

Department of Computer Science

MSc Data Communications, Netw uted Systems

orks & Distrib

ZZIIOONN

 AA LLiigghhttwweeiigghhtt SSEEIINNIITT bbaasseedd
SSeeccuurriittyy FFrraammeewwoorrkk

IImmpplleemmeennttaattiioonn ffoorr PPeerrvvaassiivvee
CCoommppuuttiinngg

Executive Summary

September 2004

Team X-Matrix
Kumardev Chatterjee

Philip Ho
Wasif Mehdi
Fahd Shariff

Muhammad Solangi

Supervisor
Steve Hailes

This report is submitted as part requirement of the MSc Degree in Data Communications,
Networks and Distributed Systems at University College London. It is substantially the result of
our own work except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

This document introduces and summarises the goals, related work, design
and implementation and conclusions for the project, Zion.

Introduction

The ZION framework effort was a research and development project to
develop as the title mentions, a lightweight security framework implementation
for pervasive computing that was compatible with and indeed a pilot Proof of
Concept demonstrator for SEINIT. SEINIT is a Security Experts Initiative to
create, deploy and standardise security architectures, artefacts and
frameworks for computing in ambient network environments.

Problem Domain

Simply stated, the project envisions a dynamic working environment where an
user/ application needs security at all times although his location/network
conditions/environment, i.e. his ‘context’, changes frequently.

The questions arise; how does a system/framework understand a
user/application’s ‘context’? How does it then use that understanding to create
custom security for the user/application based on pre-defined security
policies? Can something be devised that allows all of this to happen on a
single device as well as possibly a networked way? How can all of this be
done without making the user/application and the security system/framework
tightly integrated; in-fact can they be relatively transparent to each other i.e.
highly de-coupled?

Summary of Goals

The goals of the project encompassed finding a solution to all of the above. A
way of representing the ‘context’; evaluating it via a set of ‘rules’ and
consequently tagging it in ‘some’ way; finding a way to write/design/implement
High Level Security Policies which deal with such context tagging; a system
that maps and understands such policies and context and can use them to
perform ‘some’ security actions; a ‘sub-system’ that can be used to ‘discover
and use’ artefacts that perform the required security actions and of-course
designing a robust, standardised way to let applications and the system
interact with each other while not being aware of each other’s code,
configuration or even location.

Summary of Related work

Given the bleeding-edge nature of the project goals, very few parallel
examples, in the world of pervasive computing or even beyond, could be
located. MIT’s ‘Oxygen’ and the project ‘Aura’ are perhaps the closest
examples, although it must be stressed that though they do implement rule

 1

based pervasive environments, they do not have much work in terms of
providing a security framework implementation for such environments.

Overview of Architecture and System
Workings

The core of the system, Zion, is a Security Manager, which
initiates/performs/monitors all actions in the system. It starts up first and
initialises other components as and when necessary. A key component is the
Application Manager, which once initialised, listens to all well-known SEINIT
ports and optionally the SEINIT Multicast IP (explained below). It gets the
latest of these by reading in a text file with the information. Once the
Application Manager senses data on these ports it calls the Security Manager.
The Security Manager detects the context of the device via the Context
Manager. It then validates the context via the Business Rules Engine and
uses the Ponder Manager to locate the Security Policy Level for this particular
context. The Ponder Manager does that and lets the Security Manager know
what kind of Security actions need to be taken (such as 32 bit encryption).
The Security Manager then uses SATIN (a component based middleware
developed by a UCL PhD student, Stephanos Zachariadis) to perform these
actions via component loading and execution of low level security
components. Once the actions are completed, the secure data is passed back
to the originator application via the Application Manager.

The project envisages a proposed set of well-known Port numbers for
applications that want to talk to SEINIT frameworks. It also proposes a SEINIT
Multicast IP, SEINIT recognised Contexts, SEINIT business rules and the
SEINIT Security Policy Levels; all proposed in detail and implemented
convincingly. The design and implementation of these entities/artefacts done
for this project, is hoped will be adopted/merged by SEINIT into published
standards.

Overview of Implementation

The project implementation included multiple green field technology
implementations for the first time. These were the seamless successful
integration of Ponder, SATIN, XML and JAVA (particularly Java Crypto
classes). The architecture being component based, most development was
done in silo with component owners doing their bits. Integration was done
collaboratively. The entire system was built using J2SE (mostly J2ME
compliant) and XML is the lingua franca of the system.

Summary of Conclusions

The team successfully delivered a system which provides context based, High
Level Security Policy driven secure data communication on a single device

 2

and is multicast network capable as well. The system developed was tested
and found to work fine for laptops and desktops with easy extensibility onto
PDA’s and handhelds. A chat application was successfully built on top of the
system. A comprehensive Audit Tool with an live, real-time illustrative State
Transition Diagram display was also built. These two helped the team
demonstrate the workings of the system and greatly helped with the testing
and debugging. All system components were built to be scalable and easy to
extend.

The team is upbeat that it managed to achieve all defined goals including all
of the client’s later stage high priority expectations Finally, this robust
implementation and demonstration of Proof of Concept opens up new vistas
in the world of security framework architectures for pervasive environments.

 3

