

Department of Computer Science

MSc Data Communications, Networks & Distributed Systems

ZZIIOONN

 AA LLiigghhttwweeiigghhtt SSEEIINNIITT bbaasseedd
SSeeccuurriittyy FFrraammeewwoorrkk

IImmpplleemmeennttaattiioonn ffoorr PPeerrvvaassiivvee
CCoommppuuttiinngg

Group Report

September 2004

Team X-Matrix
Kumardev Chatterjee

Philip Ho
Wasif Mehdi
Fahd Shariff

Muhammad Solangi

Supervisor
Steve Hailes

This report is submitted as part requirement of the MSc Degree in Data Communications, Networks
and Distributed Systems at University College London. It is substantially the result of our own work
except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

Acknowledgements

Acknowledgements

We would like to thank firstly, Dr Steve Hailes. He gave us clear project objectives
and scope to work with. He provided invaluable support and feedback throughout the
whole process.

We would like to thank Stefanos for his work on SATIN and his invaluable advice in
helping us to incorporate SATIN quickly and efficiently.

Thanks must also go to all our friends and colleagues for their useful comments and
suggestions all also to those who were kind enough to feign enthusiasm for our
demonstrations.

 i

 Contents

Contents

ACKNOWLEDGEMENTS.. I

CONTENTS .. II

LIST OF FIGURES & TABLES..VII

1 INTRODUCTION ... 1

1.1 How it works: An overview.. 1

2 RELATED WORK ... 3

2.1 Project Oxygen.. 3

2.2 Project Aura.. 4

3 OBJECTIVES & REQUIREMENTS ... 5

3.1 A Scenario ... 5

Use Case Diagram... 6

3.2 The Requirements Table.. 6

3.2 Low Priority Requirements Rationale .. 8

3.3 State of the Art: Key Aspects of the Project... 8

4 SYSTEM ARCHITECTURE .. 9

4.1 Domains, Components and Modules... 10

4.2 Workflow... 11

Object Interaction Diagram... 13

Object Sequence Dagram... 13

4.3 Design Decisions.. 14
4.3.1 SEINIT Artifacts ... 14
4.3.2 Interface Objects ... 14
4.3.3 XML Parser .. 15
4.3.4 Code Standards... 15

4.4 Architecture Model... 15
4.4.1 Architecture Characteristics... 15

 ii

 Contents

4.5 Assumptions in System... 15

5 TOOLS AND TECHNOLOGIES.. 17

5.1 Security Policy Language Tools... 17
5.1.1 SPL.. 17
5.1.2 XACML.. 18
5.1.3 Ponder .. 18
5.1.4 Ponder Rationale... 19

5.2 SATIN.. 20

5.3 XML Parser .. 21
5.3.1 Choosing a Parser .. 21

5.4 Programming Platform: J2ME ... 22

6 DESIGN AND IMPLEMENTATION ... 24

6.1 Security Manager ... 24
6.1.1 Class Diagram ... 25
6.1.2 Handling Context Change.. 26
6.1.3 Handling Frequent Context Changes ... 26
6.1.4 Applying Business Rules to Context .. 26

6.2 The Ponder Domain.. 27
6.2.1 Defining Security Policies .. 27
6.2.2 Converting Ponder policies to XML .. 28
6.2.3 The Ponder-to-XML Code Generator:.. 29
6.2.4 Ponder Manager.. 29
6.2.5 Class Diagram ... 30
6.2.6 Implementation .. 31

6.3 Context and Context Awareness ... 31
6.3.1 Context Manager... 32

6.4 XML Manager .. 33

6.5 The Satin Domain... 34
6.5.1 Class Diagram ... 35
6.5.1 Designing Low-level Security Components... 36
6.5.2 The Encryption Interface .. 36
6.5.3 Key Generation.. 36
6.5.4 Encryption Components ... 37
6.5.5 Registering Low-level Security Components .. 37
6.5.6 Dynamically Loading Low-level Security Components.. 38
6.5.7 The SATIN Manager ... 38
6.5.8 The SATIN Co-Location Issue... 39

6.6 The Application Manager.. 40
6.6.1 Functioning... 41
6.6.2 Modes ... 41
6.6.3 The Demo Application .. 41

6.7 The Audit Tool .. 41
6.7.1 The Message Centre .. 42
6.7.2 Audit Core .. 46
6.7.3 Audit Display .. 46

 iii

 Contents

6.7.4 The appendText() Method ... 47
6.7.5 Replay ... 47
6.7.6 Triggering Context Change.. 47

6.8 State Transition Diagram (STD) ... 48
6.8.1 Encoding the STD ... 49
6.8.2 Building the STD Display ... 50
6.8.3 Updating the STD.. 51

6.9 Integration Plan.. 52

7 PROJECT MANAGEMENT .. 53

7.1 Team structure.. 53

7.2 Scope and Strategy ... 53

7.3 Project Management Documents .. 54

7.4 Software Development Strategy .. 55

7.5 Communications Management.. 55
7.5.1 The Website ... 55

7.6 Risk management ... 56
7.6.1 Technical Risks ... 56
7.6.2 Human Resources Risks.. 57

8 DEMONSTRATION OF CONCEPT & TESTING .. 58

8.1 White Box Testing (Structural Testing) ... 58
8.1.1 JUnit .. 58

8.2 Black Box Testing (Functional Testing) ... 59

9 FUTURE WORK ... 60

9.1 Application and Security Manager: SEINIT Packet Format ... 60

9.2 Component based software updates using SATIN... 60

9.3 Dynamic Business Rules Loading.. 60

9.4 Incorporating User Preference .. 60

9.5 An Audit Trail... 61

9.6 Extending the XML Manager.. 61

9.7 Deployment and Testing... 61

9.8 Audit Tool: Improved Messaging and Logging ... 61

10 CONCLUSIONS & EVALUATION ... 64

10.1 Achievements .. 64

 iv

 Contents

10.2 Critical Assessment... 65

11 REFERENCES ... 66

12 ENDMATTER ... 69

APPENDIX A: SYSTEM MANUAL.. 70

A.1 System Requirements .. 70

A.2 Installation Instructions .. 70

A.3 Launching the Security Framework .. 70

A.4 Running the Sample Chat Application .. 71

A.5 For Developers ... 71

APPENDIX B: USER MANUAL.. 73

B.1 Audit Message Display... 73

B.2 Adding and Removing Message Panes ... 73

B.3 State Transition Diagram.. 73

B.4 Resizing the State Transition Diagram .. 74

B.5 Removing the State Transition Diagram ... 74

B.6 Changing Context .. 74

B.7 Replaying Past Sessions ... 74

B.8 Getting Help ... 74

B.9 Exiting the System.. 75

APPENDIX C: PONDER RESEARCH ... 76

C.1 Ponder Policy Brief.. 76
C.1.1 Authorisation Policies... 76
C.1.2 Obligation Policies .. 77
C.1.3 Information Filtering Policies... 78
C.1.4 Delegation Policies ... 79
C.1.5 Refrain Policies ... 79

C.2 SPL Example.. 79

C.3 XACML Example .. 80

APPENDIX D: LOG4J... 82

 v

 Contents

APPENDIX E: THE GANTT CHART ... 84

APPENDIX F: MEETING MINUTES (SAMPLE) .. 85

APPENDIX G: COMMUNICATION TRACKER .. 86

 vi

 List of Figures and Tables

List of Figures & Tables

Figure 1: System Architecture ...9
Figure 2: The flow of information ..24
Figure 3: Security Manager Class Diagram ..25
Figure 4: Ponder Domain Class Diagram ...30
Figure 5: Class Diagram showing the Context Manager ..32
Figure 6: Original Context manager and security manager interface33
Figure 7: Updated Context manager and security manager interface..........................33
Figure 8: Class XML Manager ..34
Figure 9: Class Diagram for the SATIN domain ...35
Figure 10: The Audit Tool Architecture ..42
Figure 11: Class Diagram for the Audit Tool...44
Figure 12: Screenshot of the Context Dialog..48
Figure 13: System State Transition Diagram..49
Figure 14: Class Diagram for the STD...50
Figure 15: Screenshot of the STD Display..51
Figure 16: Project Gantt Chart ..84

Table 1: Requirements Table ..8
Table 2: Details of the Port Numbers...14
Table 3: A list of attributes for an Encryption Component ..37
Table 4: Team Roles ..53

 vii

 Introduction

1 Introduction

The digitization of the developed world is in progress and the digital universe is
intruding into all sectors of activity. The emergence of Ambient Networks, Grid and
Pervasive Computing (i.e. Computation Ubiquity) and the urbanisation of
heterogeneous interconnected networks (i.e. Communication Ubiquity) raise serious
security issues and conceivable threats. As new systematic inroads have been made
related to mobility, context, persistent interoperability of heterogeneous systems and
the massive proportions of the contents caused by the advent of multimedia content,
so have the security threats and objectives changed radically. We have witnessed
the birth of technologies like GSM, WiFi, and Bluetooth, each of them with their own
technology specific security solution. However, this approach has also revealed itself
to be restrictive, because it does not grasp the heterogeneity of the systems. Thus
security will have to be expressed more in terms of dynamic ecosystems that are
being deployed and developed and that are defending themselves, while being
immerged in an ambient environment, which is itself computerized and must be
protected against attacks of any nature (accidental errors, malicious alterations,
spying, terrorist attacks etc). It is by instituting a systemic approach that the new
security will be able to absorb the rough points inherent in the existing architectures
and assume its rightful place, in order to counteract the accelerated emergence of
the new technologies that are sprouting on the horizon and which will not fail to jolt
the established security devices and architectures. Computing and storage grids, the
pervasive computer technology of the communicating objects, the overlay networks,
the P2P architectures, belong to this emerging skyline, to these distributed and
mobile architectures that spell out the failure of the paradigms of centralized security
architectures.

Thus it is essential to explore new security models and to build the architecture and
components to address this mobile, pervasive, multiplayer communicating world.
This new solution must have the ability to use the intelligence gathered by the
ambient intelligence and use it to deal with the new emerging security threats. It is
preferable to decentralise the security and create autonomy and ability to react and
adapt depending on context. In turn taking appropriate security measures which
would ensure confidentiality, authenticity and integrity of data in ambient networks.

It is to be noted that for the purposes of this report we have taken the words ambient,
pervasive and ubiquitous to mean a computing environment with fluctuating and
heterogeneous resource conditions, for example, fluctuating network bandwidths and
devices of different capabilities running adaptable applications.

1.1 How it works: An overview

The project developed a Lightweight SEINIT based Security Framework
Implementation as the title suggests. Among the components used to create the
implementation are SATIN, a component based middleware developed by
Stephanos Zachariadis, a PhD student at UCL, and Ponder, a security policy
definition language developed at Imperial College. The project envisages that

 1

 Introduction

SEINIT will publish a set of well-known Port numbers for applications that want to
talk to SEINIT frameworks. It will also publish a SEINIT Multicast IP address, SEINIT
recognised contexts, SEINIT business rules and the SEINIT security policy levels. It
is hoped that the design and implementation of these entities in this project will be
adopted/merged by SEINIT into published standards.

The core of the system, Zion, is a Security Manager, which initiates, performs and
monitors all actions in the system. It starts itself up first and then initialises other
components as and when necessary. A key component is the Application Manager,
which once initialised, listens to all well-known SEINIT ports and optionally the
SEINIT Multicast IP address. This information is obtained by reading a text file. Once
the Application Manager senses data on these ports it calls the Security Manager.
The Security Manager detects the context of the device via the Context Manager. It
then validates the context via the Business Rules Engine and uses the Ponder
Manager to locate the Security Policy Level for this particular context. The Ponder
Manager then lets the Security Manager know what kind of security measures need
to be taken (such as 32-bit encryption). The Security Manager then uses the
component-based middleware, SATIN, to perform these actions by dynamically
loading and enforcing low level security components. Once the actions are
completed, the secure data is passed back to the originator application via the
Application Manager for further processing.

The entire system was built using J2SE (mostly J2ME compliant) and XML is the
lingua franca of the system.

 2

 Related Work

2 Related Work

There is not much out there in terms of complete security framework
implementations or systems for pervasive computing. Pieces of the puzzle have
been solved; for example, there is Ponder [20] which is a declarative language for
specifying security policies and that also comes with associated tools for editing ,
compiling and managing policies. Then there are SATIN [11] and XMIDDLE [12]
which are component-based middleware. However, few implemented systems exist
that attempt to solve the full problem set. Aura [13] is one well known effort.

Ubiquitous computing is seen as the next computing era in the next tens of years. Its
applications could be multi-purpose. Its definition is rapidly evolving. There are many
ongoing research efforts on technological functionality needed to achieve ubiquitous
or even invisible computing. Due to its ubiquitous nature and the fact that personal
identity, location, activity, wealth and even emotions are being data collected,
security and privacy should be a concern. However, not many efforts are put into
securing the ubiquitous environment.

In an IFIP/IEEE symposium [7] it was suggested that if we want ubiquitous
connectivity, we need to prepare to give up privacy. Marc in his paper ‘A privacy
awareness system for ubiquitous computing environments’ [8] argues that tamper-
proof technical protection mechanisms to solve all privacy threats will hardly be
achievable. He proposes instead, building a privacy awareness system that allows
data collectors to both announce and implement data usage policies, as well as
providing data subjects with technical means to keep track of their personal
information as it is stored, used, and eventually removed from the system. This in the
very least creates a sense of accountability in a world of invisible computing devices.

Campbell et al. in ‘Towards security and privacy for pervasive computing’ [9] outlines
several security subsystem requirements for a pervasive system. Firstly he mentions
that security subsystems should be transparent and unobtrusive to the user because
that is the whole point of being pervasive anyway. Secondly, while pervasive
computing integrates context and situational information, security aspects should not
be exceptions.

There is also a need to verify the authenticity and integrity of the context information
acquired. This is sometimes necessary in order to thwart false context information
obtained from rogue or malfunctioning sensors. The security subsystem also needs
to be adaptable, flexible, customizable and able to negotiate security environments.

Some examples of pervasive systems are outlined below.

2.1 Project Oxygen

MIT’s Project Oxygen [14] has the vision that computation will be pervasive, like
batteries, power sockets and the oxygen in the air we breathe. Oxygen identifies
adaptation and change and information personalities as some of the important
themes. Adaptation and change relates to the essential features of an increasingly

 3

 Related Work

dynamic world. Information personalities relate to the privacy, security, and form of
our individual interactions with Oxygen.

2.2 Project Aura

Project Aura [13] is about deploying and evaluating a large-scale system
demonstrating the concept of a “personal information aura” that spans wearable,
handheld, and desktop and infrastructure computers. This is based on the concept of
a profile that moves with the user from his most recent to his current computing
environment.

 4

Objectives & Requirements

3 Objectives &
Requirements

The objective of our project is to build a J2ME compliant, lightweight SEINIT based
Security Framework Implementation (POC - proof of concept) for Ambient Networks.
This system will demonstrate that context based, high-level security policy driven
secure data communications on a single device is feasible and can be implemented.

The system will secure a chat conferencing application running on desktops and
laptops. If time permits, the system will be extended further to incorporate the
enforcement of security for voice and video conferencing applications and be
extended so that it runs on handhelds such as PDAs and mobile phones.

The system will demonstrate the use of component-based middleware and high level
security policy languages.

3.1 A Scenario

A consultant is chatting on a desktop, 10 mbps connection, with a client. It is a ZION
desktop (with the current encryption level of 128 bits). He gets a call and is required
to move to another building. He realises he cannot stop the chat though, since it is
important. So he starts a session on his PDA. Since there is no WLAN in the room
he is in, the PDA connects to the desktop via Bluetooth and uses the desktop's
internet connection. This is a context switch which causes the encryption level to
change to 32 bits.

However, since the connection between the PDA and the desktop is via Bluetooth,
the effective bandwidth is the Bluetooth bandwidth and not 10 mbps. When he
reaches the next room, his PDA detects a WLAN signal and switches to the 6 mbps
802.11b effective bandwidth utilising the WLAN. This is a second context switch
causing the encryption level to change to 64 bits. As he walks out of the building, the
PDA loses the WLAN connection and picks up a GPRS signal through its GPRS
terminal (third context switch). However, the existing Business Rules do not
recognize a GPRS connection as a valid network context; hence ZION shuts down
his chat session.

 5

Objectives & Requirements

Use Case Diagram

System
Boundary

XML Context Tags

Security Manager

DCR | SPL

Get DCR
from BRE

<<Extends>>
<<Extends>>

<<Uses>> <<Extends>>

Consultant:
triggers the

context change

Retrieve
Context

Information

3.2

The R
functio
the Mo
have).

PONDER
Policies
Retrieve SPL
from PONDER

Policies
Load LLSC

The Requirements Table
equirements Table below sets out, in a bit more detail, the functional and non-
nal requirements of the system. Each requirement is assigned a priority using
SCoW criteria (M-must have, S-should have, C-could have and W-would

 [14]

6

Objectives & Requirements

ID Requirement Priority

Functional Requirements

Security System

1 Design the system broker and security sentry. M
2 Control flow of information/interactions within the system. M
3 Control flow of information/interactions with the system. M
4 Communicate with applications that want to use the system. M

Context Information
5 Retrieve context information. M
6 Represent context information in an extensible data structure. M
7 Detect context changes. M
8 Notify the rest of the system when context changes. M

9 Convert context information into some formal representation using
a set of rules. M

Security Policies

10 Represent policies in a high level security policy definition
language. M

11 Define what security measures will be taken for each context. M
12 Extract security measures from the policy for a particular context. M

Security Components
13 Design at least two different low-level security components. M
14 Dynamically load components when context changes. M
15 Design encryption components. M
16 Design authentication components. W

Applications

17 A simple chat application that demonstrates the capabilities of the
system. M

18 A video conferencing application. W

Audit Tool

19 A tool to show what is happening within the system (what
components are doing etc) M

20 A tool that displays the system as a finite state machine and
shows how transitions between states occur. S

21 A tool to trigger context change events. M

22 A replay mechanism by which previously logged runs of the
system can be run again. S

Non-Functional Requirements

 7

Objectives & Requirements

1 The system must be J2ME compliant. S
2 The system must be tested on Desktops. M
3 The system should be tested out on laptops. S

4 The system should be tested out on handheld devices such as
PDAs and mobile phones. W

Table 1: Requirements Table

3.2 Low Priority Requirements Rationale

• Design of Authentication Components: Time consuming yet without significant

bearing on the overall project goals.

• Video Conferencing Application: This was always an iteration three item since
the goal of the project did not include creating applications but the system itself.

• Testing on Handheld Devices: Handheld devices could not be provided one of
the reasons being there were few that had all the resources we required such as
support for crypto classes. Additionally our search for emulators was not
successful.

3.3 State of the Art: Key Aspects of the Project

• The implementation of multiple green field implementations for the first time.
The implementations included seamless successful integration of Ponder,
SATIN, XML and JAVA (particularly Java Crypto classes).

• Proposing complete security architecture/standards for SEINIT which could

become adoptive standards in the future. Key examples are the SEINIT port
and IP specifications and business rules representation (the DCR format).

• Use of a component based middleware (SATIN) in a security system for

possibly the first time. Also solving co-location issue.

• The proposal of robust, working, scalable, security architecture for pervasive
environments.

 8

System Architecture

4 System Architecture

n

Business

Core

Auditing Tool n

Application
Manager
Applicatio
P E
O N
N G
D I
E N
R E

Ponder
Mgr

Ponder XML

C E
O N
N G
T I
E N
X E
T

ContextR

Policy Editor

n n

XMLMgr

Middleware - SATIN

Engine

LLSC – 128
bit encrypter

LLSC – 32
bit encrypter

Figure 1: System Architecture

9
Applicatio
Rules
Engine
XML Parser
Security Manager
Ponder Domai
 Context Domai
Context
Mgr

epresentation

System Architecture

The system architecture is inherently component-based so that components can be
replaced independently and can be loaded dynamically. There is a minimal interface
between components to enforce loose coupling.

4.1 Domains, Components and Modules

1. Security Manager

The System Broker, Controller, Sentry; it communicates with the applications,
intercepts the communication between application peers; and initialises, operates
and manages the entire security system. It is made of the:

a. Core Engine: The core of the security manager, it acts as the principal
broker for all communication and action that takes place in the system.

b. Business Rules Engine: This component applies the security business
rules or logic; it validates the context retrieved and is intended to be
dynamically extensible.

2. XML Parser

J2ME compliant, with a fully featured API layer (kXML). It is associated with the
XML Manager, which is the principal management wrapper class that abstracts
XML parsing operations for various system components.

3. The Ponder Domain

Encapsulates the operations that utilise the ponder toolkit and artefacts. It
consists of:

a. Ponder Manager: The principal management wrapper class that abstracts

operations in this domain for various system components; it is a part of the
deployed system.

b. Policy Editor: This is used to edit security policies using the ponder
security policy definition language; this is an offline component and not
part of the deployed system.

c. Ponder Engine: The main ponder toolkit; it is used to compile the ponder
security policies to XML; this is an offline component and not part of the
deployed system.

d. Ponder XML: The lingua franca of the system; it is the XML generated by

the ponder toolkit from the defined ponder security policies; it is a part of
the deployed system.

 10

System Architecture

4. Context Domain

This domain encapsulates the operations that utilise context information. It
consists of:

a. Context Manager: The principal management wrapper class that

abstracts operations in this domain for various system components; it is a
part of the deployed system.

b. Context Engine: The core class for creating, reading and editing context
information; it is a part of the deployed system.

c. Context Representation: The actual context meta data and data; since

currently this is an XML document, the context engine is really similar to
the XML Manager and uses the system wide XML Parser (kXML)
component for its operations; it is a part of the deployed system.

5. SATIN

The middleware used to locate, load, initialise, operate and manage distributed
components; currently being used only for low-level security components.

6. Low-Level Security Components

The actual classes that carry out component security functions; currently two
such components, a 32-bit encrypter and a 128-bit encrypter, are being used.

7. Application Manager

The principal interface between the system and applications. It listens to well
known SEINIT ports on the local host as well as the SEINIT Multicast IP address
(if it is started in the multicast mode). It intercepts data sent to these ports and
sends back encrypted data to the originator application when it gets data back
from the Security Manager

8. Auditing Tool

This tool tracks every significant system event via information passed by the
Security Manager. The audit tool will have a visual interface and demonstrate
system flows. It will also display the system as a finite state machine.

4.2 Workflow

1. The application starts up and transmits data to a well-known SEINIT Port (and

local host / SEINIT multicast IP address depending on configuration).

2. The Application Manager (AM) captures the flow and passes it to the Security
Manager Core Engine (SM).

 11

System Architecture

3. SM contacts the Context Manager (CM).

4. CM uses the Context Engine (CE) to read context information. Since the context

information is represented as an XML document, the CE uses the system wide
generic XML Parsers (XMLP) to parse the XML document and return a Context
Representation (CR, a vector of vectors containing integer values) to the SM via
the CM.

5. The SM passes the CR to the Business Rules Engine (BRE) to generate the next

step of action.

6. At this point based on the dynamically extensible Business Rules, the BRE can

do one of two things:

a. it can tell the SM that no rules exist for this CR, at which point the SM
will terminate the flow.

b. It can tell the SM that the context is ‘recognized’ and assign a Derived
Context Representation (DCR).

The information is passed via a vector of integers.

7. If the SM is told by the BRE that the context is recognized, the SM will then
contact the Ponder Manager (PM) and pass it the DCR to retrieve the Security
Policy Level (SPL) for this particular context.

8. The PM will use the DCR to read the XML Meta data and derive the Security

Policy level (SPL).

9. It will then use the XMLP to read the specific action <X> to be executed for this

SPL. It passes back this <X> to the SM.

10. The <X> will require the SM to contact SATIN which will in turn load the Low
Level Security Components (LLSC) to implement <X>.

11. To achieve this SM asks SATIN whether a particular LLSC exists.

12. If SATIN responds in the positive, the LLSC is asked to be initiated.

13. If SATIN responds that initiation succeeded, the LLSC, via Satin, is passed the

Application data which was captured by the SM at Step 2.

14. The encrypted data returned from the LLC via SATIN is transmitted to the
originator Application by the Application Manager.

15. IF any of the steps, fail at a critical point, the SM will terminate the flow.

 12

System Architecture

Object Interaction Diagram

User/Consultant:
triggers the

context change PONDER
Policies

Object Sequence Dagram

Consultant: aUser
SM: theSM PM: thePMAM: theAM CM: theCM BRE: theBRE SAM: theSAM

0: launchApp ()
1:

processUnencr
yptedDatat

2: Observe ()

3: retrieveContext ()

4: deriveDCR ()

5: deriveSPL ()

6: loadLLSC ()

Context
Manager

Security
Manager

Application
Manager

PONDER
Manager

Business
Rules Engine

SATIN
Manager

2: Observe ()

3: retrieveContext ()

1: <not sure> () 4: deriveDCR ()

6: loadLLSC () 5: deriveSPL ()

 13

System Architecture

4.3 Design Decisions

4.3.1 SEINIT Artifacts

We are declaring and using the ports 9000 to 9080 as SEINIT well-known ports. We
are also declaring and using the Multicast IP address, ‘239.255.255.0’ as the SEINIT
well-known IP. We hope that this will be adopted by SEINIT and actually converted
into standards.

Port/Socket and non common packet based architecture,
Rationale

The reason for using a well known ports/socket based architecture is that we wanted
complete decoupling between applications and the system. The well known port
architecture means that applications do not really have to be aware of the
configuration of the system. They can simply communicate using the SEINIT well
known ports and/or multicast IP and if the system is running on the device it will
automatically be able to intercept messages and provide security as designed.
Similarly messages are sent back from the system to the application via the
Application Manager to do away with the problem of declaring a SEINIT packet
format. This enables further decoupling and independence for application developers
and custom application architectures.

The table below shows the port numbers and the assigned application types:

Port Application Type
9000 SEINIT Default Application
9010 SEINIT Application Plain Chat
9020 SEINIT Application Audio Chat
9030 SEINIT Application Video Chat
9040 SEINIT Application Chat Conference
9050 SEINIT Application Audio Chat Conference
9060 SEINIT Application Video Chat Conference
9070 SEINIT Application Other Streaming Multimedia
9080 SEINIT Application Other Real-Time Multimedia

Table 2: Details of the Port Numbers

4.3.2 Interface Objects

The interface objects between the internal parts of the Security Manager, Ponder
Engine, Context Engine and associated classes should be ArrayLists, unless
otherwise stated, explicitly. This will ensure standardisation and inherent scalability
of the interfaces.

 14

System Architecture

4.3.3 XML Parser

Currently, the XML Parser chosen is kXML. This is principally because it is J2ME
compliant and has a low memory operation cost (ideal for PDAs and the like).

4.3.4 Code Standards

All code SHOULD be J2ME CDC profile compliant. This is to ensure easy device
portability.

4.4 Architecture Model

The entire system will be co-located on the same device that the application is
running on. This is to ensure end-point/device security as compared to the more
involved, complex and expensive application security.

4.4.1 Architecture Characteristics

1. The system has been architected to be inherently extensible and scalable, right

down to dynamic component loading of all components (except the middleware) if
necessary; dynamic interface scalability and dynamic business rules loading.

2. The system can be debugged easily due to capturing and logging of every
significant system event via the audit tool.

3. The system, though operating to implement end-point/device security, is scalable

enough to allow for components and external interfaces necessary for application
security, such as a Public Trust Infrastructure based application security via user
authentication and validation.

4.5 Assumptions in System

The key assumptions about the system are as follows:

• All applications wanting to use the system are running on the same host/device

as the system. This follows from our goal of end-point as opposed to application
security.

• There is enough memory/disk space available to load the system.

• The device running the system is capable of :

 15

System Architecture

 running J2ME applications,
 supporting java cryptography classes,
 supporting XML parsing and manipulation and
 supporting a standard network interface and related operations.

• Shared key generation mechanism already exists.

• Intermittent network connectivity does not happen. We will not consider power

issues.

• Only basic security service such as encryption using a shared key will be

considered.

• We will not deal with context detection or retrieval devices, like a Global

Positioning System (hardware and software). So long as they can create a
context representation that conforms to our context representation format, they
can be plugged into our system seamlessly.

 16

Tools & Technologies

5 Tools and Technologies

5.1 Security Policy Language Tools

One of the requirements stated for the project was a need for a way to specify
security policies by use of a high level, semantic language (i.e. A Security Policy
Language or SPL). These high level SPLs will provide the end user with a tool for
expressing policies in an environment-independent way. So it was decided that an
existing SPL would be chosen and used. SPLs can be divided into two main
categories:

• Those concentrating on security specification (i.e. termed security policies)
with emphasis on role-based access control, and

• Those specifying the actions that must be executed in response to events
which we term management policies.

For our purposes we are more concerned with management policies since our
security system is designed to take action in light of context change i.e. the triggering
event.

The choice of SPLs was narrowed down to three SPLs. A brief description of the
capabilities and services provided by them is given below, followed by the rationale
behind the selection of Ponder.

5.1.1 SPL

The Security Policy Language (SPL) [15] is an event-driven policy language that
supports access-control, history-based and obligation-based policies. SPL is
implemented by an event monitor that for each event decides whether to allow,
disallow or ignore the event. Events in SPL are synonymous with action calls on
target objects, and can be queried to determine the subject who initiated the event,
the target on which the event is called, and attribute values of the subject, target and
the event itself. SPL supports two types of sets to group the objects on which
policies apply: groups and categories. Groups are sets defined by explicit insertion
and removal of their elements, and categories are sets defined by classification of
entities according to their properties. The building blocks of policies in SPL are
constraint rules which can be composed using specific tri-value algebra with three
logic operators: and, or and not. A simple constraint rule is comprised of two logical
binary expressions, one to establish the domain of applicability and another to
decide on the acceptability of the event. Note that conflicts between positive and
negative authorisation policies are avoided by using the tri-value algebra to prioritise
policies when they are combined.

 17

Tools & Technologies

SPL allows definition of policies as classes which allow parameterised instantiation.
Further re-use of specifications is supported through inheritance between policies. A
policy can inherit the specifications of another policy and override certain rules or
sets. Policy constructs can also be used to model roles, in which case sets in the
policy specify the users allowed to play the role and those playing the role. Rules or
other nested policies inside a role policy specify the access rights associated with
the role. SPL provides the ability to hierarchically compose policies by instantiating
them inside other policies, thus enabling the specification of libraries of common
security policies that can be used as building blocks for more complex policies.

5.1.2 XACML

XACML [16] is an XML specification for expressing policies for information access
over the Internet and is being defined by the Organisation for the Advancement of
Structured Information Standards (OASIS) technical committee. The language
provides XML with a sophisticated access control mechanism that enables the
initiator not only to securely browse XML documents but also to securely update
each document element. Similar to existing policy languages, XACML is used to
specify a subject-target-action-condition oriented policy in the context of a particular
XML document. The notion of subject comprises identity, group, and role and the
granularity of target objects is as fine as single elements within the document. The
language supports roles, which are the same as groups, and are defined as
collections of attributes relevant to a principal. XACML includes conditional
authorisation policies, as well as policies with external post-conditions to specify
actions that must be executed prior to permitting an access. e.g. “A physician may
read any record and write any medical element for which he or she is the designated
primary care physician, provided an email notice is sent to the patient or the
parent/guardian, in case the patient is under 16”.

5.1.3 Ponder

The Ponder language [20] for specifying Management and Security policies evolved
out of work on policy management at Imperial College. Ponder is a declarative,
object-oriented language that can be used to specify both security and management
policies. Ponder authorisation policies can be implemented using various access
control mechanisms for firewalls, operating systems, databases and Java. For
example, if servers used to store data in the AI research group are Linux based while
servers in other departments are Windows 2000 based, and then appropriate code
will be generated based on the type of server. Preliminary implementations exist for
translating Ponder policies onto various access control platforms. These include a
Java back-end which transforms Ponder authorization policies into access control
policies for the Java platform.

Ponder also supports obligation policies that are event triggered condition-action
rules for policy based management of networks and distributed systems. These
types of policies are of particular importance to the team as the system being built is
an event driven one and the policies that will be written for the system will essentially

 18

Tools & Technologies

be obligation policies to start of with. A complete Ponder Policy brief with examples
relating to the team’s work can be found in Appendix C.
Ponder can also be used for security management activities such as registration of
users or logging and auditing events for dealing with access to critical resources or
security violations. It provides a common unified framework for specifying
management policy for heterogeneous platforms. Key concepts of the language
include domains to group the object to which policies apply, roles to group policies
relating to a position in an organisation, relationships to define interactions between
roles and management structures to define a configuration of roles and relationships
pertaining to an organisational unit such as a department. Ponder comes with a
complete toolkit which consists of the following:

• Domain Browser
• Compiler
• Policy Editor
• Management Console Tool

The Policy Editor and Compiler were of particular interest to the team. The Ponder
compiler maps policies to low-level representations (e.g. Java) suitable for the
underlying system or into XML for transfer around the network. The Ponder editor
provides an IDE for writing security policies providing templates (i.e. for
Authorisation, Obligation Policies etc.) to facilitate efficient policy generation.

5.1.4 Ponder Rationale

When researching SPLs the team resolved to select an SPL which would be as
flexible and generic as possible. The criteria are as follows.

• Provide a framework which allows a user to specify both Security and
Management Policies which encompass the entire spectrum of policy types
i.e. positive and Negative Authorisation, Obligation, Delegation Policies etc.)

• Furthermore the team was looking for a framework which would allow the
mapping of these high level policies to low level security mechanisms
efficiently and with minimum fuss.

• Finally since the decision was made to use an existing third party SPL, the
team felt that communication between the developer of the selected SPL and
the team was of utmost importance and would also be a critical plus point.
This would allow the team to synthesize and understand the working of the
selected language and more importantly provide a line of support in case of
critical crux.

Keeping the above criteria in mind the team decided to use Ponder to specify the
policies associated with this project. Most of the other work researched by the team
relates more to security and none include the range of policies covered in Ponder,
lacking the level of flexibility and extensibility features of Ponder. Ponder caters for
the specification of management and security policies including authorisation, filter,

 19

Tools & Technologies

refrain and delegation policies for specifying access control and obligation policies to
specify management actions. As mentioned earlier it supports a means of specifying
enterprise-wide security policy that can then be translated onto various security
implementation mechanisms.

The object-oriented features of Ponder allow user-defined types of policies to be
specified and then instantiated multiple times with different parameters. This
provides for flexibility and extensibility while maintaining a structured specification
that can be, in large part, checked at compile time. Meta-policies in Ponder provide a
very powerful tool in specifying application specific constraints on sets of policies.
Finally, Ponder is declarative which aids in the analysis of policies. All these facts
helped the team in agreeing that Ponder is the closest match to the set criteria. The
team does understand that the criteria set, far exceeds the required criteria of the
required SPL for the given system. However given the nature of technology today
and its rapid growth the team believes that the system must be as scalable and
generic as possible to facilitate this growth. Thus the selected SPL must reflect this
fact.

In comparison, SPL does not cater for specification of delegation of access rights
between subjects, and there is no explicit support for specifying roles. Also the
authors claim that SPL hierarchically composed policies help restrict the scope of
conflicts between policies, however this is not clear as there may be possible
conflicts across policy hierarchies.

XACML on the other hand primarily provides only access control policies. The
granularity of this access control is good but the policies are rather verbose and not
really aimed at human interpretation. Here the team would like to emphasize that a
high level “semantic” language to specify policies is required. In addition, the
language model does not include a way of grouping policies. Note that XACML is
intended to be used in conjunction with SAML (security assertion and mark-up
language) assertions and messages, and can thus also be applied to certificate-
based authorisations. Having said that though, the team felt the use of SAML in
conjunction with XACML would beckon further research introducing new risk
elements to the project.

Finally since Ponder is an Imperial College effort the team felt more confident
establishing support level contact with a Ponder developer. In fact, during the project
lifecycle the team was in contact with a Ponder developer, primarily via email, who
was instrumental in helping the team remedy some critical installation and Ponder
Compiler issues.

5.2 SATIN

One of the main requirements of the system is that it should be able to enforce new
security measures when context change occurs. In other words the system needs to
re-organise dynamically in response to changes in connectivity and in the physical
environment. A self-organising system is therefore required so that it can adapt to
accommodate changes in context.

 20

Tools & Technologies

SATIN (System Adaptation Targeting Integrated Networks) [11] is a lightweight
component model, which represents a system as a set of interoperable local
components. It allows for dynamic adaptation of the system’s behaviour, by
exploiting logical mobility.

A SATIN component encapsulates particular functionality, such as, for instance, an
encryption scheme. Attributes are used to describe a component. An attribute is
simply a tuple containing a key and a value. The set of attributes make up a
component’s properties.

The central component of SATIN is the container component, which acts as the
registry of components that are installed in the system. A registrar is responsible for
loading components and adding them to the registry.

SATIN provides an advertising and discovery service. Components that wish to
advertise their presence to the environment are advertised components. An
advertiser component takes the message of advertised components and uses it to
advertise them. Similarly, the discovery service allows components to register
listeners with it, to be notified when a specific component becomes available.
Matching is done using a set of attributes provided by the requesting component.

All of the above features of SATIN make it ideal for this security framework. All
components in the system will be represented as SATIN components with a set of
properties. These components would register themselves with the SATIN container
and advertise their presence. On context change the system would re-organise i.e.
appropriate components would be dynamically loaded using the discovery service
based on attributes defined in the security policy.

(SATIN is the work of a PhD student, Stefanos Zachiaradis, at UCL. This will be the
first time that his middleware has been used within a project of this nature and will
therefore serve to extensively test it and in the end provide useful feedback.)

5.3 XML Parser

XML is the lingua franca of the system. Our system needs to be extensible. XML
provides easy human readability and extensibility into complicated information.
Therefore it was decided to use XML in a system-wide basis. XML is used to
represent context data and to represent security policies internally.

5.3.1 Choosing a Parser

An XML parser is required in order to parse and manipulate XML data. Simple API
for XML (SAX) and Document Object Model (DOM) are the standard APIs for XML
parser and they are supported by JDK 1.4+. SAXDOMIX combines the advantages
of SAX and DOM, allowing application to get SAX events or DOM sub-trees and so

 21

Tools & Technologies

is powerful and flexible. Since scalability of DOM is limited by the memory of the
computer, it would not be a good choice for deploying onto mobile devices. So we
eliminated DOM and SAXDOMIX from our candidate list of parsers.

In order to further help in choosing a parser, some benchmark results [21] [22] were
analysed to compare performance of various parse methods and parser
implementations. Five SAX2 parsers and two pull parsers on Java Runtime
Environment 1.3.1 were tested and their average parse times were compared. The
results show that the pull parsers performed extremely well with the small
documents, beating all the SAX2 parsers except the new Piccolo parser [22].

As mobile devices are generally tight on memory resources, it is good that pull
parsers allow the application designer to control parsing by saving necessary states
only. Though no validation is supported as of this writing, adding a layering approach
suggested by [22] should provide validation.

Two pull parsers kXML [23] and XPP3 [24], both support everything from J2ME
(Java 2 Micro Edition) to J2EE (Java 2 Enterprise Edition). Other parsers compatible
with J2ME have been considered, like nanoXML [25]. However, it was found that
these are not as common as kXML which uses a common API for XML Pull Parsing
called XMLPull. Therefore, it was decided to use kXML as the system wide XML
Parser.

5.4 Programming Platform: J2ME

To demonstrate ubiquity of our system concept, we decided to target multiple
environments including the desktop and handheld environment. Nowadays
handhelds have wireless and ad-hoc networking capability and so can participate in
pervasive environments. We decided to write code in such a way that the code can
be portable from a desktop environment to a handheld environment. The code that
we write in the first iteration should be able to be ported to the second iteration
without much difficulty. Handhelds selling in the market have used three main
operating systems including Microsoft Windows Mobile, Palm OS, and Symbian OS
and each operating system comes with its own native API. Java has the advantage
of being easily portable between platforms. The Java 2 Platform Micro Edition
(J2ME), in particular, provides a flexible environment for applications running on
many other consumer devices, such as mobile phones, TV set-top boxes, as well as
a broad range of embedded devices.

Although most applications running on Java 2 Standard Edition (J2SE) virtual
machine can be ported directly to mobile devices, doing so will often lead to
unacceptable performance and poor usability. It should be noted that mobile devices
are limited in hardware capability, with CPU speeds as slow as 20MHz and RAM as
little as 100KB. In this case, we have to carefully evaluate the features we need,
thoroughly optimize our code, and live with limited framework support. [27]

CLDC and MIDP standard libraries are designed from the ground up as lightweight
components. Nevertheless, the team does not have experience in using those

 22

Tools & Technologies

libraries. Using it will incur a learning curve. Therefore given the tight time constraint,
we chose to implement applications on desktop in the first iteration. In the future,
most of the code can be ported directly to a CDC-compliant environment which can
run on high-end palmtop devices. This decision means that we can reuse the code
developed in iteration one.

Among the various configurations supported in J2ME, we chose to support only
Connected Device Configuration (CDC). Using CDC, if we avoid the use of certain
Java packages from J2SE version 1.3.1, we can write code that can be run on both
desktop and handheld environments. The list of Java packages that are supported in
CDC are shown in [28]. Selection of software development packages has avoided
the use of javax.swing, java.applet, java.util.logging. Due to time
constraint, however, we use javax.crypto classes to load encryption
components.

By designing according to the foundation profile, our system will also run on personal
profile. We achieved J2ME CDC compatibility except security encryption classes.
This will be part of our future work.

Our code has been written so as to run on any J2ME enabled device/environment
running the CDC profile and having support for Java crypto classes (which are
currently not supported on any current profiles, being a J2SE 1.4 feature).

 23

Design & Implementation

6 Design and
Implementation

This section outlines in detail, the design and implementation of the various parts of
the system as explained in the System Architecture.

6.1 Security Manager

The Security Manager lies at the heart of the entire security system and is
responsible for enforcing the correct security measures whenever context change
events are triggered. To do this, it communicates with the following major
components as illustrated below:

data

SPLSPL

Figure 2: The flow of information

• Context Manager: The security manager is provided up-to-date context

information from the context manager. It observes context data and is notified
as soon as there is any change in context.

• Business Rules Engine: The security manager sends the latest context

information to this component. It validates the context first and lets the
security manager know of the validity (valid/invalid) of the context. If valid, it
converts it into a derived context representation – a number which represents
context.

• Ponder Manager: The security manager sends the derived context
representation to the ponder manager which searches the XML policy file and
returns information describing what security measures must be taken to
enforce security in this new context. This is called the security policy level.

encrypted
 data

data
DCR

DCR

context context

Security
Manager

Context
Manager

Ponder
Manager

SATIN

Manager

Application
Manager

Business
Rules

 24

Design & Implementation

• SATIN Manager: The security manager sends the security policy level to the
Satin Manager which uses the discovery service to dynamically load a
suitable low-level security component to make the system secure.

• Application Manager: The application manager listens to SEINIT well-known
ports and the SEINIT Multicast IP if started in the multicast mode. It intercepts
data being sent by applications to these ports, IP/port and passes the data on
to the security manager. When it received data back from the security
manager, it passes it back to the originator application at the port and/or
IP/Port it got the data from.

When the system starts, the security manger is the first to be initialised. It in turn
loads each of the other components and exits the system if at any stage during the
flow any of the components that need to be initialised or working are not present or
non-functional. It serves as the one point of entry and exit from the system. It
implements the basic security policy of a gatekeeper i.e. “If I don’t know you, I won’t
let you through”. Therefore the information sent to it from the Application Manager is
returned to it if and only if a valid context exists, a valid security policy level exists
and also a valid security action based on the policy has been executed on the
intercepted data.

6.1.1 Class Diagram

Figure 3: Security Manager Class Diagram

 25

Design & Implementation

The diagram above shows the class diagram for the Security Manager package.

6.1.2 Handling Context Change

The crucial step in the design of the Security Manager is deciding how to handle
context change. It is clear, that as soon as a context change event occurs, the
system should immediately enter an insecure state, halt what it is currently doing and
wait for new security measures to be enforced. After this, it should enter a secure
state and resume its tasks.

This is implemented by having the notion of a global static flag called SECURE. When
context changes this flag is immediately set to false, thereby making the system
insecure. The thread that handles data from the application and encrypts it must then
wait for the system to become secure again. The following pseudo code illustrates
this concept:

if SECURE:
 encryptData
else:

wait while not secure
encryptData

6.1.3 Handling Frequent Context Changes

Another issue is raised when multiple context changes take place within a short
period of time. For example, context may change a second time while the system is
in the process of looking for a low-level security component for the first context
change event. In this case the desired behaviour would be for the system to abort
anything pertaining to the first context change and start over using the new context
information.

This issue was resolved by designing the update method (which is called when
context changes) so that it runs in a separate thread. If context changes, the thread
is killed and a new thread started. The following pseudo code illustrates what
happens when context changes:

If updateThread is Alive:
 Kill updateThread
Start a new updateThread

6.1.4 Applying Business Rules to Context

As mentioned before, the business rules are extensible and the business rules
engine validates a context via the validatecontext() method before assigning a
Derived Context Representation. The derived context representation is a number of
the form XXXX and is to be read like an IP number rather than a natural number. We
hope that in the future, it will be a SEINIT standard and represented as x.x.x.x . For
the moment:

 26

Design & Implementation

a. the first x denotes device type:

desktop = 1
 laptop = 2
 handheld = 3
 mobile = 4

b. the second x denotes network type:
dial-up 9.6, 14.4, 28.8 or 36.6 kbps = 1

 isdn(64 kbps), isdn dual band(128 kbps) = 2
 isdn quad band(256 kbps), base broadband(512 kbps) = 3
 broadband half duplex(1 mbps), broadband full duplex(2 mbps) = 4
 10 base t (1 mbps and more) = 5
 100 base t (above 10mbps) = 6
 bluetooth, 802.11 a = 7
 802.11 b = 8
 802.11 g = 9

c. The third x denotes location:
home = 1

 office = 2
 mobile = 3

d. The last x is free and always has a value 0.

The context must have a tag value that matches one of these tags in the business
rules to be considered valid. This is how business rules are applied to context.

6.2 The Ponder Domain

This section discusses the design and implementation of components responsible for
accessing and retrieving information from security policies. In particular, it describes
how:

• Security policies are defined in the Ponder Policy Specification Language.

• Ponder policies are converted into XML policies using an XML Code
Generator, and

• XML policies are used to find out what security measures need to be taken
when context change events are triggered.

6.2.1 Defining Security Policies

 27

Design & Implementation

In order to enforce security, a policy is required which specifies the rules governing
the choices in behaviour of the system. It was decided to use Ponder, a declarative,
object-oriented language for specifying these policies. The language is flexible,
expressive and extensible to cover the wide range of requirements for a policy
language.

The security policy must specify the actions that must be performed by managers
within the system when certain events occur and provide the ability to respond to
changing circumstances. For example, the policy used within this system specifies
what actions must be specified when context change occurs and who must execute
those actions.

An extract of the security policy is shown below:

inst oblig policy{
 on contextEquals(context) ;
 subject c=/ContextManager ;
 target s=/SecurityManager ;
 do s.apply("ENCRYPTLEVEL","32");
 when context=1710 ;
}

This policy is triggered when context representation equals 1710. The Security
Manager enforces an encryption level of 32 by loading the appropriate low-level
security encryption components.

6.2.2 Converting Ponder policies to XML

The main advantage of using Ponder for specifying policies is that it is concise and
easy to understand. But once a policy has been written in Ponder, it must be
possible for the security framework to read this policy and execute any actions
specified therein if an event is triggered. To do so, the framework must be able to
extract data (i.e. what actions are executed when) from the policy. There are two
possible ways in which this can be done. After parsing the Ponder policy, the
framework could either:

1. Store useful data in an object oriented data structure, or

2. Convert the policy into an intermediate language such as XML.

The first method would mean having to build a data structure, which could hold all
possible Ponder security constructs. For example, the data structure would have to
include policy, action, event, subject and target objects to name but a few. This
would certainly not be very scalable if the policy is complex (i.e. a compound policy)
and would also raise issues when porting the framework onto memory-scarce
devices such as handhelds and mobile phones. Furthermore, the data structure
would have to be updated if the Ponder Policy Specification changes. Hence it is not
a very viable solution.

 28

Design & Implementation

The second method involves having an XML generator, which would generate XML
code from tokens gathered during the parsing process. XML is now considered to be
the preferred technique of data exchange worldwide. Therefore, if this method were
adopted, it would be possible for existing and future applications to read and make
use of this XML-based security policy. The only disadvantage of this method is that
the XML code generated would be quite verbose.

After weighing the pros and cons of both methods, it was decided to convert the
initial Ponder policy representation into XML

6.2.3 The Ponder-to-XML Code Generator:

The Ponder Toolkit comes with its own XML code generator, which is capable of
generating XML from Ponder policies. The main issue with this generator is that the
code generated is very verbose i.e. it contains information that is not required by the
framework. This would be unsuitable for mobile devices, which are resource scarce.

A cut down version of the existing Ponder-to-XML code generator is required that
would only generate XML required by the framework to enforce security. Instead of
writing a new XML generator from scratch, it was decided that it would be more
productive to revise the existing XML generator.

An extract of the security policy, after being converted to XML, is shown below:

 <policy>
 <oblig_inst/>
 <name>policy</name>
 <event>contextEquals</event>
 <subject>/ContextManager</subject>
 <target>/Security</target>
 <actionList>
 <action>t.apply(ENCRYPTLEVEL, 32)
 <name>apply</name>
 <paramList>
 <parameter>ENCRYPTLEVEL</parameter>
 <parameter>32</parameter>
 </paramList>
 </action>
 </actionList>
 <constraint>
 <attribute>contextLevel</attribute>
 <operator>=</operator>
 <value>1710</value>
 </constraint>
 </policy>

The XML generated is concise and can be parsed in order to obtain the set of
actions for a particular context level.

6.2.4 Ponder Manager

 29

Design & Implementation

The Ponder Manager oversees everything that goes on within the Ponder/Security
Policy domain. All other components of the system that wish to gain access to policy
information must go via this component.

The Ponder Manager is responsible for reading the XML policy and liaising with the
Security Manager in order to retrieve the set of actions corresponding to a particular
context level.

This component first looks for an XML policy file. If the file is not found, it invokes the
Ponder Engine which looks for a Ponder policy file. Once found, the engine uses the
Ponder Toolkit with the new XML Generator to generate the missing XML policy. The
Ponder Manager can then parse the policy.

The Security Manager calls upon the Ponder Manager when a context change event
is triggered. It uses the context representation information provided to it in order to
obtain the set of actions that must be executed. These actions are then passed back
to the Security Manager, which executes the actions and hence enforces security.

6.2.5 Class Diagram

Figure 4: Ponder Domain Class Diagram

The diagram above shows the classes (and their dependencies) present in the
Ponder domain. It is from this diagram that the Ponder domain will be implemented.

 30

Design & Implementation

6.2.6 Implementation

The PonderManager package contains classes that access the security policies
and retrieve information about what security measures to enforce, based on context.
These classes are:

• PonderManager: A wrapper class for the Ponder/Security Policy domain that

allows other system components to access security policy information.

In particular, it is responsible for receiving context level information from the
SecurityManager and returning a collection of security actions that match the
specified context level. The method signature is:

public Collection getSPL(int contextvalue)

This method makes use of the XMLManager class, which parses the XML policy
file, searches for the current context level within the policy and returns
information present in the <actionlist> tag. This information is packed into a
Collection and returned to the SecurityManager.

• PonderEngine: This class is responsible for compiling Ponder policies into XML
using the Ponder Toolkit and the XMLCodeGenerator. It is invoked by the
PonderManager only if the XML policy is not found. In such cases, the
PonderEngine looks up the Ponder policy and generates the missing XML file
using the XMLCodeGenerator.

• XMLCodeGenerator: This is a revised version of the
ponderToolkit.codeGen.xmlCodeGen.XMLCodeGenerator class that is
part of the Ponder Toolkit. It has been optimised for the system so that the XML
generated is not verbose but contains only that information that is absolutely
necessary for the security framework to function. At present, this class can only
generate XML for instances of obligation policies.

6.3 Context and Context Awareness

Various definitions of contexts can be found in literature and in the dictionary. A more
recent definition is found in [3]. Context is the set of environmental states and
settings that either determines an application’s behaviour or in which an application
event occurs and is interesting to the user.

Why is context awareness necessary? “A pervasive computing system that strives to
be minimally intrusive has to be context-aware” [5]. When humans talk with humans,
they are able to use implicit situational information, or context, to increase the
conversational bandwidth. Unfortunately, this ability to convey ideas does not
transfer well to humans interacting with computers [6].

 31

Design & Implementation

In the future, users will have increased freedom of mobility. The increase in mobility
creates situations where the user’s context, such as the location of a user and the
people and objects around her, is more dynamic. To enable the user to have access
to information whenever and wherever they are, one approach is to collect
contextual information through automated means, make it easily available to a
computer’s run-time environment, and let the application designer decide what
information is relevant and how to deal with it. Therefore, context computing will be a
part of user experience in the future.

There are many types of contexts information. [6] Location, identity, time, and activity
are the primary context types for characterizing the situation of a particular entity.

An entity’s physical context, like the location of the entity, is important because it
affects how secure it is to perform a transaction. A place like the pub could be highly
insecure and subject to the attack of hackers. A place like the office could be very
secure owing to the security defence mechanisms put up by the company’s security
administrators.

6.3.1 Context Manager

Figure 5: Class Diagram showing the Context Manager

The retrieval of context information is automated through the use of the Context
Manager. It is designed to take care of context changes regardless of the actual
context type. Its existence will allow the Security Manager to be designed in a more
context independent way. The interface with the Security Manager does not have to
be modified if say, a GPS device is used to fetch location information rather than a
wireless badge.

Originally polling mechanisms for both the Context Manager and the Security
Manager were used. This is best explained using a data flow diagram (DFD) as
shown in Figure 6: Original Context manager and security manager interface.

The Context Manager periodically polls the context representation and writes it to an
internal vector, which is stored in an XML file. The XML file is parsed by making use
of the XML Manager. The Security Manager does not know when the vector will

 32

Design & Implementation

change its content unless it polls it periodically. This means that this design
necessitates that the Security Manager is implemented with a polling loop with a
period depending on the context change frequency.

Context
Representation in file

Context
Manager

Contexts stored
in Vector

Context
Detector

SEINIT
Security
Manager

External to System System

Read
periodically

Read
periodically

To a number of
processes

Figure 6: Original Context manager and security manager interface

It was later decided that the Security manager would be designed such that it is
loosely coupled with context change. After team discussion, the observer design
pattern was chosen. In this paradigm, the observed does not know anything about
the observers. It publishes a change and the observers get notified of the change
[29]. Java implements Observer and Observable. The notification of change is
achieved through the method below (in the Java Observer interface):

public void update(final Observable o, Object arg);

An updated data flow diagram is shown in Figure 7. The Security Manager is the
only observer (more than one observers can be added easily) which observes the
Observable data class ContextData.

Context
Representation in file

Context
Manager

ContextDataContext
Detector

SEINIT
Security
Manager

External to System System

Read
periodically

Notifies
asynchronously

To a number of
processes

implements
Observer

Updates only
when detecting

changes

extends
Observable

Figure 7: Updated Context manager and security manager interface

6.4 XML Manager

This is the principle management wrapper class that abstracts XML parsing
operations for various system components. The XML Manager will wrap around

 33

Design & Implementation

kXML classes and methods so that other classes will be hidden from kXML low level
parsing methods.

In the system, XML schemas are defined for representing context and security
policies. For context representation, each set of context type and context value is
mapped onto an XML tag.

The security policy representation is a bit more complicated. In order to parse simple
as well as complex XML, the XML Manager must be designed in such a way as to
enable it to parse complex XML data structures. If the XML Manager was just a thin
layer of wrapping over kXML, system components would have to deal with low-level
parsing. Also, if the XML Manager provided very specialized parsing methods, these
could not be reused by different system components.

Therefore, the objective is to design the XML Manager to provide some generic
method calls to allow generic XML parsing, thus preventing low level components
from handling low level parsing.

Generic XML means that the depth of a document (level of tags) is not known in
advance. To search for arbitrary levels of tags, XPath [26] notation was used to
define the matching tag, with each tag name separated by a forward slash, for
example, /policy/constraint/value. In this way, more complex operations
can be supported in the future.

Figure 8: Class XML Manager

6.5 The Satin Domain

It has been discussed earlier that this system must be self-organising i.e. it should be
able to dynamically adapt its behaviour based on changing context. The tool used to
carry out this functionality is SATIN which is a component based model that allows
components to advertise themselves using attributes and discover other components
using listeners and attribute matching.

 34

Design & Implementation

This section discusses the design and implementation of components that make use
of the SATIN middleware. In particular it describes:

• The design of low-level security components.

• How these components are registered with SATIN, and

• How components are located based on information specified in the security
policy.

• The SATIN co-location issue.

6.5.1 Class Diagram

Figure 9: Class Diagram for the SATIN domain

 35

Design & Implementation

6.5.1 Designing Low-level Security Components

A low-level security component is responsible solely for carrying out some form of
security. For example, a low-level encryption component simply defines an
encryption scheme. There may be different kinds of low-level encryption
components, each defining their own encryption scheme, such as DES, AES or
Blowfish.

A system may have many low-level security components. This security framework
must be able to dynamically load the appropriate component based on context
information. SATIN is suitable for this task, since it provides an advertising and
discovery service and allows a system to re-organise itself.

It was decided to start off by designing and implementing low-level encryption
components. Later on, the system could be extended by having low-level security
components that implement authentication, for instance.

6.5.2 The Encryption Interface

Since all encryption components must implement an encryption scheme a common
interface called EncryptionComponent was designed which contains the single
method:

public String encrypt(String data) throws Exception;

This method is responsible for encrypting the specified string of data. Having the
interface makes the system extensible, because in the future more encryption
components can be developed provided they implement this interface.

6.5.3 Key Generation

In general, encryption schemes require a key. As mentioned in the assumptions, key
management is out of the scope of this project. Nevertheless, keys are required to
test the encryption schemes and hence the overall system.

It was decided to devise a key generator, which would generate a key and write this
key to a file. The low-level encryption components would then read this key from the
file and use it in the encryption process. The reason for choosing this method is that
the key generator can be removed if PKI or key management exists on the device
already.

This is implemented in the MyKeyGenerator class which works like this:

KeyGenerator kg = KeyGenerator.getInstance(“DES”);
kg.init(new SecureRandom());

 36

Design & Implementation

SecretKey key = kg.generateKey();
objectOutput.writeObject(key);

It uses the javax.crypto package to generate a key for the particular scheme
(DES in this case) and writes it to an object file.

6.5.4 Encryption Components

All encryption components must implement the EncryptionComponent interface.
Since they will need to be loaded by SATIN they must extend the SATIN component
class edu.UCL.satin.arch.components.Component. This is reflected in the
class diagram design (Figure 9).

Encryption components must be advertised so that they can be located and loaded
if context change occurs. To do this they must have a set of attributes which
describe the functionality of this component. For example, an encryption component
that implements 128-bit encryption might advertise this information using the
following attributes:

Key Description
ID STN:ENCRYPTER128
TYPE SECURITY
ENCRYPTLEVEL 128
ALGORITHM AES
MODE OFB128
PADDING PKCS5PADDING

Table 3: A list of attributes for an Encryption Component

This component can be located using the SATIN discovery service using one or
more of the above attributes.

Finally, the encryption component must have the encrypt method which performs
encryption. This has been implemented using the javax.crypto package. The
code for one such component is shown below:

Cipher cipher = Cipher.getInstance("AES/OFB128/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, key);
String encryptedData = new String(cipher.doFinal(data.getBytes()));

The key is first read from a file and is then used to encrypt the data. Encrypted data
is returned back to the calling method.

6.5.5 Registering Low-level Security Components

 37

Design & Implementation

After designing low-level security components that can be advertised, the next step
is to register these components with the SATIN container. This is carried out by the
container’s registrar using the registerComponent method.

This method would have to be called for each component that has to be registered
and is certainly not very flexible if the components to be registered changes in the
future.

Therefore, to make the registering process more efficient and scalable, it was
decided to design a helper class which would automatically look for all “SATIN-
compliant” components in a specified path, called the componentpath, and register
them. (This is similar to the classpath variable in Java which lists class libraries.)

An example of the componentpath could be “home/project:home/components”.
Multiple paths are separated using the path delimiter which is ‘:’ for UNIX and ‘;’ for
Windows Operating Systems.

The helper class, called ComponentRegistrar, looks in the directories specified in
the componentpath, hunts for classes that are SATIN-compliant, i.e. those that
extend edu.UCL.satin.arch.components.Component, using the Java
Reflection API and finally registers them. They can now be dynamically loaded if
required.

6.5.6 Dynamically Loading Low-level Security
Components

SATIN components are located using the discovery service. A discovery component
is required that registers listeners with the discovery service, to be notified when a
specific component becomes available. Matching is done using a set of attributes
provided by the discovery component.

The discovery component designed is called SecurityLocator which registers
itself with the discovery service as well as with the SATIN container. It is notified by
the discovery service whenever a security component is located, via the method:

public synchronized void componentFound(Component c) {}

When this method is called, the locator verifies using Reflection that this component
is indeed a security component. If it implements the EncryptionComponent
interface, it is an encryption component and is hence capable of encrypting data.
The component is then loaded and passed to the SatinManager.

6.5.7 The SATIN Manager

 38

Design & Implementation

The SATIN Manager oversees everything that goes on within the SATIN domain. All
other components of the system that wish to use the SATIN middleware to locate
components must go through the manager.

The SATIN Manager is primarily responsible for liaising with the Security Manager in
order to load components matching a set of attributes. The crucial method is:

public void findComponent(final Collection securityPolicyLevel) {}

It is provided with a set of attributes that the desired security component must have.
For example, the set might be, [[TYPE, SECURITY], [ENCRYPTLEVEL, 128]].The attributes
are then added to a “SATIN filter” which defines the criteria used for searching (e.g.
exact matching).

The manager then searches the SATIN container, using the SecurityLocator, for
a component that matches this set of attributes. If it is found, the component is
loaded and its security measures are enforced. The system is then said to be in a
secure state.

When context change takes place, the system is insecure until the SATIN Manager
can find a security component that matches the set of desired attributes for the new
context.

6.5.8 The SATIN Co-Location Issue

The advertising and discovery services of the SATIN middleware have to be run of
different hosts for everything to work normally. In our case, this would mean having
to run the SATIN middleware on a remote host, which would advertise a low-level
encryption component, for example. The discovery service of the SATIN middleware
would then have to be run on another host. This would result in components being
located and loaded successfully.

If, however, both services are run on the same host SATIN is unable to locate and
load components. This is referred to as the SATIN co-location issue.

The need for SATIN co-location arises from the policy level need for end-point as
opposed to application security. As mentioned before, the aim is to make the device
itself secure, rather than securing applications individually. The assumption is that
only applications running on the device can access the system. This means that if
SATIN itself is on another device, the security manager will end up communicating
with it via plain text over a network at least some of the time during the system flow.
Any plain text communication over a network violates the goal of end-point security
as such communication is vulnerable to security attack. Therefore, it is essential to
ensure that SATIN it self is running on the same host as the rest of the system.

The Solution

 39

Design & Implementation

Assume that the discovery service is running as a process on host A and that the
advertiser is running as a process on host B. Both processes would instantiate the
class MiToolkitDeployer, which would in turn instantiate class MiServer. Both
classes would setup TCP servers for network communication. This is fine when both
the advertiser and discovery service run on different hosts. However, when running
both on the same host, a server port clash leads to a BindException being
thrown. This is because the two processes are trying to bind a socket to the same
port.

In order to resolve this issue, the strategy was to first analyse network
communication code and then design a workaround. It was also vital not to damage
SATIN in the process (so that it would still run on two different hosts).

The solutions are presented in pseudo-code format below.

• Server module in MiToolkitDeployer

Create a server socket at port 8021
 If creates successfully, set flag equal to false

If fails, create a server socket at port 8022
 Create a server socket at port 59999

 Set flag equal to true

• Server module in MiServer

Create a server socket at port 8011
 If creates successfully, set flag equal to false

If fails, create a server socket at port 8012
 Set flag equal to true

• Client module in MiToolkitDeployer

Connect to local host at port 59999
 If fails to connect, connect server at 8021
 If connects,
 If flag equal to true
 Connect server at 8021
 Else
 Connect server at 8022

• Client module in MiServer

Connect to local host at port 59999
 If fails to connect, connect server at 8011
 If connects,
 If flag equal to true
 Connect server at 8011
 Else
 Connect server at 8012

6.6 The Application Manager

 40

Design & Implementation

The Application Manager is the only point of contact for the any entity external to the
system. It acts as the interface for the system.

6.6.1 Functioning

The Application Manager reads in a text file from the system and then parses it to
retrieve the latest set of SEINIT well-known ports. This gives the system the flexibility
of always knowing the latest port numbers.

It then starts a thread listening to each of the ports specified (the maximum is 9). As
soon as it senses data on the port, it captures it and sends it to the Security
Manager. This is a blocking call. When the call returns, the Application Manager
sends the now encrypted data back to the application at the IP/port it received it
from, thus closing the loop.

6.6.2 Modes

The Application Manager works in two modes; local and multicast. In the local mode
it only listens to the local host of the device. The local host IP is retrieved
dynamically, making the system inherently portable without code change. In the
multicast mode, it listens to the Well-known SEINIT Multicast IP (239.255.255.0) as
well as the local host.

The Application Manager is multi-threaded in both local and multicast modes.

6.6.3 The Demo Application

The demo application developed to demonstrate the system is a simple chat
application named ChatInterface.

This application can work in either local or multicast mode. It is foolproof, i.e. in the
event that it is started in multicast mode when the cable is not connected or the
network is not multicast enabled, it will automatically detect that and multicast to the
local host instead. The multicast mode enables the application to be either co-
located on the SEINIT host or be on a network and talk to any listening SEINIT host
on that network via multicast. In local mode, it auto detects the local host settings.

The user types in text into a chat window which is then sent by the application to the
SEINIT well-known port for chat applications 9010. It then blocks waiting for data to
be returned. When it senses return data at this port, it publishes it to the chat
window. This demonstrates the complete information flow.

6.7 The Audit Tool

 41

Design & Implementation

To provide the assessor with a convincing and persuasive proof of concept for the
SEINIT project by way of demonstration, it was decided to create an auditing tool for
the system. The Audit Tool would output system messages from system
components, whilst providing a picture of the system states by use of a state
transition diagram. It would write the system logs and provide the user with a way to
introduce new context information. At the same time, it can be used by the user to
test and debug the system.

The Audit Tool is a layer which will sit on top of the core of the proposed system. It
will provide a well defined interface to the various underlying components (i.e.
Security Manager, Ponder Manager etc), separating its components from that of the
system’s components. The figure below illustrates the design of the Audit Tool.

Audit Core Audit
Display

Figure 10: The Audit Tool Architecture

6.7.1 The Message Centre

The Message Centre will provide the rest of the system with a well defined interface
to the Audit Tool. It creates six Array Lists to store the incoming messages. Each of
the six Array Lists is associated with one of the underlying system’s managers

PM SM SA AM CM MASTER

STD
Display

Message
Centre

ARRAYLISTS

Underlying System i.e. SEINITSecurity, Ponder, Context, XML Managers
etc.

 42

Design & Implementation

except for the Master Array List which is associated with the Master Display
(explained later in Audit Display) and the XML Manager, which is only used to parse
XML target files. The Message Centre advertises a method to the underlying system
components which they will use to output system messages. The method signature
is as follows.

public static void sendMessage(String message, Date d)

The method takes two parameters, a String; the message that the component
wishes to output and Date; the time of generation of that message. The Date
parameter (i.e. Time of Generation) was included merely to act as a means of
benchmarking system performance. An example use of the above method to send a
message to its respective display (the display is updated by the Audit Core and is
explained later) is as follows.

MessageCentre.sendMessage("1|SM|Initialised", new Date());

Another example is as follows:

MessageCentre.sendMessage("0|SA|Encrypting: " + data, new Date());

From the usage we can clearly see that the string that is passed in is actually in a
special format. This is so that the Message Centre can decide which ArrayList to
store the messages into. The format is as follows.

<msgType | componentInitials | message>

Where,

• msgType – is an integer which can either be 1 or 0. If it is set to 1 the Message

Centre will write the message into the Master Array List and the Security
Manager’s Array List. If it is set to 0, then it will only write to the Array List of the
specified component.

• componentInitials – can be SM (Security Manager), PM (Ponder Manager),
CM (Context Manager), AM (Application Manager) and SA (Satin Manager). The
Message Centre uses this to decide which Array List to write the message to.

• message – the message that the component wishes to send.

The Message Centre takes the string in the above format and breaks it into its
constituent parts using “|” as the delimiter. This is done so that it can observe the
msgType and decide which Array List to write the message to as well as add the
“time of write to Array List” to the string as it writes to the Array List. Once this is
done the string that is written to the Array List becomes of the format shown.

<componentInitials | timeOfGeneration | timeOfWrite | message>

 Where componentInitials and message are the same as that explained above
and:

 43

Design & Implementation

• timeOfGeneration – the Date parameter passed and generated by

component signifying the time the message was generated.

• timeofWrite – the Data parameter generated by the Message Centre when
it writes the String of the above format to the Array List.

Figure 11: Class Diagram for the Audit Tool

The diagram above shows the design of the Audit Tool in terms of classes and the
dependencies between them.

The Message Centre makes use of a threaded class called ArrayWriter and
creates a thread every time the sendMessage() method is called. Once this thread
has been created it is free to service further requests from any underlying system
component in minimal time and the possibility of a system block, crash or failure due

 44

Design & Implementation

to multiple asynchronous requests is reduced. It is understood that the occurring
system processes are sequential and asynchronous system output requests is
unlikely, however to facilitate related future enhancements to the system and add to
the scalability of the system, it was decided that the Message Centre must be able to
service asynchronous requests. Thus the Message Centre will be written such that is
threaded.

The created thread will then, on behalf of the Message Centre handle the breakdown
of the message and write to the Array List, for that particular message. Since the
system uses threads, the incorporation of time of generation, time of write to Array
List and time of write to Display (this time value is added to the message by the Audit
Display and is explained later) gave the developers a feel for the performance of the
system. Each spawned thread completes the write to the display at a different time.
These time value outputs also provided an ideal way to observe the threading in the
system and also help the developers in debugging the Audit Tool.

When deciding on a data structure to store the incoming messages, tuple spaces
and Vectors were also considered. However ArrayLists were chosen as they
are slightly faster than Vectors and do not need to be synchronized whilst in a
multithreaded environment. Vectors do not allow for this and incur further
synchronization overhead. Tuple spaces are essentially hash tables (i.e. key – value
pairs) and to top it off they make use of Vectors incurring further system resource
usage. Even though Tuple spaces provide for a powerful data structure with quick
look up, it was dismissed on the grounds of its complexity. For the purpose of the
Audit Tool the data that needed to be stored is of a simple structure while Tuple
spaces are more suited towards the storage of more complex data. Also since only a
single element lookup at position zero (explained in Audit Core) is done, the fast
lookup times of Tuple Spaces are not of importance.

The ArrayWriter is also responsible for creating and updating a user specified log
file for a particular session. Every time a message comes in, the ArrayWriter
breaks down the message into its constituent parts, adds a time write String to the
whole and writes the line of text to the specified log file, which is of the following
format.

<msgType | componentInitials | timeOfGeration | timeOfWrite | message>

Earlier it was stated that six Array Lists were created, one for each Managerial
component and one for higher level system messages i.e. Master Array List. This
decision was made on the basis that if a single Array List were used to store all
messages, then this would create a bottleneck in the system and potentially crash
the system. Another reason is that since the Array List will be accessed by multiple
threads, preserving the order of the messages will not be possible as different
threads will complete at different times. This would incur further overhead in the form
of a complex sorting algorithm which will have to sort each Array List using the time
of generation as the sorting criteria. This is because the Audit Tool must be able to
display message 1 generated at time 2 before message 2 generated at time 3 even if
message 2 is written into the Array List before message 1. For arguments sake lets
assume we have a sorting algorithm which will sort the Array Lists, but then how can
it be decided when to actually execute the sort. How can it be known that thread

 45

Design & Implementation

number 1 has completed execution and is not blocked? If thread one is blocked and
we run the sort algorithm and update the Displays, we are bound to have incorrectly
ordered system messages on the screen once thread number 1 does complete.
Thus by creating an Array List for each of the system components and connecting
them we have reduced the possibility of “blocked” or “waiting” threads.

6.7.2 Audit Core

As shown in the architectural diagram the Audit Core component sits just on top of
the Message Centre. The Audit Core is at the centre of the Audit Tool and is started
up by the Security Manager explained earlier. Once started the Audit Core starts up
the Audit Display which provides the user with the interface required to interact with
the system. From the architectural diagram we can see that the Array Lists separate
the Message Centre from the Audit Core. This approach allows for a decoupled
system that can then stand on its own. The Array Lists also provide crucial buffering
to the Audit Core and help in preserving the correct order in which messages should
be displayed, since some threads may complete quicker than others. This is
important as the Audit Core essentially polls each Array List in an infinite “while” loop
during which a write can also occur to the Array List. This further solidifies the team’s
reasons for using Array Lists as the data structure of choice as they are industrially
favoured in environments where continuous iteration of data is required in a
multithreaded environment.

As stated earlier the Audit Core polls each Array Lists to check if it’s empty. If the
Array List does contain data then it invokes the implemented update method with the
following signature.

private void updatePanesAndLogs(JTextPane pane, AuditDisplay1 ad,
 ArrayList list)

The method has three parameters, a JTextPane; which specifies which display to
write the message to, an AuditDisplay1; so as to be able to call the
appendText() method and an ArrayList; which specifies the Array List from
which the data will be fetched. The updatePanesAndLogs() method works by
breaking down the message after fetching it from the respective Array List. Once this
is done it creates and initialises an array of String objects with the message
constituents and calls the appendText() method (explained in Audit Display)
passing it the array of String objects and the respective pane. Finally it removes the
fetched message from the Array List. So the next time around the loop the element
which used to be at position one and has now moved to the new position of zero, will
be fetched. A single fetch at position zero is always done since the size of an Array
List will keep fluctuating. This fluctuation is due to the concurrent writes (by Message
Centre) and removes (by Audit Core) to an Array List.

6.7.3 Audit Display

The generated message display areas are as follows.

 46

Design & Implementation

• Security Manager Display
• Ponder Manager Display
• Context Manager
• Application Manager
• SATIN Manager
• Master Display

Except for the Master Display all display areas show all the messages generated by
their respective underlying components. Majority of these messages are low level
process messages, detailing all minor operations done by the respective underlying
components. The Master Display shows higher level system processing messages
which usually signify for example initialisation or completion of a high level process.
Any underlying system component can send a message to the master by setting
msgType as 1 when calling the sendMessage() method as explained earlier. This
will still send the messages to their corresponding component displays as well.

6.7.4 The appendText() Method

The Audit Display accomplishes the write to a particular display by use of the
appendText() method. The signature of the method is as follows.

void appendText(JTextPane pane, String[] message)

The method takes two parameters, a JTextPane; which specifies which text pane to
write to and an array of String objects; which holds each constituent of the message
(i.e. componentInitials, timeOfGeneration etc) in its own element of the
array. This is done so that styling can be performed on each constituent part of the
message (i.e. colour, font etc). The method uses the insertString() method
passing it information about where text needs to be inserted in the document, the
actual text to be inserted and the styling that needs to be applied. Once this is done
it invokes the scrollRectToVisible() method which then scrolls downs such
that inserted text becomes visible.

6.7.5 Replay

The Audit Display provides the user with a replay facility which allows the user to
select a log file associated with a past run session and loads the details of the run for
analysis purposes etc. It accomplishes this by reading the selected file line by line,
breaking down the message into constituent parts, using the msgType and
componentInitials to decide which pane the message needs to be written to
and then invoking the appendText() method to do the write to pane.

6.7.6 Triggering Context Change

 47

Design & Implementation

The system should be able to perceive relevant changes in the environment and
user’s activity in order to load appropriate security measures. Due to the lack of a
proper context retrieval system, it was decided to simulate context change by means
of a context input dialog.

Figure 12: Screenshot of the Context Dialog

The context input dialog is part of the Audit Tool and allows the user to trigger a
context change event. This is done by having three context lists; device, network
connectivity and location. The user can change context by selecting different values
from each of these lists. Once this is done, input is converted into XML and the
written to the file which stores context. (In addition, the XML representation of the
context is also displayed within the dialog, mainly for testing purposes.)

When the Context Manager reads the context file the next time, it notices that there
is a change and hence notifies the Security Manager which calls the update
method. This enforces different security measures based on the new context.

6.8 State Transition Diagram (STD)

The figure below illustrates the State Transition Diagram (STD) of the system. The
States are as follows:

-1: Terminating flow
0: Monitoring context
1: Retrieving new context
2: BRE validating context
3: BRE deriving DCL
4: XML parser, parsing XML target XML file (returns SPL)
5: Satin validating SPL and finding LLSC
6: Satin loading LLSC

 48

Design & Implementation

Stop

-1

Figure 13: System State Transition Diagram

Acronyms used in the diagram are as follows:

BRE – Business Rules Engine
LLSC – Low Level Security Components
DCL – Derived Context Level
SPL – Security Policy Level

The transition arrows are the events occurring causing system to change state.

6.8.1 Encoding the STD

The state transition diagram of the system (Figure 13) needs to be encoded i.e. it
needs to be stored in memory so that it can be updated whenever state changing
events occur.

It was decided to design a simple object oriented data structure to store the entire
state transition diagram as illustrated in the class diagram below:

Context
validated DCL

retrieved
SPL

retrieved

Error

Error
Error

Context change

Context
change

Context change

Context change

Context change

Enforce
LLSC

LLSC
exists

Error
Invalid
Context

Context
retrieve

No
context
change

Change
detected

0 3 2 4 5 6

1

Start

 49

Design & Implementation

Figure 14: Class Diagram for the STD

The data structure for storing the STD consists of the following objects:

• State: This represents a single state of the system. It consists of a number
identifying the state and a flag stating whether this state is the current one.

• Transition: This type of object represents a single transition. It consists of
a start state, end state, a textual representation of the event causing this
transition and lastly a flag stating whether this transition has taken place.

• StateTransitionDiagram: This represents the whole diagram as a list of
states and transitions. By looping through these lists, the diagram can be
drawn graphically and updated easily. This class also includes methods for
accessing elements in the diagram, for example, adding states or changing
the current state.

By invoking various accessor methods of the StateTransitionDiagram class,
the diagram can be built and stored.

6.8.2 Building the STD Display

The state transition diagram of the system is displayed in the bottom half of the Audit
Tool known as the STD Display. This shows all the states of the system and the
transitions between allowable states. Transitions are labelled with an event that
causes it to take place.

 50

Design & Implementation

The Labelled Transition System Analyser (LTSA) [30] is a tool for modelling a set of
interacting finite state machines. More importantly, the system allows a Labelled
Transition System (LTS) to be viewed graphically. An LTS describes all the states
that a system may reach and all the transitions it may perform. Since the tool is
written in Java, it was decided to reuse its code, in order to display the LTS for our
system, rather than write code from scratch.

The entire source for the LTSA tool was obtained and the module pertaining to the
LTS display was extracted. This was modified and extended so that it would run on
its own (i.e. without the rest of the tool) and would display the state transition
diagram for our system.

Figure 15: Screenshot of the STD Display

6.8.3 Updating the STD

After implementing the state transition diagram for the system, the next step was to
make it able to find out what is going on within the system and change state
accordingly. This could be done in the following ways:

• Giving every component a reference to the STD display, so that when an
event of interest takes place, it can call a method on this object and hence
cause an update in display.

• Giving only the Audit Tool a reference to the STD display. Components would
use the existing Message Centre model to send messages whenever a
change in state has occurred.

It was decided to implement the second of the above methods for updating the
diagram. This means that the STD display is only connected to the Audit Tool rather
than to all the other components. This leads to decoupling. It also makes use of the
Message Centre as the means of passing “state change” messages and so fits in
nicely with the entire system model.

 51

Design & Implementation

In order to change state, one of the following methods can be called:

• MessageCentre.advanceState()
• MessageCentre.changeState(i, j)
• MessageCentre.error(errMesg)

The first causes a change from the current state to the next state in the sequence,
the second causes a change from state i to state j respectively and the third causes
a change from the current state to the error state. The system then displays the error
message and exits.

6.9 Integration Plan

The system architecture had two key aspects directly relevant to our integration
approach.

1. Component based architecture
2. Well defined interfaces

As long as developers were mindful of the predefined interfaces (method signatures,
object types, data structures passed between objects etc) they could work
independently on their components. Their component architecture would have
absolutely no bearing on the integration. Given this our plan for integration involved
getting together and simply testing if the components communicated with each other
as planned. To aid this process our development best practise was to use SOPs
(print statements) extensively. This best practise ensured console output which was
a great tool during our integration. Later on with the advent of the audit tool,
debugging and testing were smoother and more efficient.

Around August, the team met in the labs continuously and integrated. At the same
time, testing was carried out and issues resolved on the fly.

 52

Project Management

7 Project Management

In this section, the project management plan is introduced. It is divided into the
following sub-sections.

• Team structure
• Scope and strategy
• Project management documents
• Software development strategy
• Communications management
• Risk management

7.1 Team structure

In the early stages of the project, it was identified from [36] that a good flat team
structure requires considerable maturity and high levels of professional motivation on
the part of individuals and teams, high levels of expertise, reasonable internal
harmony and strong dedication to project objectives.

It was understood that this project is research-oriented in nature and would involve
technology that is changing its objectives and definition in the near past and future.
Therefore it was required that every team member had to be flexible, with a team
role as well as responsibilities. It was decided to assign a main role to every member
according to their strengths and interests so that everyone will have a sense of an
area of specialty.

Name Team role Description
Kumardev Chatterjee Technical Architect System architecture
Philip Ho Project Manager Project Management
Fahd Shariff Technical Specialist Security Security Sub-system
Wasif Mehdi Technical Manager User

Experience
All user functions and the
audit tool for user system
understanding

Muhammad Solangi Technical Manager Testing Test plan and strategy
Table 4: Team Roles

7.2 Scope and Strategy

A clearly defined scope is important for a project, particularly for a project with a
small time frame.

The scope of the project is as follows:

 53

Project Management

• Finding a way to define, map and implement security policies so that they can
be reused.

• Finding and implementing a way to detect, map, retrieve and reuse context
representation information.

• Finding a way to use context information and high level security policies to
enforce security for the application as dynamically and with as little coupling
as possible.

• Creating an extensible component based system that does the above.

• Creating a window into the system for a user to have a complete grasp of the
workings of the system in real-time.

Initially it was planned to use several project management strategies to facilitate the
project including the use of component-based architectures, the use of Unified
Modelling Language (UML) to manage design complexity, managing of requirements
by continually prioritized requirements and assessing progress.

However, as is the nature of research projects this approach was changed. The
system was designed iteratively. The system architecture diagram was used in
preference to UML diagrams since the former has a lower management overhead.
Progress was continually assessed by validating against requirements and scope
iteratively, meeting by meeting with the stakeholders.

7.3 Project Management Documents

Throughout the course of the project, several artefacts were generated to track and
log the status of the project.

• A master schedule listing major milestones was maintained by the project
manager (PM) using the Microsoft Project software.

• Meeting minutes were used to keep track of ideas, decisions and resolutions
raised in meetings. These would give anyone who is unable to attend the
meeting, a point of reference from which to work [37]. Meeting minutes were
especially very useful when evaluating progress and writing this report!

• A communication tracker was used to keep track of all decisions and action
items decided in meetings. Each action item was assigned to an owner and
possibly a supporter(s).

Samples of some of the above mentioned documents can be found in the
appendices.

 54

Project Management

7.4 Software Development Strategy

Working software products are important assets. Appropriate software tools are
needed to create and maintain them. Eclipse [32], an open extensible, commercial-
quality IDE was found which is very suitable for software development. It facilitated
rapid software coding and debugging and provided JUnit [31] testing support.

Since the project involved multiple developers, mechanisms were needed in order to
ensure that one developer does not overwrite another’s work. Concurrent Versions
Systems [32] was deployed in the first few weeks of software development. After
experimenting with it for a few weeks, it was decided that its usage was not
convenient in the present environment. Every time a team member needed to update
the project code, the file would have to be checked out of the CVS server,
downloaded through Secure Shell (SSH), and modified on their own computer. Then
it would have to be uploaded and checked back in. This procedure was found to be
rather error-prone. It was agreed unanimously that CVS is better used in a LAN
environment rather than a WAN environment.

Backups were used in order to avoid the loss of project work. Permanent storage
media like CD-RW were used to store all code and project artefacts. Ideally two
backups should have been created, stored in geographically distant locations to
avoid theft or even regional catastrophe.

7.5 Communications Management

The original plan was to meet two to three times per week. At least two team
members preferred to work from home and so it was decided not to meet daily and
also not require team members to be present at the university labs every day.
Flexible meeting times were employed. The project supervisor, Dr. Steve Hailes, was
met up with every week and the meeting time was agreed to on a per week basis.
The agenda included but was not limited to report and evaluation of progress,
gathering requirements and setting the next milestone. Meeting times were
announced by the PM via a group wide email one to two days prior to the meeting
after conferring with each team member.

7.5.1 The Website

It was decided to set up a project website in order to facilitate the transfer of
information and communication within the team. The website
(http://www.cs.ucl.ac.uk/Students/z15_1) allowed members access to the meeting
minutes, project calendar, important research links and other artefacts. The group
shared directory was used to store source code and the CVS repository.
Communication was carried out in a bidirectional way through emails and phones
and in this way we progress and findings were reported, meetings scheduled and
minutes distributed.

The purpose of the website was to display:

 55

Project Management

• Useful project information such as links to both external and internal

documents.

• Useful project management information such as links to meeting minutes and
work tracking tools.

• The next meeting date, time and location so that members are fully aware of
when the next meeting is.

• A long term calendar of the whole project duration (July to September) with
important team events highlighted.

The website was implemented in pure HTML with some JavaScript for the calendar.

Access Control Lists (ACLs) were used in order to make the website accessible by
members of the team only.

7.6 Risk management

Risk management is a very important process in a successful project. It involves risk
identification, risk assessment and risk control processes. Dr. Steve Hailes was
identified as the major stakeholder of the project who provided user requirements.
Weekly discussions with him were held in order to seek his opinion to mitigate, if not
remove, some of the risks. The other risks are classified as technical risk and human
resources risk and are listed below.

7.6.1 Technical Risks

The strategy employed to mitigate this kind of risk involved handling high priority and
high risk items early. In the first few weeks, it was known that third-party software i.e.
SATIN and Ponder were going to be incorporated. Since these are relatively new, it
meant that there might not be enough support available. Troubleshooting would be
required and in the worst case, modifying the source code of these technologies and
platforms. The strategy was to test these technologies as early as possible and take
necessary measures to rectify any subsequently identified problems.

With hindsight, one of the highest risks that may have led the project to fail was to
work on the PDA platform from the beginning. This risk was overcome by the
realization that the major objective of the project is to prove a concept. To be able to
run the system on a PDA would be good, however, it is not the most important goal.
Therefore, right from iteration one, it was decided to develop and test our system on
desktops. The result was that time was not spent on the learning cycle of PDA
programming techniques and this greatly eased the software debugging efforts. The
original plan was to start PDA platform development only after iteration two. After
iteration one it was found that more features could be added to the desktop version
in iteration two to make the POC more presentable and effective.

 56

Project Management

The project scope clearly stated that development efforts were to be focused on
building the system, not the applications. To demonstrate the concept, the original
plan was to use a simple and ready-made application, like a text-based chat
program. Only when there was time left in iteration two, our own application would be
implemented. It demonstrated the feasibility of multiple applications using a single
security framework.

7.6.2 Human Resources Risks

Sometimes even though you try your best to identify risks, some risks just cannot be
estimated. One of the team members injured his knee and urgently needed to go
overseas to have it checked out in August. After assessing the risk, it was mitigated
by reducing part of his testing workload and assigning a larger portion of the report
writing task to him. Originally he was responsible for performing the integration test
as well (this task requires much collaboration between team-mates) but that would
have been difficult without his physical presence here. It had to be ensured that not a
single task to be performed in that period would require his physical presence. Even
so, continuous communication with him was maintained through e-mail and MSN
chat. He finished building the application as well during this period which has been
successfully incorporated into the system.

 57

Demonstration of Concept & Testing

8 Demonstration of Concept
& Testing

The number of possible combinations to be tested could be excessively huge and
associated labour can cost fortunes. It is the first thing to slip when resources
stretch but it is the entire organization that suffers when a defect causes problems.
A survey shows that a defect discovered during design that costs £1 to rectify will
cost £1,000 to repair in production, not to mention the humiliation and
embarrassment. This is a tremendous cost differential and clearly points out the
advantage of early error detection. Significant resources in terms of man-hours were
utilized to ensure that the system is bug-free.

8.1 White Box Testing (Structural Testing)

For testing purpose, it was decided to use JUnit as much as possible. Our approach
towards testing methods remained quiet flexible. It was mostly left to the discretion of
the developer to decide whether to use JUnit or devise their own test cases. It was
once again found most effective to use code inspection techniques or step-through
the code using a debugger. SOPs (print statements) were also used in strategic
parts of the code in order to identify possible problems.

The Eclipse SDE was found quite useful in writing unit tests because of its integrated
JUnit plug-in.

8.1.1 JUnit
JUnit [31] is an open source Java testing framework used to write and run repeatable
tests. It is an instance of the xUnit architecture for unit testing frameworks.

JUnit features include:

o Assertions for testing expected results
o Test fixtures for sharing common test data
o Test suites for easily organizing and running tests
o Graphical and textual test runners

JUnit testing was carried out to rigorously test classes within the project. The
example below shows how one such calls XMLManager was tested using the JUnit
framework:

• The test class is XMLManagerTest.

• XMLManagerTest does the following:

 58

Demonstration of Concept & Testing

o The setup method initializes the XMLManager class with a pre-defined
security policy in XML.

o The testPolicyCase1 method is used to assert the parsing operation
on security policy in XML.

o Other methods are used to assert the other parsing operations defined in
XMLManager.

Similarly, unit testing was carried out for other classes. It was tested whether each
class behaved as expected under normal conditions, abnormal conditions and
boundary conditions.

8.2 Black Box Testing (Functional Testing)

While carrying out functional testing and commissioning, the Audit Tool and STD
were found very useful. The following tests were carried out using these tools:

1. To verify that a valid change in context, triggers a change in SPL and
results in a new low-level security component being enforced.

2. To verify that invalid context representation causes the system to fall into
an error state and terminate as expected.

3. To verify that the low-level security components loaded are consistent with
the information defined in the security policy.

4. To verify that all the combinations of context representation, derived
context representation and security policy level respond as desired.

 59

 Future Work

9 Future work

9.1 Application and Security Manager: SEINIT
Packet Format

The application manager currently intercepts messages on the local host and SEINIT
multicast IP for those messages that are sent explicitly to the SEINIT ports. The
Application manager then sends back to the Application the encrypted messages. In
the future, it should be possible for the Application Manager itself to do the ‘next hop’
step by passing the message to the next intended destination. This means that the
message will have to be packed in to a SEINIT approved packet format that is
generic and can be used by all applications intending to use the system. In the very
least, this format will have three fields, the destination IP, the destination port and the
message.

9.2 Component based software updates using
SATIN

Currently, the software is component based and each component can be
independently updated of the others provided the interfaces are kept intact. However
in the future, it should be possible to update them via SATIN. SATIN can
independently locate all components on start-up and hence ensure that when the
security manger is initialising, all components are the latest versions. This of-course
mandates that SATIN becomes the first component to start up; therefore the
information flow has to be altered.

9.3 Dynamic Business Rules Loading

The business rules engine currently reads in the business rules statically via a fixed
set of ‘case’ statements embedded in code. In the future this can be done
dynamically, by reading in the rules on the fly from an XML file. This will ensure up to
the minute dynamicity of the rules.

9.4 Incorporating User Preference

Current context level is detected implicitly most of the time. However, the user
should be allowed to override the current context setting by changing user
preferences since user attention is most important in pervasive computing. The user
may prefer to use highest security mechanism regardless of environment at the
expense of more bandwidth utilization and high battery consumption.

 60

 Future Work

9.5 An Audit Trail

It is necessary to implement security audit trails to enhance accountability. Audit
trails can provide one of the strongest deterrents to abuse. Audit trails involve
recording details of who, what and when an authorized access was made.
Procedures are setup, to allow users to review to what extent his or her personal
information is being published. Since this is an effective deterrent the team
recommends future incorporation of an audit trail into the system.

9.6 Extending the XML Manager

The XML Manager was designed keeping in mind the fact that this component would
be used in many system sub-components. In the future, it is suggested
incorporating XPath in the XML Manager implementation since it offers a very
generic and extensible system.

9.7 Deployment and Testing

More testing can be carried out on different handheld platforms including Microsoft
Windows Mobile, Symbian OS and Palm OS. For Windows Mobile platform,
emulators are available such as Microsoft Embedded Visual C++.

For Palm OS testing, Palm OS Emulator [33] is available which has debugging
features and is valuable for writing, testing and debugging applications by creating a
“virtual” handhelds running on Windows, Mac OS, or UNIX computers. Before
running emulators, a ROM image is usually required to load into the emulator. As of
this writing, CDC has not yet been supported in Palm OS, probably due to the limited
hardware capability in the current Palm hardware configurations. So in case Palm
OS is used, porting of code to CLDC format is needed.

After performing functionality testing on emulators, testing can be performed on real
devices. By using real devices, performance metrics can be measured and usability
testing can be performed.

9.8 Audit Tool: Improved Messaging and Logging

Currently the system logs information by writing all incoming messages to a user
specified log file for a particular session. These messages are the same messages
that are written to their respective displays. The messaging uses a flat structure i.e.
these are simple information messages and are not explicitly categorised and do not
allow for further granularity. For example categorising the messages as follows
would immensely beneficial.

 61

 Future Work

• Information – Simple system process information messages which
highlight the progress of the system.

• Debug – Designates fine-grained informational events that are most useful
to debug an application.

• Warn – Designates potentially harmful situations.

• Error – Designates error events that might still allow the application to
continue running.

• Fatal – Designates very severe error events that will lead the application
to abort.

The team realises that at this point in time this level of message granularity is not
required, however it is argued that given the system will go through further
developments and enhancements, it would be short-sighted of the team not to
recommend a more comprehensive Message Output and Logging solution. Of
course, this solution will facilitate further clarity and add to the comprehensiveness of
the built system. It will also help these future developers in testing and debugging in
a more effective way whilst developing the system further.

Having set the desired message categories above the team would like to
recommend Log4j [34]. Log4j is essentially a set of java libraries which offer a
hierarchical way to insert logging statements within a Java program. Multiple output
formats and multiple levels of logging information are available. By using a dedicated
logging package, the overhead of maintaining thousands of SOPs (print statements)
is alleviated as the logging may be controlled at runtime from configuration scripts.

Log4j has three main components: Categories, Appenders and Layouts. We
instantiate a category and then call its various logging methods to send message
strings to log(s). A category is configured to log to one or more destinations or
targets. These logging destinations are called "Appenders" in Log4j, probably
because these classes by default "append" your message string to the end of the
log. Log4j can send your log messages to the console, a text file, an html file, an xml
file, a socket or even to the Windows NT Event Log, all with one logging call. It can
even send your log message as email (desirable for fatal errors, for example). Some
appender classes are ConsoleAppender, FileAppender, SMTPAppender,
SocketAppender, NTEventLogAppender, SyslogAppender, JMSAppender,
AsyncAppender and NullAppender. The benefits of future exploitation of this
diverse appender are obvious.

An appender uses a layout to format your message before actually writing it to the
log. For example, the HTMLLayout will format all your messages into a nice HTML
table. In addition to logging the message that you send, Log4j can also log the date,
time, message priority (DEBUG, WARN, FATAL etc.), Java class name, source code
line number, method name, Java thread name and much more. What to log is
specified in the layout which an appender is configured with.

 62

 Future Work

Integrating Log4j into the current system would require the changing of the message
format; however its usefulness in adding to the scalability of the system can not be
ignored. The team briefly experimented with Log4j and a comprehensive example of
its use can be found in Appendix D.

 63

Conclusions & Evaluation

10 Conclusions &
Evaluation

The aim of this section is to evaluate the key achievements and limitations of the
work undertaken, and to arrive at some conclusion about the overall worth of the
project.

10.1 Achievements

The team successfully completed iteration two and delivered a system which
provides context based, high-level security policy driven secure data communication
on a single device. The system developed has been tested and found to work fine on
laptops and desktops.

The successful, seamless usage of Ponder, SATIN, XML, JAVA (particularly Java
Crypto classes), has illustratively demonstrated that the component based
middleware SATIN can be successfully deployed for a security environment and a
high-level security policy definition language can be used effectively to map on to
low-level security components whenever defined context change takes place.

A chat application was successfully built on top of the system purely to demonstrate
the workings of the system. The system can accommodate other kinds of
applications as well, as defined earlier under the proposed SEINIT application types.
This is accomplished by the application manager, which allows the system to work in
local or multicast modes and listens to proposed well-known SEINIT ports for defined
applications.

A comprehensive Audit Tool with a live, real-time illustrative State Transition
Diagram display was also built. This helped the team to demonstrate the workings of
the system and was the core of the team’s system testing and debugging strategy.
The team has highlighted some future enhancements to this tool, which will
undoubtedly help future developers.

All system components were built such that it is scalable and easy to extend. All
components in the system are well defined and loosely coupled allowing for easy
debugging and good scalability of the system. An example is the Business Rules
Engine which was written such that it is easily scalable and can be efficiently
extended to facilitate further context variables e.g. battery power. Another example is
the application manager, which can facilitate other applications such as voice or
video conferencing via well-known ports.

With relation to context the team initially decided to only address device and network
heterogeneity. However in the current system only device heterogeneity is
addressed. At the moment the devices addressed are laptops and desktops only and
the system will be a little more complete if mobiles and PDAs are included. The
system is written such that it can address multiple context variables but at the

 64

Conclusions & Evaluation

moment no high-level security policies exist which map such derived SPLs (i.e. from
the PM) to a low-level security component (e.g. encryption level, 32). Having said
that, the system does satisfy the set functional requirements.

Also, the system is J2ME compliant except for the crypto classes (i.e. only in Java
1.4) used for 128 and 32-bit low-level encryption components and the Audit Tool.
The team ensured J2ME compliance by using only J2ME CDC profile compliant
specific class libraries when writing the core system components. In any case the
Audit Tool is an offline component and not really a part of the system. Thus it can be
removed when porting the system to a J2ME enabled device.

Finally, this robust implementation and demonstration of Proof of Concept opens up
new vistas in the world of security for pervasive environments.

10.2 Critical Assessment

The team is upbeat that all goals were achieved, even those that were planned for
iteration two. None of the clients’ high priority expectations were failed. This is
evident by the enthusiastic feedback from the clients during demonstration of the
project.

However the following deltas have been identified:

• More security policies could have been written in order to test out the
business rules engine.

• More low-level security components with different encryption schemes could
have been deployed.

• Better time management, tracking and monitoring.

• More efficient risk management

• Bug Tracking

• More sustained testing especially stress testing for boundary conditions.

 65

References

11 References

[1] Riguidel M., Integrated Project SEINIT, White Paper WP1, ENST, IST-2002-

001929-SEINIT, February 2004

[2] Berthelot, P., Architecture design - A global view of the virtual ring architecture,
IST-2002-001929-SEINIT, April 2004

[3] Chen, G. and Kotz, D., A survey of context-aware mobile computing research.
Technical Report TR2000-381, Computer Science Department, Dartmouth
College, Hanover, New Hampshire, November 2000.

[4] Schilit, W., A System Architecture for Context-Aware Mobile Computing. PhD
thesis, Columbia University, May 1995.

[5] Satyanarayanan, M., "Pervasive computing: Vision and challenges," IEEE
Personal Communications, vol. 8, pp. 10--17, Aug. 2001.

[6] Dey, A. and Abowd, G., "Towards a Better Understanding of Context and
Context-Awareness", Workshop on the what, who, where, when and how of
context-awareness at CHI 2000.

[7] IFIP/IEEE International Symposium on Integrated Network Management, Seattle,
Washington, USA Panel Presentation; Title: Will Pervasive Computing be
Manageable? (May 16, 2001)

[8] Langheinrich, M., A Privacy Awareness System for Ubiquitous Computing
Environments, 4th International Conference on Ubiquitous Computing, 2002.

[9] Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane , G., Mickunas, M.,

Towards Security and Privacy for Pervasive Computing

[10] Beckwith, R. (2003), Designing for Ubiquity: The Perception of Privacy, IEEE
Pervasive Computing 2(2): 40-46.

[11] Zachariadis, S., Mascolo, C., Emmerich, W., SATIN: A Component Model for
SelfOrganising Mobile Applications, University College London.

[12] Zachariadis, S., Mascolo, C., Capra, L., Emmerich, W., XMIDDLE: Information
Sharing Middleware for a Mobile Environment, University College London.

[13] Sousa, J., Garlan, D., "Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments", Carnegie Mellon University.
http://www-2.cs.cmu.edu/~aura/

[14] MIT Project Oxygen, http://oxygen.lcs.mit.edu/

[15] SPL: An access control language for security policies with complex constraints. In
Network and Distributed System Security Symposium (NDSS’01), San Diego,

 66

References

California, February 2001
http://www.gsd.inesc-id.pt/~cnr/splii.pdf

[16] XACML Website
http://sunxacml.sourceforge.net

[17] A Brief Introduction to XACML
http://www.oasis-
open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

[18] eXtensible Access Control Markup Language (XACML) Version 1.0, February
2003, http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-
1.0.pdf

[19] Policy Research Group, Department of Computing, Imperial College, London
http://www-dse.doc.ic.ac.uk/Research/policies/index.shtml

[20] Damianou, N., Dulay, N.,Lupu, E., Sloman, M., The Ponder Specification
Language, Workshop on Policies for Distributed Systems and Networks
(Policy2001), HP Labs Bristol, January 2001
http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf

[21] Benchmark Summary (comparing XML parsing techniques)
http://www.devsphere.com/xml/benchmark/summary.html

[22] How do SAX2 parsers perform compared to new XMLPull parsers?
http://www.javaworld.com/javaworld/jw-04-2002/jw-0426-xmljava3-p2.html

[23] kXML 2, http://www.kxml.org/

[24] Home page of XML Pull Parser (XPP)
http://www.extreme.indiana.edu/xgws/xsoap/xpp/

[25] NanoXML 2.2.1, http://nanoxml.sourceforge.net/orig/

[26] XML Path Language (XPath), Version 1.0, November 1999,
http://www.w3.org/TR/xpath

[27] Overcoming Challenges in Mobile J2ME Development, Michael Juntao Yuan,
http://www.informit.com/articles/article.asp?p=170448

[28] Ortiz, C., A Survey of J2ME Today, November 2002,
http://developers.sun.com/techtopics/mobility/getstart/articles/survey/

[29] Observer Pattern, http://c2.com/cgi/wiki?ObserverPattern

[30] Magee, J., LTSA (Labelled Transition System Analyser), Imperial College of
Science Technology and Medicine,
http://www-dse.doc.ic.ac.uk/concurrency/ltsa/LTSA.html

 67

References

[31] JUnit Homepage http://www.junit.org

[32] Eclipse.org http://www.eclipse.org/
[33] Palm OS Emulator, http://www.palmos.com/dev/tools/emulator/

[34] Log4j, Logging Services, http://logging.apache.org/log4j/

[35] Project Management: Tools, Techniques & E-learning

http://www.4pm.com/

[36] Keeling, Ralph, Project Management: An International Perspective, Macmillan,
2000.

[37] Project Management, American Management Association,
http://www.amanet.org/PharmaFocus/managing/mar_04.htm

 68

 Endmatter

12 Endmatter

This section contains the following appendices:

• A System Manual
• B User Manual
• C Ponder Research
• D Log4j
• E The Gantt Chart
• F Meeting Minutes
• G Communication tracker

 69

 Appendix A: System Manual

APPENDIX A: System Manual

This document contains all the technical details such as how the system should be
compiled and run. It also describes where the code is stored so that it can be
modified in the future.

The official homepage of this project is:
 http://www.cs.ucl.ac.uk/students/z15_1

All documents and code may be downloaded from here.

A.1 System Requirements

• This software requires Java 2 version 1.3 or 1.4. Before installing make sure
you have a compatible Java virtual machine.

• The recommended operating system is Red Hat Linux.

• You will need approximately 5.13 MB of free disk space to complete the
installation on your hard disk, although the software can also be run directly
from the CD provided.

A.2 Installation Instructions

• Insert the CD provided into your CD-ROM drive.

• The CD contains the following files and folders:

o src which contains all the software code, libraries and compiled
binaries,

o docs which contains PDF versions of the Group project documents,
and

o README.txt which explains the contents of the CD, the directory
structure and these instructions.

• Installation complete!

A.3 Launching the Security Framework

 70

 Appendix A: System Manual

• Change to the src directory: cd src/

• On UNIX-based systems (Recommended):

o Start the framework by typing runit in your favourite shell. You will
see output on the terminal window describing the components being
registered and started. Finally you will see the Audit Tool display
window.

• On Windows:

o Double click on runreg.bat or type runreg.bat at the command
prompt. This will register the components.

o Double click on runit.bat or type runit.bat at the command
prompt. This will start up the Security Manager and will display the
Audit Tool.

• The Security Framework is now up and running!

A.4 Running the Sample Chat Application

A sample chat application has been provided in the demoapps package. Launch this
application by typing:

java demoapps.ChatInterface

A chat window will be displayed. All text entered in this window will be encrypted by
the Zion based on the current context.

A.5 For Developers

The src directory contains all the source code, java class libraries and compiled
binaries. It also contains the following files and folders:

• .project and .classpath: These files define the project and buildpath
settings for Eclipse, which was the Java Development Environment used to
build the entire system. Hence the system can be imported directly into
Eclipse and worked on.

• runit: A shell script which sets the classpath and runs the
ComponentRegistrar and SecurityManager.

• runreg.bat and runit.bat: These are Windows batch files which run the
ComponentRegistrar and SecurityManager respectively.

 71

 Appendix A: System Manual

• SEINIT.txt: Defines port numbers for application types.

• examplePolicies: This directory contains the Ponder security policy
(policy.pol), XML security policy (policy.xml) and the XML context
representation (context-eg.xml).

• satin.jar: All SATIN source code is present in java archive
lib/satin.jar.

 72

 Appendix B: User Manual

APPENDIX B: User Manual

This document aims to provide help and assistance to users of Zion. The purpose of
the framework is to dynamically enforce new security measures when context
changes.

The system includes an Audit Tool which is used for inspecting the state of the
system at any point in time and for observing the messages being passed between
its various components. The Audit Tool also includes a Context Dialog for triggering
context change events. In addition, the “replay” feature is useful for inspecting past
sessions.

The sections below cover basic usage of the different features provided by the Audit
Tool.

B.1 Audit Message Display

The top half of the Audit Tool displays messages describing what is going on in the
system. It is divided into a Master Pane on the left and a set of Component Panes on
the right. The Master Pane displays main messages of the entire system, whereas
the individual component panes display what each component is doing. All
messages are preceded by the time they were generated and the time of display.

B.2 Adding and Removing Message Panes

Individual message panes can be added and removed from the display window by
going into the View menu and (de)selecting the pane that you wish to be added or
removed.

B.3 State Transition Diagram

The diagram in the bottom half of the main window is called the state transition
diagram for the system. It shows the states that the system can be in at any time and
the transitions between allowable states. These transitions are triggered by events
which are labelled on the transition arrows.

As events take place, state transitions can be observed. The current state and
transition is represented in red to distinguish it from other parts of the diagram.

 73

 Appendix B: User Manual

B.4 Resizing the State Transition Diagram

The diagram can be resized using the following:

• Keyboard: The arrow keys on the keyboard can be used to compress
horizontally (←), compress vertically (↑), expand horizontally (→) and expand
vertically (↓).

• Menu: The STD menu displays items for resizing the diagram.

• Toolbar: The STD toolbar can be selected via the STD menu. The toolbar
docks itself in the diagram window and holds buttons for resizing the diagram.

B.5 Removing the State Transition Diagram

The diagram can be removed by going into the View menu and deselecting the STD
option. It can be added again by selecting the STD option.

B.6 Changing Context

The Context Dialog can be accessed through Menu File Input Context. The
dialog holds two tabs, one for inputting context and the other for displaying the XML
representation for that context.

Context can be changed by selecting a different device, network connection and/or
location from the drop down boxes present on the dialog. Pressing the Apply button
triggers a context change event and the system responds accordingly.

B.7 Replaying Past Sessions

By default, the Audit Tool writes all displayed messages to a log file. This log file can
be specified as an argument to the Security Manager before it is run. The replay
function allows you to load a previous log session’s messages into the Audit Display.

This is done via Menu File Open and then selecting the log file that you wish to
be replayed from the File Dialog box. After pressing OK, the Audit Display is
populated with messages from the selected log file.

B.8 Getting Help

The Help menu displays help information for the Audit Tool and the State Transition
Diagram.

 74

 Appendix B: User Manual

B.9 Exiting the System

The system can be exited by Menu File Exit.

 75

 Appendix C: Ponder Research

APPENDIX C: Ponder
Research

This appendix contains examples which the team studied and wrote from the three
discussed SPLs.

C.1 Ponder Policy Brief

C.1.1 Authorisation Policies

Authorisation policies define what activities a member of the subject domain can
perform on the set of objects in the target domain. These are essentially access
control policies, to protect resources and services from unauthorized access. A
positive authorisation policy defines the actions that subjects are permitted to
perform on target objects. A negative authorisation policy specifies the actions that
subjects are forbidden to perform on target objects. The syntax is as follows:

inst (auth+ | auth–) policyName “{”
subject [<type>] domain-Scope-Expression ;
target [<type>] domain-Scope-Expression ;
action action-list ;
[when constraint-Expression ;] “}“

The constraint expression above is optional in all types of policies and can be
specified to limit the applicability of policies based on time or values of the attributes
of the objects to which the policy refers. An example policy is shown below. I have
used tabs to separate the fields for clarity.

inst auth– /negativeAuth/testRouters {
subject /testEngineers/trainee ;
action performance_test() ;
target <routerT> /routers ;
}

The policy above is a negative authorisation policy which does not allow trainee test
engineers in /testEngineer domain to execute performance tests on objects of type
routerT stored in /routers domain. The policy is stored within the /negativeAuth
domain. Another example policy which we could use in our project is shown below.

domain /SEINIT/pol/positiveAuth/;

inst auth+ allowChat {
subject <chatUserT> /chatUsers ;
action begin_chat_session() ;
target <clientsT> c=/chatPartners/clients/IBM/sales ;
when c.validate() = “true” ;
}

 76

 Appendix C: Ponder Research

The policy above is a positive authorisation policy which validates a chat client and
allows the chat session to begin with the user. It start by first declaring the domain so
we don’t need to type in full path for policy and just specify the name i.e. allowChat.
The constraint expression here is used which allows us to validate the client. If
validation is successful the action is executed.

Ponder also allows re-use by supporting the definitions of policy types. Multiple
instances can then be created and tailored for the specific environment by passing
parameters. The syntax for authorisation policy types and instantiation is shown
below.

type (auth+ | auth–) policyType “(” formalParameters “)” “{”
{ authorisation-policy-parts } “}”

inst (auth+ | auth–) policyName = policyType“(” actualParameters “)” ;

The second authorisation policy shown above can be specified as a type with the
subject and target given as parameters as shown below.

type auth+ allowChatT (subject <chatUserT> s, target <clientT> t) {
 action begin_chat_session();

when t.validate() = “true”;
}

inst auth+ allowChat1 = allowChatT (/chatUsers,
/chatPartners/clients/IBM/sales) ;

inst auth+ allowChat2 = allowChatT (/chatUsers,
/chatPartners/clients/Thales/sales) ;

In both instances the subject has remained unchanged, however, the target has
been changed to /Thales/sales in the second.

C.1.2 Obligation Policies

Obligation policies specify the actions that must be performed by managers within
the system when certain events occur and provide the ability to respond to changing
circumstances. For example, security management policies specify what actions
must be specified when security violations occur and who must execute those
actions; what auditing and logging activities must be performed, when and by whom.

Obligation policies are event-triggered and define the activities subjects (human or
automated manager components) must perform on objects in the target domain.
Events can be simple, i.e. an internal timer event, or an external event notified by
monitoring service components e.g. a temperature exceeding a threshold or a
component failing. The syntax is shown below.

inst oblig policyName “{”
on event-specification ;
subject [<type>] domain-Scope-Expression ;
[target [<type>] domain-Scope-Expression ;]

 77

 Appendix C: Ponder Research

do obligation-action-list ;
[catch exception-specification ;]
[when constraint-Expression ;] “}”

The syntax of obligation policies is shown in figure 6. Note the required event
specification following the on keyword. The target element is optional as obligation
actions may be internal to the subject, whereas authorisation actions always relate to
a target object. If actions are to be invoked on a target, then they must be preceded
by a prefix indicating the target set. Concurrency operators specifying whether
actions should be executed sequentially or in parallel are used to separate the
actions in an obligation policy. The optional catch-clause specifies an exception that
is executed if the actions fail to execute for some reason. An example policy is
shown below.

inst oblig loginFailure {
on 3*loginfail(userid) ;
subject s = /NRegion/SecAdmin ;
target <userT> t = /NRegion/users ^ {userid} ;
do t.disable() -> s.log(userid) ;
}

The above obligation policy is triggered by 3 consecutive login failures with the same
user id. The NRegion security administrator (SecAdmin) disables the user with
userid in the /NRegion/users domain and then logs the failed userid by means of a
local operation performed in the SecAdmin object. The ‘->’ operator is used to
separate a sequence of actions in an obligation policy. Another example of an
obligation policy which could apply to our project is as follows.

inst oblig SetSecurity {
on ContextChange();
subject s = /SEINIT/Context;
target t = /SEINIT/SecComps;
do t.setComp("encr32");
when s.SPL = "5";

The above policy is triggered when a context change is detected. Once this happens
the target (in our case the security component that need to be loaded) is set to
“encr32” (i.e. 32 bit encryption) when the security policy level is at 5. This could
signify that the context is now a PDA with low connectivity. Once this policy is
compiled it would generate an XML file, which would be parsed and the relevant
information will be extracted by the XML manager and passed onto “Big Brother”
which in turn instructs SATIN on which security components need to be loaded.

C.1.3 Information Filtering Policies

Filtering policies are needed to transform the information input or output parameters
in an action. For example, a location service might only permit access to detailed
location information, such as a person is in a specific room, to users within the
department. External users can only determine whether a person is at work or not.
Some databases support similar concepts of ‘views’ onto selective information within
records – for example a payroll clerk is only permitted to read personnel records of

 78

 Appendix C: Ponder Research

employees below a particular grade. Positive authorisation policies may include
filters to transform input or output parameters associated with their actions, based on
attributes of the subject or target or on system parameters (e.g., time). Essentially
the operation has to be performed and then a decision made on whether to allow
results to be returned to the subject or whether the results need to be transformed.
Filters can only be applied to positive authorisation actions.

C.1.4 Delegation Policies

Delegation is often used in access control systems to cater for the temporary transfer
of access rights. However the ability of a user to delegate access rights to another
must be tightly controlled by security policies. This requirement is critical in systems
allowing cascaded delegation of access rights. A delegation policy permits subjects
to grant privileges, which they possess (due to an existing authorisation policy), to
grantees to perform an action on their behalf e.g., passing read rights to a printer
spooler in order to print a file.

C.1.5 Refrain Policies

Refrain policies define the actions that subjects must refrain from performing (must
not perform) on target objects even though they may actually be permitted to perform
the action. Refrain policies act as restraints on the actions that subjects perform and
are implemented by subjects. Refrain policies have a similar syntax to negative
authorisation policies, but are enforced by subjects rather than target access
controllers. They are used for situations where negative authorisation policies are
inappropriate because the targets are not trusted to enforce the policies (e.g., they
may not wish to be protected from the subject).

C.2 SPL Example

The following extract shows examples of simple rules and their composition. Note
that conflicts between positive and negative authorisation policies are avoided by
using the tri-value algebra to prioritise policies when they are combined as
demonstrated by the last composite rule of the example. The keyword ce in the
examples is used to refer to the current event.

// Every event on an object owned by the author of the event is allowed
OwnerRule: ce.target.owner = ce.author :: true;
// Payment order approvals cannot be done by the owner of payment order
DutySep: ce.target.type = "paymentOrder" & ce.action.name = "approve"
:: ce.author != ce.target.owner;
// Implicit deny rule.
deny: true :: false;
// Simple rule conjunction, with default deny value
OwnerRule AND DutySep OR deny;
// DutySep has a higher priority then OwnerRule
DutySep OR (DutySep AND OwnerRule);

 79

 Appendix C: Ponder Research

SPL defines two abstract sets called PastEvents and FutureEvents to specify
history-based policies and a restricted form of obligation policy. The type of
obligation supported by SPL is a conditional form of obligation, which is triggered by
a pre-condition event:

Principal_O must do Action_O if Principal_T has done Action_T

Since the above is not enforceable, they transform it into a policy with a dependency
on a future event as shown below, which can be supported in a way similar to that of
history-based policies:

Principal_T cannot do Action_T if Principal_O will not do Action_O

SPL obligations are thus additional constraints on the access control system, which
can be enforced by security monitors [Ribeiro et al. 2001b], and not obligations for
managers or agents to execute specific actions on the occurrence of system events,
independent of the access control system.

C.3 XACML Example

An example of a policy specified in XACML is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy xmlns="http://www.oasis-
open.org/committees/accessControl/docs/draftactc-
schema-policy-08.xsd" xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasisopen.
org/committees/security/docs/draft-sstc-schema-assertion-22"
xsi:schemaLocation="http://www.oasis-
open.org/committees/accessControl/docs/draft-actcschema-
policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com"
policyName="researchers may read medical elements and the patient's date of
birth and
gender" issueInstant="2002-01--8">
<!-- -->
<target
resourceClassification="medico.com/record/medical.*"
resourceClassificationTransform="http://www.oasis-open.org/committees/
accessControl/docs/transforms/regularExpression">
read
</target>
<target
resourceClassification="medico.com/record/patient/patientDoB.*"
resourceClassificationTransform="http://www.oasis-open.org/committees/
accessControl/docs/transforms/regularExpression">
read
</target>
<target
resourceClassification="medico.com/record/patient/patient/gender.*"
resourceClassificationTransform="http://www.oasis-open.org/committees/
accessControl/docs/transforms/regularExpression">
read
</target>

 80

 Appendix C: Ponder Research

<policy>
<equal>
<valueRef attributeName="rec:role"/>
<value xsi:type="string">researcher</value>
</equal>
</policy>
</applicablePolicy>

The above policy assumes an XML schema to describe medical records, and
specifies that a researcher may read a medical element and the patient’s date of
birth and gender.

 81

 Appendix D: Log4j

APPENDIX D: Log4j

The usage of Log4j is illustrated below:

import org.apache.log4j.*;

// How to use log4j
public class TestLogging {

 // Initialize a logging category. Here, we get THE ROOT CATEGORY
 static Category cat =
 Category.getInstance(TestLogging.class.getName());

 // From here on, log away! Methods are:
 cat.debug(your_message_string),
 // cat.info(...), cat.warn(...), cat.error(...), cat.fatal(...)

 public static void main(String args[]) {
 // Try a few logging methods
 cat.debug("Start of main()");
 cat.info("Just testing a log message with priority set to INFO");
 cat.warn("Just testing a log message with priority set to WARN");
 cat.error("Just testing a log message with priority set to ERROR");
 cat.fatal("Just testing a log message with priority set to FATAL");

 // Alternate but INCONVENIENT form
 cat.log(Priority.DEBUG, "Calling init()");

 new TestLogging().init();
 }

 public void init() {
 java.util.Properties prop = System.getProperties();
 java.util.Enumeration enum = prop.propertyNames();

 cat.info("***System Environment As Seen By Java***");
 cat.debug("***Format: PROPERTY = VALUE***");

 while (enum.hasMoreElements()) {
 String key = (String) enum.nextElement();
 cat.info(key + " = " + System.getProperty(key));
 }
 }
}

Save the following lines in a file named Log4j.properties in the same directory as the
above class (after compiling it). Log4j looks for this file by default in the application's
classpath when you call getRoot() or getInstance("category_name") in
your code.

log4j.rootCategory=DEBUG, dest1
log4j.appender.dest1=org.apache.log4j.ConsoleAppender
log4j.appender.dest1.layout=org.apache.log4j.PatternLayout

 82

 Appendix D: Log4j

The PatternLayout defaults to %m%n which means print your-supplied message and
a newline.

If you wish to print the priority that was assigned to the messages, the following line
can be appended to the the log4j.properties file. Once this is done save the file.

log4j.appender.dest1.layout.ConversionPattern=%-5p: %m%n

This line will override the default %m%n. %p will print the message priority, %m is
the message itself, %n is the new line character. Since the changes were only made
to the properties file and not to any Java code, there is no need to re-compile our
test logger file. All that needs to be done is to run it.

 83

 Appendix E: The Gantt Chart

APPENDIX E: The Gantt
Chart

Figure 16: Project Gantt Chart

 84

 Appendix F: Meeting Minutes

APPENDIX F: Meeting
Minutes (Sample)

Date: May 19, 2004.
Time: 2pm-3pm
Participants: Kumar, Philip, Wasif, Muhammad, Fahd, Steve

Content:

Philip outlined some of the research work on context-aware middleware and Steve
suggested looking into the recent work progress of the project for we need to have
recent technology.

Wasif presented the architecture block diagram that he has prepared. Steve made
comment these comments:

• Implementation platform using desktop PC to start with followed by iPad on a
later stage

• Application layer selects a chat program. VoIP and conferencing software
could be developed later.

• Lots of assumption can be made in the initial stage. Assumptions will be
relaxed after the first prototype comes out.

• Use-cases and all kinds of software management techniques could be used to
facilitate software development.

• Professional practice is required as the project may be presented to a wider
SEINIT audience.

• Risk management. Not particular risk involved in the project. Keep interaction
with Stefanos and Steve would be necessary.

Kumar iterated that details may not be available before the presentation next week.
Steve suggested that the project management plan is the plan going to make
according to the current status. It does not force the team to follow the plan, without
allowing any adjustments.

Members agreed that the next step is to meet Stefanos to see how to fit his
middleware into our system. Kumar is going to ask him for a time to meet.

Next meeting will be confirmed later.

 85

 Appendix G: Communication Tracker

APPENDIX G: Communication
Tracker

Project Monthly Status for the Month of < Ju
 Week number 1 2

Iteration
No.

Milestones for the
Iteration

Milestones/task
owners(s) 01 02 03 04 05 06 07 08 09 10 11 12 13 1

1 background research full team

1 analysis and design full team lead by
KD

Project Monthly Status for the Month of < Ju
 Week number 6 7

Iteration
No.

Milestones for the
Iteration

Milestones/task
owners(s) 01 02 03 04 05 06 07 08 09 10 11 12 13 1

1 Implementation KD,FS,PH
 Testing WM,MS

2 analysis and design full team lead by
KD

Project Monthly Status for the Month of < Aug
 Week number 10 11

Iteration
No.

Milestones for the
Iteration

Milestones/task
owners(s) 01 02 03 04 05 06 07 08 09 10 11 12 13 1

2 Implementation KD,FS,PH
 Testing WM,MS

Project Monthly Status for the Month of < Septe
 Week number 15 16

Iteration
No.

Milestones for the
Iteration

Milestones/task
owners(s) 01 02 03 04 05 06 07 08 09 10 11 12 13 1

2 Documentation KD,FS,PH,WM,MS
 Oral Examination KD,FS,PH,WM,MS

*Iteration 1: Run on desktop platform
*Iteration 2: Run on PDA platform

 86

 Appendix G: Communication Tracker

Start
Date

No.
Meeting date and
place Action Point P

1
UCL, JBR, June 10,
12:00pm 1.1 Test SATIN 02-Jun-04 10

 1.2 Make decision on using Ponder 02-Jun-04 16
 1.3 Create use cases 02-Jun-04 16
 1.4 Research on context engine 10-Jun-04 20
 1.5 Run chat application 10-Jun-04 22
 1.6 Start using project management artefacts 02-Jun-04 09
 1.7 Create project management templates 02-Jun-04 10

2
UCL, JBR, June 16,
3:00pm 2.1 Test out XACML or take out part of Ponder 16-Jun-04 22

 2.2 Notify Steve that Ponder is not suitable for use 18-Jun-04 18
 2.3 Take over research of context engine 16-Jun-04 22

 2.4
Generate architecture-related diagrams including use case
diagram 22-Jun-04 29

 2.5 Setup CVS on department machines 16-Jun-04 22
 2.6 Create project report documentation template 22-Jun-04 29

3
UCL, JBR, June 22,
2:30pm 3.1 Transfer context engine work to MS 22-Jun-04 23

 3.2 Decide which parser to use 22-Jun-04 24
 3.3 Research on J2ME support 22-Jun-04 24

4
UCL, G04, June 23,
2:00pm 4.1

Documentation including seq. diagram, use case diagram for
Steve 22-Jun-04 29

 4.2 Create audit application 22-Jun-04 0
 4.3 Create system engine code and business rules 22-Jun-04 0
 4.4 Create SATIN layer 22-Jun-04 0
 4.5 Write some High Level Ponder policies for Steve 22-Jun-04 0
 4.6 Create XML manager 22-Jun-04 0
 4.7 Create context engine 22-Jun-04 0

 87

 Appendix G: Communication Tracker

Start Date End Date

No. Weekly Targets Planned Actual Remarks/ status
1.1 Test SATIN 02-Jun-04 10-Jun-04 10-Jun-04 SATIN is working.
1.2 Make decision on using Ponder 02-Jun-04 16-Jun-04 18-Jun-04 We will use Ponder if we can get its

2.1
Test out XACML or take out part
of Ponder 16-Jun-04 22-Jun-04 18-Jun-04 Ponder XML generation works, so w

2.2
Notify Steve that Ponder is not
suitable for use 18-Jun-04 18-Jun-04 18-Jun-04 Not applicable, since Ponder works.

2.5
Setup CVS on department
machines 16-Jun-04 22-Jun-04 20-Jun-04 PH set it up, I wrote a cvs guide whi

3.2 Decide which parser to use 22-Jun-04 24-Jun-04 01-Jul-04
Decided on kXML because it is not a
and tinyXML.

4.4 Create SATIN layer 22-Jun-04 02-Jul-04 01-Jul-04
Wrote a LLC for 32 bit encryption wh
successfully.

4.5
Write some High Level Ponder
policies for Steve 22-Jun-04 02-Jul-04 00-Jan-00 WM has written some. I am working

4.6 Create XML manager 22-Jun-04 02-Jul-04 00-Jan-00 WIP. PH is primarily responsible for

 88

