scheduler calls the interface of the routing daemon and passes the
policy object to the routing daemon.

2) The main thread of routing daemon processes the policy and updates local routing

table.

3) There are also several affiliated threads which generate outgoing routing policies.
The policy includes information about the local routing table. The threads send the
policies regularly according to the RIP protocol specification.

5.5.2.2. Function specification

void rip_response_process (TRipPacket *aPacket, addr_t aFrom)
Description

This is the only function exposed to scheduler. The scheduler invokes it to pass
the routing update packet to the handler.
Arguments:

aPacket: The routing update packet received.
aFrom: Source IP address from which the packet is sent.

Table 5.3 Method description of RIPd

5.5.2.3. Process independence

To achieve maximum process independence, a good implementation aims to make the
routing daemon a separate process that only communicates with the scheduler through a
simple interface. The interface could be a function or better be some mechanism like
network message.

The routing policy handler may use a real 3rd party routing daemon internally. It just
needs to fill in a routing update packet with content of the policy object and pass it to the
daemon. This is shown below.

 39

2004 – DCNDS – Group Report

Routing
table

Routing
daemon

 Policy Strip Update
 &
 Fill

Figure 5.7 Independent process routing update example

5.5.3. Module: Access Control Policy Handler

5.5.3.1. Access control policy

The access control policy handler processes access control policies. This type of policy
specifies the access permission for other nodes. It may deny or allow the transmission and
reception of packets from certain nodes. Each policy structure contains a subject IP
address and two lists; one deny list and one allow list. Packets from node in the deny list
will be denied. Packets from node in the allow list can be accepted. Packets from a node
that is in neither of the lists will be accepted by default.

struct AccessList
{
 addr_t subject;

 std::vector<addr_t> allow_list;
 std::vector<addr_t> deny_list;

};

Figure 5.8 Access control policy structure

5.5.3.2. Specification

Internally, ACH (Access Control policy Handler) maintains a table of ACP (Access
Control Policies).

 40

2004 – DCNDS – Group Report

void AccessInitial (const CInitPolicy& initP)
Description:

Initialize local ACP table from initial policy.
Arguments:

initP: the initial policy object
void ReceiveAccessPolicy (const AccessList& al)
Description

The function called by scheduler when there is an incoming ACP. ACH
uses it to update local ACP table.

Arguments:
al: the ACP object

void SendAccessPolicy (addr_t own)
Description

Send own ACP to all the neighbours.
Arguments:

own: Own IP address

Table 5.4 Method descriptions of Access Control

5.6. Module: Communication Monitor

5.6.1. Module description

The monitor module could be used for administration or debug purpose. It displays a
policy communication activities at real time by drawing a line connecting two dots to
represent a connection between two nodes. The module is implemented using Java. It
communicates with other software modules via UDP enabling messages to be loosely
coupled. This allows for software portability.

5.6.2. Message format

Policy Information Message contains policy information such as policy type, source IP
address and destination IP address. Class information defines all the related attributes, as
below:

 41

2004 – DCNDS – Group Report

Information

 int iType
 int iMinorType
 int iSrcIp
 int iDestIp

Table 5.5 Class Information

Currently available policy types are:

Version Type
1.0 Initial policy
2.0 Routing update policy
3.0 Access control policy

Table 5.6 Policy types

5.6.3. Module components

There are three main components in this module: Monitor, MonitorNet and
MonitorFrame:

z Monitor

Monitor is used for information storage and acts as a coordinator. It also defines
some facility classes. When MonitorNet receives Policy Information Message, it
stores the messages in Monitor. The Monitor component also provides a mechanism
to update the view of MonitorFrame in real time.

z MonitorNet
MonitorNet is a network component that listens to the network in another thread
waiting for incoming packets.

z MonitorFrame
MonitorFrame is a software component which gives user a view of what is
happening visually during VPN policy exchanges.

 42

2004 – DCNDS – Group Report

5.6.4. Component association and interaction

MonitorNet Wait for incoming packet

 Pass it to Monitor

MonitorFrame
 Passively update view
 Monitor
 Actively update view

 Maintain Information list

Figure 5.9 Illustration of component interaction for the communication monitor

The three components are designed in a Model-View-Controller pattern. MonitorFrame
is the view and Monitor is the controller. The data is also stored in Monitor. When the
controller Monitor starts to run, it creates MonitorFrame and MonitorNet objects. It lets
the MonitorNet thread start and MonitorFrame show. MonitorNet keeps receiving
communication reports and puts them into Monitor’s report list. This behaviour also
makes Monitor update the view as necessary while MonitorFrame regularly updates its
view. The update action is to draw lines, each of which represents an entry of the report
list.

5.6.5. Status of MonitorNet

The status of MonitorNet is placed in Monitor. The status should be changed according to
situation. MonitorNet has to check its status within each loop so that it can handle
different events, such as exit and halt, correctly.

5.6.6. InfoEntry & associated timer

 43

2004 – DCNDS – Group Report

The Monitor class has a member vector of InfoEntry objects. InfoEntry class has a
member of Information object and a member of Timer object. Because the Information

object is only used to show communication situations on the screen, an object is useful
only for a short time. An associated Timer object removes the Information object from
the vector when the timer expires. The expiration time can be a fixed.

5.6.7. Updating the view

Updating the view of GUI is achieved in two ways:
Firstly, Monitor has a method UpdateView() to update the view, that is, to let
MonitorFrame repaint itself.
Secondly, In MonitorFrame’s method paint(), it gets the InfoEntry vector from Monitor
and draw lines for each entry.

5.6.8. MonitorNet

MonitorNet does its work in a while loop. If its status is normal, it waits for incoming
UDP packet for a fixed time interval, and loops again if the socket timeouts. Otherwise, it

has received a packet and adds an entry at the end of the InfoEntry vector. It checks the
status once each loop to ensure that it terminates properly.

5.6.9. MonitorFrame

This is a typical JFrame derived class. It overrides the paint() method to display the
communication situation on the screen.

 44

2004 – DCNDS – Group Report

6. Testing

Testing is very important during the software development process. The group tested our
software thoroughly in order to make that our code functions in the manner in which we
expect it to do. Software testing can be split into four separate phases:

1) Modeling the software’s environment
2) Selecting test scenarios
3) Running and evaluating test scenarios
4) Measuring testing progress

The scope of the first phase involves modeling the software’s environment which
encompasses a mixture of separate tests. These comprise of unit tests, integration tests
and overall system tests.

Our testing plan followed that structured approach. First we completed unit testing on the
most important components to make sure they can worked correctly as individual
components. Once unit testing was complete, integration testing was started combining
several components together to make sure the communication between them is working
correctly. Finally we began overall system testing (simulation) to make sure the whole
software fulfills our design expectations.

6.1. Unit testing

Unit testing tests individual software components or a collection of components. Testers
define the input domain for the units in question and ignore the rest of the system. Unit
testing sometimes requires the construction of throwaway driver code and stubs and is
often performed in a debugger.

Although XP requires unit testing for every class/ function, due to time constraints, we
chose the most important functions in each module to be tested. We decided to write
testing code by ourselves, not using the ready-to-use unit testing tools. That way we had
much tighter control of the overall testing process as well as information to be displayed
as a result.

 45

2004 – DCNDS – Group Report

The software has been divided into several sections and over page the corresponding unit
testing sections will be introduced.

6.1.1. SSL link up test:

� Testing file:

serv.exe, cli.exe, server_req.pem, server_key.pem

� Function tested:
SSL connection

� Testing approach:

The serv.exe program is run first followed by the cli.exe. The duration of the SSL
establishment is then recorded and logged.

6.1.2. Ripd test:

� Testing file:

ripd_testing.cpp

� Function tested:
RTable rip_initial_process (CInitPolicy);
TRipPacket* rip_output_packet (addr_t);

� Test approach:

Make up a neighbor list and send it to rip_initial_process to initialise routing table.
Then print out the initialized routing table to check whether it has been initialized
correctly. Use rip_output_packet to create rte structure, based on the content of
initialized routing table, and then print out the rte structure content to check whether
the filling-in process is correct.

6.1.3. Generator test:

� Testing file:

generator_test.c

 46

2004 – DCNDS – Group Report

� Functions tested:

int GenerateInitialPolicy (CInitPolicy*, FILE*);

� Test approach:

As GenerateInitialPolicy, GenerateUpdatePolicy and GenerateAccessPolicy are very
similar, we choose to test just one of them. A simple CInitPolicy is made up and then
sent to GenerateInitialPolicy function of generator.c. If the task is finished
successfully, “Done!” will be printed on the screen and an XML file (here named
“initp.xml”) should be created which should contain the initial policy created based
on the CInitPolicy object. We can check the content of that XML file to make sure
the right XML policy is generated.

6.1.4. Parser test:

� Testing file:

parser_test.c

� Functions tested:

int ParsePolicy(char* , int);
static void XMLCALL StartHandler (void *, const char *, const char **)
static void SetDepthForInitialPolicy (void *, const char *)
static void XMLCALL CharacterHandler (void *, const XML_Char *, int)
static void HandleInitialPolicy (void *, const XML_Char *, int)
static void XMLCALL EndHandler (void *, const char *)

� Test approach:

The XML initial policy generated in the generator testing, which has been proved to
be consistent to the definition, is passed to the ParsePolicy function of parser.c. Due
to the structure of eXpat parser, a series of functions are also involved in order to
parse this xml file. If the XML initial policy is correctly parsed, a return value will
indicate the type of the policy (Initial Policy, Update Policy, Access Policy). During
the test, some additional “printfs” were added inside parser to examine the element
contents that had been parsed was correct and the CInitPolicy object was correctly
filled in. (Those additional printfs were deleted after testing.)

 47

2004 – DCNDS – Group Report

6.1.5. Access control test:

The access control module was added in during the second iteration of the design cycle.
The parser, generator and scheduler all needed to be modified to include this feature.
However, as previously mentioned, the parser and generator all passed unit testing
successfully, the modification just needed to follow the already established structure. The
access control daemon is relatively simple and straightforward. As a result, no unit testing
is carried out on this part, however, integration testing has been done, which will be
covered next.

6.2. Integration testing

Integration testing tests multiple components that have each received prior and separate
unit testing. In general, the focus is on the subset of the domain that represents
communication between the components.

6.2.1. First iteration integration testing

After unit testing, the group was satisfied that SSL links could be set up successfully and
data can be transmitted correctly. Because the transmission part is relatively easy to
control during integration testing, we focused on the integration between parser,
generator and ripd. Communication between all these components is located in the
system testing section.

A diagram showing the integration testing flow is given in the next page:

We designed a four-step integration testing plan based on the structure of our software.

Step 1. Generate the initial policy. This part is the same as the generator test done in the

unit testing (generator_test.c). However, as it is important to the integrity of the
integration testing, we also include the test here. The result of this step is
generating an XML file that includes the initial policy. As we ignore network
communications during this test, we conclude that the neighbour receives the
XML policy.

 48

2004 – DCNDS – Group Report

Figure 6.1 Integration Testing Plan Demonstration

Step 2 The testing program (test.c) will read the (initial policy) XML file that generated
in step 1 to simulate receiving the initial policy. It passes the XML policy to
parser (through invoking ParsePolicy function), in which function
HandleInitialPolicy will be responsible for the actual handling of initial policy.
(Although other functions will also be involved such as
SetDepthForInitialPolicy etc.) Next, the testing program will initialise the local
routing table based on the CInitPolicy object content prepared by parser, by
invoking rip_initial_process. If successful, the content of the initialized routing
table will be displayed on the screen.

Step 3 Since the routing table has already been initialised, we can send update policy to

neighbors. In the testing program (test1.c), the rip_output_process function is
invoked, in which GererateUpdatePolicy is invoked to generate update policy
xml files based on the content of routing table. Also, rip_output_process is
responsible for setting up SSL connections to its neighbors to send the created
update policy. Again, in this testing the group ignored SSL transmissions, so the
correct result should be the successful creation of several (depending on number

 49

2004 – DCNDS – Group Report

of neighbors) update policy XML files into local file storage, and the content of
those XML files can be examined to make sure related functions work properly.

Step 4 Once again, we suppose those update policies have been successfully transmitted

through SSL connections, so in the testing program (test2.c), one of those XML
files is read and passed to the ParsePolicy function where HandleUpdatePolicy
is going to prepare a TRipPacket object based on the content of the XML policy.
After that, rip_response_process will maintain the local routing table according
to the TRipPacket passed to it. If successful, the updated routing table will be
displayed on the screen.

6.2.2. Second iteration integration testing

The previous section on integration testing applied to our first software prototype. In the
second prototype, access control functionality was added so a small integration testing
section on the communication between access control component, parser and generator
was required. As the procedures of access control and rip are similar, so we can just adapt
the testing design of the first prototype for the testing of access control. This testing is
consists of two parts, part one roughly corresponds to the Step 1, Step 2 and Step 3 of the
first integration testing, and part two corresponds to the Step 4.

The first part testing program (test_a.c) gets the CInitPolicy object from the usual routine
(xml input -> HandleInitialPolicy), then uses the CInitPolicy object to initialize the local
access table by AccessInitial function. Once successful, the initialised access table will be
displayed. In the next stage, we made the process slightly simpler by just using the
initialised access table (which only has empty allow_list and deny_list) as an updated
access table. The SendAccessPolicy now creates an updated access policy by invoking
the GenerateAccessPolicy function using the initialised access table and the content of
the updated access policy we checked to make sure all functions work properly.

The second part of the testing program (test4.c) will use the access control policy files
generated by the first part testing program (test_a.c) as input, and pass this XML policy to
the HandleAccessPolicy function of parser to get the AccessList structure. Then with this
AccessList structure, the ReceiveAccessPolicy function of access daemon (access.c) can
update/maintain the local access_table.

 50

2004 – DCNDS – Group Report

6.3. Overall system testing

Overall system testing tests a collection of components that constitutes a deliverable
product. Usually, the entire domain must be considered to satisfy the criteria for a system
test. In system testing, we integrate every component and follow the full procedure test.

The procedure can be expressed as below:

urs.

ry host.

Read configuration file
li

viserver starts (viserver)

scheduler starts On every participating host;
the rip daemon is started; at
this stage the initial policies
are passed through command
line by hand, sent by
viserver to eve

initialize routing

maintain routing

generate update

At the same time the node
receives update policies
from neighbo

send out update

update routing table

generate update

Continuous process send out update

Figure 6.2 System testing flow

6.3.1. Testing environment

We chose a simple but generic topology for system testing which contains 5 hosts. The
topology is shown below.

 51

2004 – DCNDS – Group Report

A

E

D C

B

 Figure 6.3 Testing Topology Demonstration

Host A is responsible for running viserver. While in practice there will be a certain rule to
decide which participant will take this responsibility (perhaps the machine with the
lowest IP address).

We have a dedicated demonstration program “Monitor” to monitor the execution of the
software. Its main function is to show the connections and communication between VPN
hosts. Upon reading topology information from a configuration file (which should be the
same as the one that viserver gets), the monitor draws several circles on the screen each
representing a host. When a SSL connection is established (no matter for what reason,
initial policy, update policy or payload traffic), a line will be drawn between the
corresponding two circles indicating the communication activity.

6.3.2. Testing result

Fragments of the testing output (result) with brief explanation are shown below.

enter server cert
cert
key
pwd
Start routing daemon...0
Waiting for initial policy...
routing daemon routine 1887508

rip daemon started and wait for initial policy.

 52

2004 – DCNDS – Group Report

TCP socket accept a new socket: 4
Entering sub thread...
SSL_read: 378
<policy
type="initial"><port>80</port><routing_topology><neighbor_num>3</neighbor_num>
<neighbor><neighbor_id>0</neighbor_id><ip>128.16.9.165</ip></neighbor><neighbor
><neighbor_id>1</neighbor_id><ip>128.16.9.178</ip></neighbor><neighbor><neighb
or_id>1</neighbor_id><ip>128.16.9.182</ip></neighbor></routing_topology></policy>
Calling xml parser...
initial policy got.
Neighbour 0: 2148534693
Neighbour 1: 2148534706
Neighbour 2: 2148534710

Initial policy received and parsed.

RIP routing table initialized!
 ip metric nexthop signal
Routing table: 128.16.9.165 1 128.16.9.165 0
Routing table: 128.16.9.178 1 128.16.9.178 0
Routing table: 128.16.9.182 1 128.16.9.182 0
Leaving sub thread...

Routing table initialized according to initial policy.

TCP socket accept a new socket: 4
Entering sub thread...
SSL_read: 214
<policy
type="routing_update"><protocol>RIP</protocol><version>1</version><cmd>2</cmd>
<entry_num>1</entry_num><route_entry><addr_family>2</addr_family><ip>128.16.9.
178</ip><metric>1</metric></route_entry></policy>
Calling xml parser...
routing policy got.

rte size is : 1

 53

2004 – DCNDS – Group Report

Update policy received and parsed.

Table updated! Case 1: new entry added
Leaving sub thread...
routing daemon routine 1689321
Neighbor list:
128.16.9.165
128.16.9.178
128.16.9.182
Routing table:

 ip metric nexthop signal
Routing table: 128.16.9.165 1 128.16.9.165 1
Routing table: 128.16.9.178 1 128.16.9.178 1
Routing table: 128.16.9.182 1 128.16.9.182 1
Routing table: 128.16.9.177 2 128.16.9.182 1

Outgoing packet's rte size: 3

From information provided by update policy, new entry is added into routing table.
Routing table is maintained. And new update policy is created (outgoing packet’s rte
size:3).

6.3.3. Problem solving

During the testing process, we encountered a lot of problems. However, the unit testing
and integration testing that we did helped a lot to reduce the number of possible errors
and narrow the scope of a problem. Here are some typical examples of the problems that
the group faced and how we solved them.

z Problem 1
Problem description: Segmentation fault
Reason: Used wrong function to delete vector after using it
Solution: Use vector::clear() instead of vector::empty()

 54

2004 – DCNDS – Group Report

z Problem 2
Problem description: The contents and lengths of XML update policies
 were not correct.
Reason: All hosts ran the program in the same directory,
 and also the name of the created XML update
 policies by each host are the same, so when the
 hosts write, they write to exactly the same file.
 This caused the file length to increase and the
 content to be incorrect.
Solution: Prepare different executing directories for every
 host.

z Problem 3
Problem description: Repeated content in one policy file.
Reason: File not closed after writing to it, the next time the
 file is opened the file data is appended.
Solution: Close the file and re-open for the next operation.

 55

2004 – DCNDS – Group Report

7. Evaluation and future work

The group project lasted for approximately eighteen weeks and in that time a lot was
achieved. The project was a completely collective effort bringing together a group of
individuals, each with unique skills, qualities and attributes. The evaluation section will
be broken down into various subsections relating to an appraisal of the following project
components; evaluation of research methods, evaluation of project objectives, evaluation
of project management techniques and evaluation of software design, implementation and
testing. A security evaluation will also be included. The final section relates to future
work and discusses the other directions that the project could move in.

7.1. Evaluation of research methods

Initially, the group carried out detailed research in many different areas of computer
network security. Different types of VPNs were examined in great detail to familiarise
ourselves with developments within the academic and commercial arenas. The group
worked and communicated well in the early stages of the project often sharing documents
and web links with the intention of building up a solid knowledge base from which to
work from. From a strategic point of view our research was well organised yet in
hindsight it would have been better if we had searched on a more focused area saving us
valuable time examining unrelated material. On the other hand, reading such a wide
variety of written material helped us to examine our problem from different angles and
identify some current solutions to specific security problems. Because our research area is
fairly new within academic circles we did not utilise our research time in the most
appropriate way. The project group made use of popular search engines such as Google
along with journal websites such as Citeseer to obtain much of their initial research
documents. Initial research into IPSec was quite successful. However, the group soon
realised that IPSec was a very complicated set of VPN standards. The group then began
to refine our search of other VPN technologies that were emerging over the last year. SSL
VPNs were considered new so the group refocused some of our research efforts into
getting a better understanding of SSL. This research was particularly successful once the
group realised that the technology was well documented and developed yet considerably
simpler. Research techniques were considered successful overall with good
communication between the project group members. Research occurred throughout most
of the project with a bulk of it being carried out in the early stages. Our ever changing

 56

2004 – DCNDS – Group Report

project objectives meant that good research methods were required in order to obtain the
information we required for our changing software design. The team delivered well on
the research of the project overall. If we were to work on the project again we would
make our research even more focused and try harder to keep to our work schedule.

7.2. Evaluation of project objectives

The project group composed a list of three main objectives to be completed by the end of
the project. In many respects we believe we did an excellent job in addressing each of the
main project objectives as they changed frequently at the beginning as the project
developed. As already mentioned, it was clear from the outset that attempting to modify a
particularly complex VPN standard was out of the question due to time constrictions
imposed by the deadline. The group quickly realised that existing SSL technology was
the way forward and hastily began work on a working prototype. The group proceeded to
design and implement our initial software daemons within a month. This gave the group a
lot of extra confidence and boosted overall morale. The first iteration of the software
design included many features which were well aligned with the project objectives. The
group was also successful at designing a suitable policy structure that could be expanded
to add new types of security policies. This helped to future proof the system. The routing
protocol used in the SSL VPN was also implemented fully and functions extremely well.
The group achieved all of their three main objectives within the specified time frame and
this could be seen as a major project success.

7.3. Evaluation of project management techniques

Project management played a particularly important role in shaping how the project was
run and how the project ultimately developed from a brain storming session right the way
through to a finished product. The group had researched good project management
techniques prior to the start date and we felt confident that we could use an effective
modern project management strategy to achieve of project objectives on time and within
specification. The group realised that good project management meant constant planning
and ongoing revision on a regular basis. Because many of us were unfamiliar to group
projects the learning curve was particularly steep. The group approached project
management with a small amount of skepticism as there were many different control

 57

2004 – DCNDS – Group Report

documents and checks in place to make sure that the project succeeded. Many members
felt this was excessive. However, within the first few weeks of the project getting

underway we realised just how important and necessary such documentation was. The
group applied project management techniques particularly well. Our work breakdown
structure was accurate and we tried to follow an Extreme Programming methodology
throughout the course of the project. Schedules and time frames slipped considerably and
the group often missed specific milestone deadlines. However we recovered well once we
addressed the cause of the delays and implemented contingency plans and schedule
changes.

Good project management planning also meant that our project workload was well
distributed. There were incidents where one member of the group would be slightly
overworked in a particular section of the project. For example, Ying Shi, our lead
programmer was slightly overworked during the implementation phase while Kai felt
under pressure producing a design proposal. Overall, the work load was split fairly evenly
and well managed. Any problems were handled efficiently by assigning another member
of the team to provide an assisting role.

Extreme programming techniques were used successfully throughout the project and pair
programming was common practice. The tests that the project group prepared and wrote
were of a bespoke nature. On the whole the group embraced the XP methodology well
often going out of their way to make sure that coding was implemented to match current
project objectives and integration testing was frequent and well controlled.

Risk management techniques employed by the group helped to mitigate the potential
risks which could have severely hampered the group’s efforts. During the beginning of
May, Hyo Sim Moon quit the course leaving the project a person short. Because we had
anticipated the risk, countermeasures were already in place to distribute the workload
between the remaining team members. This can be seen as a successful response to a
serious problem. The group also anticipated other major risks relating to loss of data and
software. Risk mitigation involved backing up their work via CVS on a daily basis to
prevent versioning problems and loss of data.

 58

2004 – DCNDS – Group Report

7.4. Evaluation of design, implementation and testing

The software design that the group originally produced contained too many assumptions
and lacked technical clarity. Gradually over time a good final design document was
drafted which involved every member of the team. Because every person had input in the

design of the software, the result was a well thought out document that fulfilled the
project objectives. The involvement of every single person in the design process can also
be seen as an advantage providing each group member with specific detailed knowledge
about what was being created. This helped to create a shared vision for the project group.
Technically, our software design had numerous strengths and weaknesses. The design
was well thought out and achieved each of the project objectives. However, there were
some assumptions that had to be made regarding the level of trust in the VPN. The
topology of the VPN needed to be known beforehand and potential VPN nodes needed to
listen on particular port number before they were connected to the VPN overlay network.
This resulted in a lack of auto-configuration in the design because the network nodes had
to be prepared beforehand defeating the purpose of providing a dynamic VPN join
mechanism.

Implementation was very successful due to the strong design effort mentioned above. The
group members worked in teams on separate software modules often communicating on a
daily basis. Because our software design was clear, implementation went particularly
smoothly albeit slightly delayed. Software bugs were dealt with efficiently and because
the project group had done their research well, they were familiar with the software
libraries available to them. On the whole the implementation of software can be
considered successful.

Testing was carried out in a thorough and efficient manner which resulted in a stable
implementation. The group designed their own testing programs which were used to
validate program functions and interaction. While the group did not test every single
aspect of the software, a conscious effort was made to test the most important functions
with a high degree of success.

 59

2004 – DCNDS – Group Report

7.5. Security Evaluation

With our software prototype now complete the group can begin a critical evaluation of
the security aspects of our project. Within the design section of this report, the group
highlighted numerous potential security issues that could cause our software to become
vulnerable or comprised by different kinds of attack. Many of these vulnerabilities still
propose some kind of threat to the system because the group did not have sufficient time
to make the software prototype more robust.

The project group spent a lot of time actually making the software work within
specification and because our software iterations were quite tight it meant that no time
was set aside to enhance the security features of the software. In hindsight, it would have
been more prudent to allot more time to develop mechanisms used to counter threats and
if the project group were to complete the project over again then a greater effort would
have been made in addressing these issues.

The software itself is well structured and coded and is not vulnerable to any kind of
buffer overrun attacks however the question of DOS and man in the middle attacks still
exists. It is easily possible for an attacker to port scan a VPN host and find out which port
it is actively listening on. Once this is discovered, an attacker can launch a DOS or
DDOS attack effectively interrupting VPN communications between VPN endpoints.

Much like many other software implementations, the software is also vulnerable to SSL
man in the middle attacks and unfortunately this type of attack is very difficult to defend
against. There is nothing to stop a third party attempting to modify packets either secure
or insecure as they transit the network. The goal may not be the modification of packets
but the retransmission of packets that fail a hash function. As it stands the project
software is just as vulnerable to man in the middle attacks as any other software that
currently exists.

The matter of an encrypted file system for storing XML policies was noted and discussed
in detail once the group had completed the first software design iteration. The group was
well aware of the importance of encrypting policies as they resided on system hosts.
Without such encryption, an attacker can read the files to gain inside information about
the topology of the VPN from a node perspective. An active attack is also possible
thereby allowing an attacker the opportunity to deliberately modify an XML policy to

 60

2004 – DCNDS – Group Report

introduce some kind of false topology information into the VPN, perhaps to include hosts
that are not fully secure or to misdirect traffic flows in some way. Each of the above
problems poses absolutely huge security problems and the group was well aware of the
importance of encryption in our software implementation. Unfortunately, time
constrictions were such that we simply ran out of project time to implement the encrypted
file system feature into the second software iteration but we also recognise that if we had
more time then there is no reason why this work could not have been carried out.

The mechanism used for the distribution of our policies is secure. Using SSL, policies
and data routed between VPN endpoints is confidential and integrity is guaranteed.
Although the availability of data cannot be guaranteed due to DOS threats mentioned
earlier, the chances of losing availability is statistically very slim.

The group has also made excellent progress is designing a security based policy
infrastructure that is both flexible and extensible. The system can be upgraded to support
future security based policies as they are designed for a specific purpose.

On the whole the project group made a good attempt at implementing basic security
features in our software prototype. However, there was room for further improvement
and given extra time, many of the threats listed above could have been mitigated or
removed entirely.

7.6. Future work

With our project finished, the group can now look at possible future follow up work
which can improve and expand our original software design and move our research
forward in different directions.

7.6.1. Additional policies

The group managed to implement routing policies and security access control lists within
our software however there is potential to expand the types of policies even further to
encompass aspects of Quality of Service (QOS) mechanisms and high level security
policies. These could be provided as optional services that could be used at the network
administrator’s request. QOS guarantees across overlay VPNs is a particular exciting area
to examine further.

 61

2004 – DCNDS – Group Report

7.6.2. Further development of the API

The development of an API that can be used by other applications for data transmission
occurred near the end of the project and was only a first attempt at integrating our
software framework with other program modules. Further development of this API is a
particularly interesting area for further study. At present the API is very basic at there is
much more room for added functionality.

7.6.3. File encryption

As well as receiving the initial policy, every node will periodically generate some update
policies that contain routing update information to be sent to all its neighbors. Those
update policies are stored in plain XML on the native file system of the host. The
operating system was Solaris, known for its excellent security mechanisms. However,
despite the fact that the file should not be accessible to individuals or groups who do not
have the correct security privileges, it would be prudent that any security related XML
file be encrypted in some fashion making the security information of the VPN even more
secure. The Open SSL library that we use can offer basic encryption function therefore
we are going to use it to encrypt those xml files locally on the native file system. When
the file needs to be transmitted in is possible to write code that will decrypt the file prior
to transmission over a secure channel. There is a small period of insecurity during this
phase as the file resides in system memory on the host. However we believe that future
work in this area will help to bring a significant security improvement to the system.

7.6.4. Additional routing protocol support

The support of other distance vector and link-state routing protocols would be an
excellent improvement to the system which would involve creating slightly new XML
structures. Giving the system administrator a choice on what type of routing protocol to
use on the VPN would create flexibility allow the system to be customised to suit
different network environments.

7.6.5. Graphical user interface support

 62

2004 – DCNDS – Group Report

Providing a GUI would allow the software to become much more user friendly.
Configuration of the VPN could then be completed less skilled network administrators. A
GUI also simplifies application use and allows for simpler fault finding.

7.6.6. Authentication

The authentication of users and hosts could be integrated more tightly with the operating
system effectively providing an additional layer of security determining what privileges a
user has in creating SSL tunnels and distributing policies.

 63

2004 – DCNDS – Group Report

8 Conclusion

The group set out with the goal of designing a set of software daemons that could
incorporate dynamic routing across VPN tunnel endpoints. Other project objectives
included a policy distribution mechanism and the creation of a routing protocol. All three
objectives played an important part of the design process. The group worked hard to
achieve a stable implementation that incorporated all of the above features.

The group has tried to take a new approach to designing dynamically routed VPN
software using SSL libraries. While the system has numerous issues that need to be
addressed, the ideas produced during the lifetime of this project merit further study and
work.

There will always be security vulnerabilities in the best VPN software and the group is
well aware that much more work is required for an application to achieve a secure status
in a production environment.

Partially meshed VPN tunnels and dynamic routing in overlay networks has an exciting
future within the Internet and the use of policy driven networks will no doubt create a
new breed of applications that can make use of secure network overlays.

 64

2004 – DCNDS – Group Report

Appendix A: Project management

1. Team constitution and structure

As the project was particularly small the group decided that each team member would be
given specific focused roles through out the course of the project. Initially the project
team consisted of five members however Hyo Sim decided to withdraw from the course
in May. The group moved quickly to make sure her responsibilities were distributed to
the rest of the group equally.

Kai Duan was designated as the group coordinator and was responsible for the overseeing
the projects overall progress. This was a unanimous decision for the group based upon the
personal and professional qualities that Kai possessed. Kai also spent a large portion of
the project helping to design the software and was responsible for coding the routing
module.

Hyo Sim was assigned to documentation and agenda writing early on in the project.
During weekly team meetings Hyo Sim was instrumental in ensuring that group
communications were well documented and up to date. Hyo Simm would have played an
active role in the design of the software as well as assisting in software testing if she had
remained on the course.

Oliver Priest was responsible for the group’s initial research efforts. The group project
was focused on a particularly new area of research and Oliver played an active role
collecting and disseminating the vast amount of data that the group collected from white
papers, journals, books and websites. As lead researcher he was responsible he deciding
what information was important enough for the group to read and take an interest in.
Oliver also played a technical role in many of the design decisions the group took over
the course of the project. As well as assisting in the software design, Oliver maintained
the website and handled the coordination of the group report overseeing the overall layout
and proof reading.

Ying Shi was responsible for the main design of the software prototype and also acted as
the lead programmer for the project. Ying Shi is easily the strongest programmer in the
group and one of the most highly respected coders on the DCNDS course. The group felt

 65

2004 – DCNDS – Group Report

it was only natural for him to oversee most of the coding for the project. One of Ying
Shi’s main responsibilities was ensuring that the various software modules that the group
coded worked together as a single application. Ying Shi is also the author of the system
scheduler module.

Qian Yang was responsible for the designing software for the project. In addition to this
she was responsible for coding the parsing module and was the lead software tester
within the group. Qian Yang designed and wrote many of the software test programs that
were used to test the software modules. Qian Yang also maintained the projects web log
online and wrote the meeting agendas and minutes.

Below is a summary list of each individual’s responsibilities:

9 Kai Duan

Responsible for software design, coding, group coordinator.

9 Hyo Sim Moon (quit)
Responsible for software design, agenda writing, software testing, and

documentation.

9 Oliver Priest
Responsible for software design, project Webmaster, documentation, lead
researcher.

9 Ying Shi

Responsible for software design, lead programmer.

9 Qian Yang
Responsible for software designing, coding, testing and documentation.

2. Work breakdown structure

Please see the work breakdown structure below that lists the different work modules that
the project was broken into. All parts were divided equally between the various project
members often with one member in charge of specific parts of the project. Sometimes
more than one individual was working on a specific area of the project.

 66

2004 – DCNDS – Group Report

Figure A.1: WBS structure diagram

Once we had listed all of the work that needed to be completed we were able to assign
tasks to the different group members. The table over page shows our division of work.
Please note the tasks and roles are changeable as we chose the Extreme Programming
methodology (discussed later).

Name
Background

reading
(May, June)

1st phase of
implementation

(June)

2nd phase of
implementation

(July)

Report writing
(August)

Kai Duan
Research reading,

designing
Coding for RIP daemon

Document collection
& report writing

Report writing

Hyo Sim Moon
(quit)

Research reading,
documentation

Quit - -

Oliver Priest
Research reading,

designing
Designing

Overall testing, report
writing

Report writing

Ying Shi
Research reading,

designing
Coding for Schedule

module
Coding for Interface

module
Report writing

Qian Yang
Research reading,

designing
Coding for XML

parser, documentations

Coding for Access
Control module,
documentations

Report writing

Table A.1: Work division table

 67

2004 – DCNDS – Group Report

3. Extreme programming overview

3.1. Extreme programming principles

The project group decided to choose Extreme Programming (XP) for our software
implementation methodology. This was because XP suited our project needs when we
compared it with other more formal software engineering methodologies that were found
to be overly complex. Our project could be considered fairly small and simple. XP gave
us the flexibility to achieve our goals while maintaining some kind of structured approach
to software engineering. Because the software was constantly evolving we needed an
agile methodology that was simple and effective.

Some of the most fundamental software implementation techniques involve the concept
of coding in pairs with one member writing code while the other member observing and
commenting on the work that was being carried out. XP allowed the group to work on the
separate software modules more efficiently. Compilation errors and software bugs well
generally dealt with far more quickly when two people were assigned to a software task
compared with a single person attempting to solve all of the problems on their own.
Because this software approach was successful in the early stages of coding, the group
continued the code pairing approach throughout the course of the entire implementation.
It is important to note that a single individual had formal responsibility for a single
module and the second observer would often play a support role in the problem solving.

XP allowed the group to design a simple application at first that solved a few of the
project goals. Once the application was deemed stable, new modules and features were
added. This allowed our software to effectively evolve as our project goals changed. This
resulted in flexibility in our software design that was free of unnecessary complexity and
complications. Creating a stable working software prototype was one of the early goals
that the group needed to achieve and putting a minimal system into “production” quickly.
This would allow the group to have some kind of working foundation from which to
build and improve on. One of the other benefits in producing working software early on
in the project was a much needed confidence boost for all concerned knowing that we
were making real progress.

XP tends to emphasise software design and implementation that involves staying in
contact with the customer. Because our project had no formal customer we often

 68

2004 – DCNDS – Group Report

visualised that our projects customer was our project supervisor. This meant frequent
discussion with Steve Hailes on a weekly basis informing him of the direction that our
software design and implementation was going.

Another important concept in XP is the use of advanced testing to validate the software
design. The group decided to create separate unit tests to make sure that our software
modules were fully functioning. Integration testing was also used rigorously to make sure
that module integration was smooth and effective. XP also calls for short software
development cycles. With this in mind the group aimed to complete a software prototype
that had two separate iterations. The group felt that time was particularly limited and that
two iterations would allow us to design and implement stable software in the first
iteration leaving the second iteration to implement added software features and
improvements. XP should involve keeping software design and implementation simple
and the group went to great lengths to keep everything well documented and
understandable. Although the overall project remained particularly complex, breaking
down our design goals and segmenting our workload clearly helped to keep the project
design simple and manageable.

XP also emphasizes on coding for current needs. Initially the group made design
decisions at the start of the project that were totally different to decisions made in the
middle of the project. Coding tasks therefore changed considerably as the project goals
changed. The group was particularly good at adapting to these changes and we were often
able to anticipate what direction our coding would take after a long discussion at a group
meeting with our supervisor.

3.2. Key reasons for choosing XP

XP was chosen over other more formal software engineering methods because it is seen
as agile and can quickly adapt to sudden changes in project direction. XP was created in
response to problem domains whose requirements change. This described our project
perfectly. The group experienced many of these changes throughout the course of the
project and in hindsight we believe we chose a particularly suitable methodology. XP
implements a simple, yet effective way to enable “groupware” style of development
focusing very much on strong communication and collaborative development. We found
that this approach to software design suited our needs best which is why XP was chosen.
Other benefits of XP over traditional software implementation methodologies included

 69

2004 – DCNDS – Group Report

enhanced team communication, (especially during implementation) and enhanced
feedback loops that allowed the group to locate and deal with problems quickly and
effectively leading to greater confidence in our ability to achieve our project goals.

XP is also particularly suitable for lightweight teams such as ours where each person has
a variety of different roles that can change quickly on a weekly basis. Agile software
methodologies such as XP are most suited to small closely knit groups.

XP is generally used for commercial projects rather than research projects however the
group felt that the advantages of an agile methodology far outweighed the lack of “user
stories” in the academic environment. Because XP is popular in the commercial sector
there is usually some kind of customer for which the software is intended. In our case, the
customer could be seen as our project supervisor and the university itself.

XP was also chosen because of the strict scheduling guidelines and enhanced
documentation that the methodology required. This suited our project perfectly giving us
specific control documents and a control system that would ensure project success. This
allowed the project coordinator and the team members to know exactly what had to be
achieved on a given day within a given timeframe.

4. Scheduling

Although we chose the XP process to develop our software, our project involved a
considerable amount of background research and report writing. We needed a strict
schedule to achieve all our project goals so that we managed our available time
efficiently. All the project activities were planned according to the schedule. This was
modified as changes within the project occurred. The project schedule actually resembles
the timeframe of a waterfall model software engineering approach. The following Gantt
chart below shows the schedule for the whole project.

 70

2004 – DCNDS – Group Report

Figure A.2: Gantt chart for the project

Furthermore, we made schedules for every coming month. This included the work that

ample

each member was participating in. The monthly schedules gave us more detailed
instructions used for monitoring the current progress of the project. Below is an ex
of a monthly schedule.

Figure A.3: Example for monthly schedule

 71

2004 – DCNDS – Group Report

5. Project documentation

hroughout the course of the project the group produced a large amount of

9 Project schedule
le was used as a blueprint for the group activities over the course

 Individual schedule

le was used to show what work an individual team member

9

ere used to log what was discussed over the course of a team

9

rk that had been carried out successfully

 Issue log

og was produced on a weekly basis summarising all of the potential
ator

 Design proposal
al was submitted to the project supervisor once the initial software

 Code documents

 were produced regularly with full comments so that the

T
documentation. Most documentation was used to monitor the progress of the project.
Certain documents were used to inform our project supervisor of our progress and some
documents were used to provide information to individuals external to the project. Please
see a summary list of documents below.

The project schedu
of the project listing all of the project milestones.

9

The individual schedu
was involved in at a given point in time.

Meeting minutes
Meeting minutes w
meeting. Meeting minutes were also copied to the web log.

Weekly progress report
The weekly progress report listed all the wo
over the course of the week in relation to the project objectives.

9

The issue l
problems and issues that the group faced on a weekly basis. The project coordin
was responsible for clearing the issue log by delegating the issues to team members.

9

The design propos
design process was complete. This allowed the supervisor to review our design
progress and comment on our design decisions offering valuable feedback.

9

Coding documents

 72

2004 – DCNDS – Group Report

implementation could be examined and evaluated objectively. Coding documents

e

 Testing report

was produced once all testing was completed documenting all unit

9 ebsite
te was created early on in the project to act as an information portal

 Project Web log

sed as a discussion board and information repository for the
sis. []

. Risk management

.1. Potential risks

there are many potential risks that a group of four people

rly

Risk Type Possible Risks Countermeasure

were often exchanged between various group members to improve software modul
integration.

9

A testing report
tests, integration tests and overall application testing.

Project w
The project websi
for our work. The site also contained links to relevant research work and individual
team member listings.

9

The web log was u
project. The team meeting agenda and minutes were listed there on a weekly ba

6

6

ver a five-month period O
completing a research project will face. Therefore, a risk management strategy was
something that needed to be taken seriously from the onset of the project. The group
analysed all the possible risks especially risks that related to our project in the very ea
stages before we had really made a start. The following table contains the most
significant risks.

Team m ent at
critical times.

Organise the apping work
coverage and team members are aware of each

ember/s ill and abs
team so there is overl

other’s work.
ber withdraws Each member of group keeps logs of their work

Team members do not possess the Perform training in the early stages to improve
skill levels.

People
Team mem from the

course. and is aware of each other’s work.

Technical
required skill sets.

 73

2004 – DCNDS – Group Report

Underest lopment
time.

time in project plan to compensate for
imating project deve

Hold weekly status meetings and include slack

unexpected circumstances.
ep meeting records and upload the recor

onto the project website.
System does not meet client

acceptance criteria.

Inability to have all team members
present at meetings.

Ke ds Managerial

Communicate with client on a regular basis.

Table A.2 Potential risks

6.2 Real problems met and solved

many kinds of problems and dealt with each
efficiently and effectively using a good risk management strategy. Some of the most

9 Hyo Sim Moon leaving the course at the end of May
We distributed Hyo Sim’s responsibilities and tasks between the other group

 minutes and Oliver handled

9 A long period of background researching time

e took a long time to make the objectives of the project clear and becoming
The

group dealt with this by first acknowledging the problem and rescheduling our work
so we finished within our deadline.

9

ment cycles took much longer than
previously thought. This was addressed quickly and the group worked hard to make

to

time would be much larger in hindsight.

.

Over the course of the entire project we met

important problems that the group faced included:

members. Cecile took over the role of recording meeting
the documentation of the project.

W
familiar with the related technologies was more difficult than first anticipated.

Underestimating the development time
The group quickly realised that the develop

sure that we had enough time to test and document our work. If the group were
complete the project again then we would anticipate that the software development

 74

2004 – DCNDS – Group Report

Appendix B: XML Schema

. XML schema for Access Control policy 1

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- definition of simple elements -->
<xs:element name="subject" type="xs:string"/>
<xs:element name="allow_ip" type="xs:integer"/>
<xs:element name="deny_ip" type="xs:integer"/>

<!-- definition of attributes -->
<xs:attribute name="type" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="allow">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="allow_ip" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="deny">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="deny_ip" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="policy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="subject"/>
 <xs:element ref="allow"/>
 <xs:element ref="deny"/>
 </xs:sequence>
 <xs:attribute ref="type" use="required"/>
 </xs:complexType>
</xs:element>

</xs:schema>

 75

2004 – DCNDS – Group Report

2. XML schema for Initial policy

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- definition of simple elements -->
<xs:element name="port" type="xs:integer"/>
<xs:element name="neighbor_num" type="xs:integer"/>
<xs:element name="neighbor_id" type="xs:integer"/>
<xs:element name="ip" type="xs:integer"/>

<!-- definition of attributes -->
<xs:attribute name="type" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="neighbor">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="neighbor_id"/>
 <xs:element ref="ip"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="routing_topology">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="neighbor_num"/>
 <xs:element ref="neighbor" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="policy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="port"/>
 <xs:element ref="routing_topology"/>
 </xs:sequence>
 <xs:attribute ref="type" use="required"/>
 </xs:complexType>
</xs:element>

</xs:schema>

 76

2004 – DCNDS – Group Report

3. XML schema for Updating policy

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- definition of simple elements -->
<xs:element name="protocol" type="xs:string"/>
<xs:element name="version" type="xs:integer"/>
<xs:element name="addr_family" type="xs:integer"/>
<xs:element name="cmd" type="xs:string"/>
<xs:element name="entry_num" type="xs:integer"/>
<xs:element name="ip" type="xs:string"/>
<xs:element name="metric" type="xs:integer"/>

<!-- definition of attributes -->
<xs:attribute name="type" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="route_entry">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="addr_family"/>
 <xs:element ref="ip"/>
 <xs:element ref="metric"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="policy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="protocol"/>
 <xs:element ref="version"/>
 <xs:element ref="cmd"/>
 <xs:element ref="entry_num"/>
 <xs:element ref="route_entry" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="type" use="required"/>
 </xs:complexType>
</xs:element>

</xs:schema>

 77

2004 – DCNDS – Group Report

Appendix C: Technical User Guide

. Files and Description 1

File Description

def.H Global type and macro definitions.

asl_SSL.H odule. Header file for secure link library m

asl_SSL.C Secure link library which provides interface to
use SSL connection facility.

Initialisation server module fi

sched.C Scheduler module file.

parser.H Header file for xml parser module.

parser.C Xml parser module file.

generator.H ator module. Header file for xml gener

generator.C Xml generator module file.

ripd.H Header file for routing policy handler module.

ripd.C Routing policy handler module file.

access.H handler Header file for access control policy
module.

Access co

monitor.H Header file for monitor reporter.

monitor.C Monitor reporter. This is module in C++ giving
a way to communicate with Monitor in Java.

Monitor java class and other definitions for
monitor module use.

Network component o

monitor\MonitorFrame.java GUI component of monitor module.

viserver.C le.

access.C ntrol policy handler module file.

monitor\Monitor.java

monitor\MonitorNet.java f monitor module.

 78

2004 – DCNDS – Group Report

2. Interface specification

.1. asl_SSL

2

enum EPeerType
{
 kServer,
 kClient
};
Enumeration type indicates this network peer is server or client.

SSL_CTX* initialize_ctx(EPeerType aType, const char* certfile,
const char* keyfile);
Initialize an SSL context object and return it.

Parameters:
 aType: type of network peer

 certfile: name of certificate file
 keyfile: name of private key file
Return value:
 Initialized SSL context object.

void destroy_ctx(SSL_CTX* ctx);

Parameters:

Destroy SSL ontext object.

 ctx: SSL context object to be destroyed

2.2. parser

extern CInitPolicy i_policy;

 of parsing process. Global initial policy object in current use

extern TRipPacket r_packet;

use of parsing process. Global routing policy object in current

extern AccessList a_list;

n current use of parsing process. Global access control policy object i

int ParsePolicy(char* buf, int count);

able.

Parameters:

Parse xml format policy to policy object in global vari

 buf: Buffer in which xml policy is put
: count Length of buf

 79

2004 – DCNDS – Group Report

Return value:
 Policy type.

.3. generator 2

int GenerateInitialPolicy (CInitPolicy* ipPtr, FILE* xmlPolicy);

Parameters:

Generate xml format initial policy from object.

 ipPtr: Pointer of initial policy object
l y: rmat policy xmlPo ic Output file descriptor of xml fo

Return value:
 Policy type.

int GenerateUpdatePolicy(TRipPacket* rpPtr, FILE* xmlPolicy);

Parameters:

Generate xml format routing policy from object.

 rpPtr: Pointer of routing policy object
y: at policy xmlPolic Output file descriptor of xml form

Return value:
 Policy type.

int GenerateAccessPolicy(AccessList* alPtr, FILE* xmlPolicy);

Parameters:

Generate xml format access control policy from object.

 alPtr: Pointer of access control policy object
l y: icy xmlPo ic Output file descriptor of xml format pol

Return value:
 Policy type.

2.4. monitor

class Information {
public:
 int type;
 int minortype;
 int destip;
};
System communication information class.

 80

2004 – DCNDS – Group Report

Members:
 type: Type of the information
 minortype: Minor type of the information
 destip: Destination ip address of this communication action.

void reportMonitor (int type, int minortype, int destip);
Report a communication action to the monitor.

Parameters:
 type: Type of the information
 minortype: Minor type of the information
 destip: Destination ip address of this communication action.

2.5. Monitor (Java)

2.5.1. class Monitor

Public Methods

SetNetStatus()

ResetNetStatus()

Run()

UpdateView()

Exit()

2.5.2. class Information:

Public Fields

IType

IMinorType

ISrcIp

IDestIp

2.5.3. class InfoEntry extends Object:

Public Methods

GetInfo()

GetTimer()

 81

2004 – DCNDS – Group Report

Schedule()

2.5.4. class TimeoutTask extends TimerTask

Public Methods

Run()

2.6. MonitorFrame (Java)

2.6.1. class MonitorFrame extends javax.swing.Jframe

Public Methods

paint()

2.7. MonitorNet (Java)

2.7.1. class MonitorNet

Public Methods

init()

run()

2.7.2. class NetThread extends Thread

Public Methods

run()

3. Building process

1) Edit source files in src\ directory
2) Run batch files in bin\ directory to build.

 bv.sh is file for building viserver module.
 bs.sh is file for building scheduler module.

3) Run executable files in out\ directory to test

 82

