
 

 

 
University College London 

MSc Data Communications, Networks & Distributed Systems 
 
 
 
 
 
 
 
 

Deployment in Computational Distributed Grids 
Main Report 

 
 
 

supervisor 
Wolfgang Emmerich, Ph. D. 

 
 
 

group members 
 

Daisy Kong 
Vesso Novov 

Dimitrios Tsalikis 
Stefanos Koukoulas 

Thomas Karampaxoglou 
 
 

06 September 2004 

 



 II

TABLE OF CONTENTS 

ABSTRACT VI 

1 INTRODUCTION 1 

1.1   Motivation – Problem Specification 1 

1.2   Project Aims, Scope and Objectives 2 

1.3   Report Structure 2 

2 BACKGROUND 4 

2.1 Software Deployment Issues and Process 4 

2.2 Grid Computing 5 

2.3 Deployment and Management Frameworks 6 

3 TOOLS AND TECHNOLOGIES 8 

3.1 GlobusToolkit 8 

3.2 SmartFrog 9 

3.3 Tomcat 11 

3.4 Ant 11 

3.5 CVS 12 

3.6 Eclipse 12 

4. REQUIREMENTS OF THE PROJECT 13 

4.1 Elicitation 13 

4.2 Analysis 16 

4.3 Scenario 18 

4.4 Some Further Analysis 19 

4.5 Functional Requirements 20 



 III

4.6 Performance Requirements 20 

4.7 Design Constraints 21 

5 PROJECT MANAGEMENT 22 

5.1 Group Organization and Structure 22 

5.2 Development Process 23 
5.2.1 Flexibility 24 
5.2.2 Risk Management 24 
5.2.3 Accommodating Changes 24 

5.3. Project Evaluation 25 
5.3.1 Team Communication and Status Monitoring 25 
5.3.2 Progress Evaluation Method 26 
5.3.3 Quality Assessment Process 27 

5.4 Brief Description of Project Evolution 27 
5.4.1 Time Schedule – Gantt Chart 27 
5.4.2 Risk Management Process 29 

6 INCEPTION PHASE 30 

7 ELABORATION PHASE 32 

7.1 Introduction and Considerations for the Whole Project 32 

7.2 Requirements 35 
7.2.1 Main Goals of the Phase 35 
7.2.2 Basic assumptions 36 

7.3 Design 37 
7.3.1 General explanation of the design 37 
7.3.2 Illustration – UML Diagrams 38 

7.4 Implementation 39 

7.5 Testing 41 

8 CONSTRUCTION PHASE 52 

8.1 Requirements 52 
8.1.1 Basic assumptions 53 

8.2 Design 54 



 IV

8.2.1 General explanation of the design 54 
8.2.2 Illustration – UML Diagrams 62 

8.3 Implementation 72 
8.3.1 Deployment of the infrastructure and the grid service 72 
8.3.2 Resources Check 75 
8.3.3 Management Console 76 
8.3.4 Communication mechanism 78 

8.4 Testing 78 

9 MEASUREMENTS 88 

9.1 Measurements and conclusions about deployment 88 
9.1.1 Traditional approach 89 
9.1.2 Measurements of Elaboration 90 
9.1.3 Measurements of Construction 90 

9.2 Measurements and conclusions about the use of SmartFrog 91 

10 FURTHER WORK AND ENHANCEMENTS 96 

10.1 SmartFrog 96 

10.2 Security 97 

11 CONCLUSION 99 

APPENDIX A: BIBLIOGRAPHY I 

 
 



 V

TABLE OF FIGURES 
Figure 1......................................................................................................................... 19 
Figure 2......................................................................................................................... 22 
Figure 3......................................................................................................................... 28 
Figure 4......................................................................................................................... 39 
Figure 5......................................................................................................................... 62 
Figure 6: ActivityDiag-01 ............................................................................................. 63 
Figure 7: ActivityDiag-02 ............................................................................................. 64 
Figure 8: ActivityDiag-03 ............................................................................................. 66 
Figure 9: ActivityDiag-04 ............................................................................................. 68 
Figure 10: ActivityDiag-05 ........................................................................................... 70 
Figure 11: ActivityDiag-06 ........................................................................................... 71 
Figure 12....................................................................................................................... 82 
Figure 13....................................................................................................................... 84 
Figure 14....................................................................................................................... 86 
Figure 15....................................................................................................................... 87 
Figure 16 ...................................................................................................................... 91 
Figure 17....................................................................................................................... 92 
Figure 18....................................................................................................................... 94 
Figure 19....................................................................................................................... 95 
 
 
 
 
 
 
 
 
 
 
 
 



 VI

ABSTRACT 
 
 
Nowadays grid systems are becoming increasingly attractive as a solution for 
computationally intensive applications. Grid service deployment is a complex process 
that covers all post-development activities, such as installation, configuration and ignition 
of the service as well as of the infrastructure and services it depends on, de-installation, 
etc. However, the manual deployment is time-consuming, cumbersome and error-prone. 
 
This project aims to investigate the use of the SmartFrog deployment framework in 
conjunction with the emerging Open Grid Services Architecture (OGSA) to facilitate the 
rapid deployment of computationally intensive applications on compute clusters. The 
final product will enable the automatic deployment not only of a grid application on a 
large collection of computational resources, but also of the infrastructure it depends on. 
Moreover, it will make it possible to perform various management tasks, such as re- and 
un-deployment, on the deployed services and infrastructure, as well as detect failures 
during the process and take the appropriate actions. Finally, an assessment will be made 
as to whether the increase, if any, in deployment speed is significant enough to offset the 
added time and effort needed to learn the SmartFrog technology as well as whether 
SmartFrog addresses every aspect (functional or non-functional) of the deployment 
process or further enhancements are needed.  
 
 
 



1 INTRODUCTION 

 

1.1   Motivation – Problem Specification 
 
Grid computing is gaining momentum as witnessed by the tremendous amount of interest 
shown by academia and big software vendors. It is a services-oriented distributed 
computing paradigm that aims to provide massive integration and co-ordinated access to 
heterogeneous resources. Software components encapsulate these resources and expose 
them as services through interfaces. The software components, or services as called in 
grid computing, have to be deployed on geographically separated resources that may 
cross-organizational boundaries. 
 
The issue of grid service deployment, mentioned above, is concerned with all the 
activities that have to be carried out after the service has been implemented and released. 
Such activities include the installation and ignition of the service as well as of the 
infrastructure and services it depends on, the appropriate configuration of the system as 
well as its re-configuration as part of administrative decision, de-installation, etc.  
 
The vision of grid computing to deliver massive virtual resource pools implies the 
deployment of grid services on large-scale networked environments. This compounded 
with the fact that deployment is a complex process on its own make the grid service 
deployment overly costly. Some of the costs associated to software deployment include 
the human resources needed and the time spent to carry out all the necessary activities, 
the down time of the service and the disruption of the business process, the amount of 
computational and communication resources used.  
 
Cutting down these costs would have been a welcomed prospect, as would a possible 
automation of the deployment process with the aid of a configuration and deployment 
framework. Such a framework would deliver a faster and perhaps more reliable process, 
free of component-ignition ordering errors in the light of services and components inter-
dependences. It would, also, reduce the risk of misconfiguration; inconsistencies in 
replicated configuration files are common, as is human error. In addition, it may have 
provided facilities for system adaptation in cases of component failures and perhaps 
integrated security. One such deployment framework is SmartFrog. 
 
 



 2

1.2   Project Aims, Scope and Objectives 
 
This project aims to investigate the use of the SmartFrog deployment framework in 
conjunction with the emerging Open Grid Services Architecture (OGSA) to facilitate the 
rapid deployment of computationally intensive applications on compute clusters. The 
final product will enable the automatic deployment not only of a financial grid 
application on a large collection of computational resources, but also of the infrastructure 
it depends on. Moreover, it will make it possible to perform various management tasks, 
such as re- and un-deployment, on the deployed services and infrastructure, as well as 
detect failures during the process and take the appropriate actions. Finally, an assessment 
will be made as to whether the increase, if any, in deployment speed is significant enough 
to offset the added time and effort needed to learn the Smart Frog technology. 
 
The project’s objectives are as follows: 
 

• Familiarize with the concepts of grid computing and with the grid platform we 
will be using the Globus Toolkit. Deploy a grid application and gather the 
deployment requirements. 

• Obtain both theoretical and practical knowledge about SmartFrog. Investigate 
what facilities it provides and how they can enable the rapid deployment of grid 
applications and associated infrastructure. 

• Design a robust architecture that meets the functional and non-functional 
requirements of grid deployment. Create an implementation according to the 
specifications. Build test cases that aim to identify bugs in the code. Run the tests 
and revisit the implementation phase if required. Check the product against the 
specifications. 

 
 

1.3   Report Structure 
 
The following section of the report introduces Grid computing, what requirements it aims 
to address and what benefits it brings. The software deployment process is then detailed, 
as the reasons that make it a complex process. Finally, an introduction to deployment and 
management frameworks is given. 
 
The tools and technologies section provides the necessary background to the reader for 
the better comprehension of the report. It elaborates the two basic technologies used for 



 3

the needs of our undertaking the Globus Toolkit grid platform, and the SmartFrog 
deployment framework. 
 
The subsequent section details the requirements gathered at the initiation of the project, 
as well as its scope and objectives. 
 
The report proceeds with project management issues. The group structure is given, and 
how the Unified Software Development Process (USDP) development process, which 
was customized to the project, helped us plan and manage the project. 
 
The three following sections are concerned with the three phases of the project lifecycle 
(inception, elaboration, construction). Each section describes the activities that took place 
during the correspondent phase. 
 
The next section presents an evaluation of the products of each project phase and draws 
conclusions, while the subsequent section highlights further work and possible 
enhancements to the project.  Finally, the conclusion provides a summary of the 
development process and the project results. 



 4

2 BACKGROUND 
 

2.1 Software Deployment Issues and Process 
 
Traditional configuration management systems are being widely used for software 
development purposes. They are a means for controlling and inspecting the evolution of 
software systems; for tasks such as identification of a system’s different components, 
control of the source code changes throughout the development lifecycle, audit and 
review [6]. However, additional mechanisms concerning software deployment activities 
are demanded. Software deployment is a complex process that involves all the activities 
that have to be carried out after a software system has been implemented and released [1]. 
Post-development tasks include the installation, configuration, update, adaptation, re-
configuration as well as the de-installation of a system. 
 
Software systems are no longer constructed as stand-alone applications. This is 
particularly the case for any scale distributed/grid system. Such systems consist of a 
collection of autonomous, possibly heterogeneous and geographically separated 
components that may have been developed by different vendors. This very architectural 
nature of software systems has made the deployment process significantly complicated.  
 
The deployment of a component-based system necessitates very good knowledge of the 
system as a whole. Not only it requires awareness of the different components that make 
up the system, but also the way they interact with each other as well as the system’s 
workflow. Consider, for example, the case in which a component may not be able to 
perform a function due to the fact that the component it depends on receiving a particular 
service has not been deployed yet. Or, an installation fails due to a missing component, 
e.g. absence of a decompression tool such as zip. Component interdependencies may 
result to the, so-called, “missing component” problem [3].  
 
Another important deployment issue is the one of the configuration information required 
by software systems on a particular site [1] [3]. It should be up-to-date, accessible and 
able to be communicated at all times. A typical example is the adaptation of the run-time 
configuration of components to changes such as user profiles, shared directory structures, 
etc.  Moreover, if the format of or access methods to the configuration information have 
not been standardized, makes it difficult, if not impossible, to carry out the configuration 
of a software system. In addition, deployment in heterogeneous platforms introduces new 



 5

challenges. The platform type should be taken into consideration as a deployment 
parameter. Finally, it is paramount that the correct version of components is being 
installed. 
  
Resource discovery and sufficiency verification are critical aspects of the deployment 
process. A resource is anything (memory, disk space, cpu capacity etc) needed to enable 
the use of a software system at a site. It is essential that the availability and sufficiency of 
the infrastructure be checked against the requirements of the components making up the 
system. Any deployment effort will result to a partial or complete failure of the system if 
resource dependencies are not met.  
 
Software deployment consists of several distinct inter-dependent tasks [1]: 
Release is the task of packaging the different components of a system into a form that can 
be transferred to a particular site. It should also specify the resource requirements of the 
system for normal operation. 
The installation task includes the actual transfer of the system to the consumer site and its 
necessary configuration before being ready for activation.  
Activation is the task of running the components of a system. The activation activity 
might involve the activation of other systems upon which this system depends on. 
De-activation is the task of shutting down the running components of the system. 
Update includes the same activities as the installation task transfer and configuration of 
the system. It is the process of updating an older version of a system with a newer. In 
most cases de-activation is prerequisite. 
A software system needs to be able to adapt to local environmental changes. 
De-installation is the reverse of installation. It is the activity of removing the software 
system from a site. It prerequisites de-activation of the system.  

2.2 Grid Computing 
 
Grid computing has emerged as the latest advancement in distributed computing. It 
enables the sharing and aggregation of a wide range, geographically distributed resources 
(computational, storage, data), and presents them as a single, integrated facility for 
solving large-scale compute and data intensive problems [12].  
 
The core concept behind this new distributed computing paradigm is the Virtual 
Organization (VO) [5] [12], which is a set of individuals and institutions under the 
control of sharing rules. Grid computing aims to address the requirements of such VOs 
[5] [8]; resource sharing in a cross-institutional setting, direct access to resources rather 



 6

than just information and file exchange, flexible control over how shared resources are 
used and who uses them, integrated approach for coordinated use of resources. 
 
Grid computing offers many benefits. Vast amounts of computing power that can be used 
to increase dramatically the execution speeds of computationally demanding applications. 
Exploitation of existing under-utilized resources, such as computational capacity located 
at different time zones or on idle desktops. Better utilization of resources induces that 
less, or even no, additional investment is needed on computer infrastructure. These 
benefits are so significant that can offset the added complexity in developing grid 
applications and time needed to learn the technology [2]. 
 
It should be highlighted that the grid technology does not come as a substitute of high 
performance parallel computing. This is due to the high bus latency of the 
communication over networks and the fact that not all compute intensive problems can be 
partitioned in such a way that can be distributed across a collection of computers. 
However, grid computing finds many applications to research, such as molecular 
modeling for drug design, high energy physics, as well as the commercial arena, such as 
financial modeling and analysis in investment banking, etc [8] [15]. 
 

2.3 Deployment and Management Frameworks 
 
The deployment issues and process presented above underline the fact that the software 
deployment is an overly complicated process. This gave birth to software management 
systems that aim to automate the process.  
 
The deployment and management frameworks [3] [16] are able to operate in a variety of 
distributed and heterogeneous environments that may be under different administrative 
domains. Some provide means to describe and manage site resources and configuration 
information, which includes the hardware (storage, network etc.) resources at that 
particular site. Others provide mechanisms to describe, deploy and manage software 
systems and their configuration information, which includes system constrains and inter-
dependencies between its components. Furthermore, some make it possible to monitor 
changes in the surrounding environment of a deployed system and take appropriate 
reconfiguration steps. An important point to note is that such facilities enable the 
management of software systems with little or no human intervention. 
  
Due to the plethora of deployment and management systems in existence today, the 
choice of a particular one should be based on a set of criteria [1]. It should be identified 



 7

to which extend a deployment system covers the activities of the deployment process as 
well as what hooks are provided to implement unsupported or specialized ones. 
Coordination between deployment activities that involve distributed or composite 
systems, as well as notification and data exchange are key issues. The last criterion is as 
to whether a deployment framework can abstract over site, product and policy 
information. The idea is to create the deployment activities first, and then be able to carry 
them out to different sites, products and under different policies by just changing the 
associated information (i.e. the information will be given as parameters to the deployment 
procedures).



 8

3 TOOLS AND TECHNOLOGIES 
 

3.1 GlobusToolkit 
 
The Open Grid Services Architecture (OGSA) defines a common, standard, and open 
architecture for developing grid applications. It aims to standardize all the fundamental 
conventions needed by grid applications in order to achieve transparent access to 
resources, portability, re-usability and interoperability. However, OGSA gives a high-
level architectural view of grid services. The Open Grid Services Infrastructure (OGSI), a 
reference implementation of which is the Globus Toolkit, gives a more formal and 
technical specification. 
 
 OGSA grid technology is based on a service-oriented architecture [9]. A service is a 
network-enabled entity that provides some capability to its clients through the exchange 
of messages. It is defined by identifying the sequences of specific message exchanges 
that cause the service to perform its operation. Services provide access to computational 
and storage resources, and information through interfaces. A service-oriented architecture 
provides virtualization, which is the concealment of perhaps different implementations of 
a service behind a common interface [13]. OGSA’s architecture provides access and 
location transparency, enables services to be accessed in a consistent way resolving any 
platform heterogeneity issues, and service composition. 
 
OGSA builds on web service standards and technologies, which provide the necessary 
mechanisms for describing and invoking grid services [18] [8] [21]. The Web Service 
Definition Language (WSDL) is an XML-based description language that is used for 
defining web service interfaces (portTypes) []. An interface specifies the operations 
supported by the service and it is defined by the messages these operations consume and 
produce in order to provide the desired functionality. WSDL offers an abstraction over 
the underlying implementation of the service interface and the flexibility of defining 
separately transport protocol bindings and data encoding formats. The Simple Object 
Access Protocol (SOAP) is a lightweight XML-based protocol that can be used for the 
encoding and exchange of information in a decentralized, distributed environment. It is a 
simple enveloping mechanism that defines a framework for describing message content 
and how to process it, and a set of encoding rules that map user-defined data types to a 
transfer representation. HTTP can be used as the transport protocol, which is ideal for 
internet-wide distributed systems, as most firewalls will not block this kind of traffic. 



 9

 
However, web service standards do not address important issues related to basic service 
semantics, namely statefullness, discovery, dynamic service creation, lifetime 
management, notification and error handling [8].  All these issues are addressed by a set 
of standard interfaces and associated semantics specified by OGSI. These interfaces 
constitute the basis on which all grid services are implemented and provide service 
interoperability and re-usability. Thus, a grid service is essentially an OGSI-compliant 
web service.  
 
OGSI [17] [10] defined interfaces is the GridSevice, which every grid service should 
support. It provides operations for lifetime management and access to state information 
of grid services. The introduction of state information is of great importance as it works 
around the limitation of web services that were unable to maintain state between 
invocations. The HandleResolver interface offers operations for obtaining references to 
grid services. It is essentially a naming service. The Factory interface enables the creation 
of transient grid service instances. Clients may decide to have solely control over the 
lifetime and access to the state of these services. Finally, the NotificationSource, 
NotificationSink and NotificationSubscription interfaces that are used for the notification 
of asynchronous event occurrences.  
 
Finally, the Globus Toolkit is a platform, developed by The Globus Alliance, which can 
be used for the development of grid applications. It is a reference implementation of the 
OGSI specification. However, it also includes a lot of other facilities; system services, 
which are generic services used by all other grid services, a security infrastructure and 
various other tools, such as service browsers etc.  
 
 

3.2 SmartFrog 
 
The Smart Framework for Object Groups (SmartFrog) is a framework for describing, 
deploying, igniting and managing distributed systems. It consists of a description 
language that is used to capture system architecture and configuration information. A 
deployment infrastructure that implements SmartFrog descriptions and deploys software 
systems. A component model that defines a lifecycle and the interfaces software 
components should support to receive management functions. These three major aspects 
of the framework are elaborated below. 
 



 10

The SmartFrog language [16] [19] provides a means to describe a software system. A 
description defines the individual components that make up the system, their 
configuration parameters, their inter-dependences and interactions, as well as the 
workflow associated with the lifecycle of the components and the system as a whole. It 
contains an ordered collection of attributes, each having a name and a value. The value is 
either of primitive type (integer, string), a reference to another attribute, or a component 
description. The latter contains a collection of two types of attributes; template attributes 
that specify the component code, location and certain management aspects, and user-
defined attributes that are component specific and contain its configuration information. 
A component description may also inherit (using the keyword extends) attributes from 
other components and override their attribute values. This enables the specialization, or 
extension with new attributes, of template descriptions for a particular context. In 
addition, it allows composition of multiple configuration descriptions into one. Finally, it 
is worthwhile noting that the language provides a flexible component linking with the aid 
of references. 
 
SmartFrog’s component model [16] [19] does not depend on the nature of the language 
described above. The interface between the framework and the notation is a parser, which 
implements a well-defined interface. SmartFrog considers a software system to be a, 
perhaps dynamic, collection of applications loosely coupled over distributed resources. 
Typically, applications use naming or discovery services to locate each other and must be 
able to deal with the case that an application they depend on has not been deployed yet. 
In turn, an application is a collection of components, which are tightly coupled to each 
other through a parent-child relationship. The parents are responsible for their children’s 
lifecycle and are notified for their death. A component is essentially a java object that 
implements the Prim API, which actually constitutes SmartFrog’s component model 
lifecycle. The framework is able to step a component through its lifecycle by invoking 
the API’s methods (sfDeployWith( ), sfDeploy( ), sfStart( ), sfTerminateWith( ) ) on it. 
As soon as the component transitions to a different state in the lifecycle, it performs the 
actions specified by the implementation of the correspondent method. In an application, 
the lifecycle of the whole system is the combined lifecycles of the components it consists 
of in some sequence. The sequence depends on the parent-child hierarchy and on 
SmartFrog components that implement particular semantics. Such components are the 
Compound that defines a simple combined lifecycle, Sequence that starts the sub-
components one at a time (in order to start the next, the previous should terminate), etc 
[22]. 
 
The SmartFrog infrastructure [16] [19] interprets software system descriptions, fed to any 
node participating in the SmartFrog network, and deploys components in an order, on the 



 11

nodes and with configuration parameters specified by these descriptions. Also, it steps the 
components through their lifecycles, while taking restorative actions should one fails. 
SmartFrog is flexible in to that it allows component deployment in multiple ways, 
without even having to change the component’s code. A component is deployed by 
default in the root process, called SmartFrog Daemon. If the attribute sfProcessName is 
used in the description then the component will be deployed in a sub-process, while if 
sfProcessHost is included then the component will be deployed on the node indicated in 
the attribute’s value. SmartFrog’s infrastructure uses RMI as its communication base and 
forms a distributed network of daemons that run on each node. Apart from the 
deployment infrastructure, SmartFrog provides a discovery and naming service that 
allows components to locate each other and communicate. It, also, provides a 
management service via tools provided by the framework. Concluding, SmartFrog offers 
an environment that addresses all post-development activities, such as installing, 
configuring, updating, adapting, re-configuring as well as de-installing a software system. 
 
 

3.3 Tomcat 
 
The Globus Toolkit ships with a lightweight embedded and standalone-hosting 
environment, which provides traditional web server functionality and acts as a serlvet 
container. However, it is not used on production servers, in which case a standard java 
servlet engine, such as Tomcat is used. Tomcat [23] is bundled with the Apache Axis, 
which is a servlet-based implementation of the SOAP protocol that takes care of the 
encoding of messages send in web service requests. 

3.4 Ant 
 
Apache Ant [20] is a platform independent tool, which is used primarily for Java-based 
projects. It performs build tasks, such as compiling source code and in our case deploying 
grid services on Tomcat. It can be used instead of shell-based tools, such as Make. Ant 
allows the creation of tasks and rules in a XML structured file. It supports multiple 
targets (normally binary/executable files), dependencies (such as project 'a' depends on 
project 'b' so build project 'b' first), if and unless statements as decision making 
constructs. Users can, also, define their own build tasks by creating relevant Java classes 
using the native API, which makes Ant highly extensible. Ant bypasses many problems 
that tools such as Make have, with text-parsing ambiguity, as it uses XML for the 
configuration file. It can be imbedded into a variety of IDEs. 
 



 12

 

3.5 CVS 
 
CVS [6] is a version control system. By tracking changes, it allows a complete record to 
be kept of a project’s source file history. This history (called the Repository) is extremely 
useful as it is often necessary to backtrack to an older version of a source file in order to 
correct bugs. CVS is, also, a type of revision control. Revision control is the standard 
practice to maintain the progress of engineering drawings, a practice that may even be as 
simple as labeling an original drawing with an ‘A’, then a subsequent revision with a ‘B’, 
etc. 
 
CVS is designed for projects involving many programmers. An individual programmer is 
able to ‘check out’ source files from the main repository into their own directory. At any 
point the programmer can choose to receive an update from the central repository, which 
merges any changes that may have been made into the programmer’s local copy. After 
completing the necessary work, the programmer can ‘commit’ the files back to the 
repository.  
 
CVS offers greater efficiency than simply backing up an entire file every time a new 
version is saved, a process that would require extensive amounts of storage. CVS stores 
all the file versions within a single file. Its efficiency lies with its ability to track and store 
the differing elements of all a particular file’s revisions. It is then only necessary to store 
a single copy of the like parts shared amongst the revisions. CVS was a very helpful tool 
that enabled us to work together and co-ordinate our efforts. 
 
 

3.6 Eclipse 
 
Eclipse is an Integrated Development Environment (IDE) written in Java that can be used 
for a variety of projects and in a multitude of programming languages. It has core features 
that make up the base IDE and uses tools, also called plug-ins, to extend the functionality 
of the IDE into whatever the user desires, making Eclipse extremely flexible. Eclipse is 
platform-independent as it uses Java for the core IDE and the plug-ins. Its usability 
depends on how well the plug-ins work together, which is heavily dependant on the 
developer of the tools. 
 
 



 13

4. REQUIREMENTS OF THE PROJECT 
 
Due to the nature of the format of this report, this chapter will not fully specify and 
describe the requirements of the project. This report follows the Unified Software 
Development Process, which was also used for the project, which means that in the 
chapters Inception phase, Elaboration phase and Construction phase there will be 
subsections which will focus on the specific requirements of each phase. The purpose of 
this chapter is to discuss and clarify the global requirements of the project. That will be 
done by eliciting the requirements and then by analyzing them. The conclusions that will 
be drawn here will be used in order to define the requirements of each iteration of USDP.  
 
 

4.1 Elicitation 
 
The process of elicitation began with very little information about the project. The reason 
was that the project involved many knowledge areas that were unknown to our team. So, 
the first step was to familiarize ourselves with those areas. The outcome of the research 
that was done is properly summarized in chapters 2 and 3. Suffice to say here that the 
goal was not to gain complete knowledge on each area but rather to have a starting point 
in order to decide what needed to be done in the next phase of the project.  
 
Four basic requirements kick-started the project: 
 
• Two technological cornerstones: From the beginning we knew that there were two 

specific technologies that would be involved in the project: Open Grid Services 
Architecture (OGSA) and SmartFrog. That was very important since it ruled out all 
other platforms, which supported grid services, as well as other possible deployment 
platforms. The focus needed to be on OGSA and SmartFrog. 
 

• Two other related projects: A financial application which runs Monte-Carlo 
simulations has been implemented as a grid service by Charaka Goonatilake and may 
be used during the project as a testing application. A scientific application, also 
implemented as a grid service, by Ben Butchart may also be used during the project as 
a testing application. These two have been suggested to us as good candidates. They 
may be used and that will depend on the specific requirements that will be set for the 
project and after their closer inspection. 
 



 14

• The problem that needs to be solved: The reason that we needed to experiment with 
those two technologies is the inefficiency of the current deployment process of grid 
services. SmartFrog was introduced into the project as a way to control and hopefully 
amend this inefficiency. But in order to decide how we would try and solve the 
problem we first needed to find out where the problem lied. 
 

• There will be no final product: The project is purely academic and there is no need to 
have a product as an outcome. Several prototypes may be constructed during the 
project but their only use would be to help us gain valuable information about 
SmartFrog's capabilities. The outcome of the project needs to be a set of 
measurements and guidelines, which will discuss whether SmartFrog can indeed help 
the deployment of grid services and at what degree. In other words, a comparison of 
deployment with SmartFrog versus the traditional process. 

 
Using those four requirements as a starting point, interviews were conducted with the 
stakeholders of the project. There was a need for more information that would otherwise 
be unavailable to us. It is possible to learn how OGSA works by reading its 
documentation. On the contrary, the problems that are faced by the administrators who 
try and deploy grid services manually can mostly be learn through experience. The 
stakeholders had such experience and had faced these kinds of problems before. So we 
needed to know what these problems are and where they would like us to focus our 
attention.  
 
During those interviews we learned that the most important problems of the traditional 
deployment process of grid services are the following:  
 
• Manual deployment of infrastructure: When it comes to grid services the exact same 

infrastructure has to be deployed on several computers. Their number could be ten, a 
hundred, a thousand or even tens of thousands of computers. The process is essentially 
the same for each one and is simply must be repeated on each computer. This is not 
only annoying but also time-consuming. And time costs money. The current method 
of deployment is manual and that means a lot of time lost by administrators who need 
to sit in front of each computer and perform a complicated installation of the 
infrastructure. If we take into consideration a large network of computers which spans 
several buildings, organizations, cities, even countries, the process becomes even more 
time-consuming, close to impossible.  
 

• Manual deployment of grid services: The same infrastructure can be used with all the 
grid services that are written with that infrastructure in mind. This means that although 



 15

it is possible to deploy one grid service or more along with the infrastructure, it is 
quite possible for the need to arise in the future to deploy more grid services on those 
same machines. This would call once again either for someone to visit each computer 
and install the grid service(s).  
 

• Manual updates: The infrastructure may change or the grid service may change. The 
infrastructure in particular includes a variety of programs for which updates may 
become available after their initial installation. It would be possible to stick with the 
older version but not in the case of an update that fixes a serious flaw or a newly 
discovered security vulnerability of the program. The same goes for the grid service 
itself, which is essentially nothing more that a program. Newer versions may come out 
and that would, once again, mean another sitting in front of each computer for the 
administrator(s). 

 
Having finished the interviews, it was time to complete the research and background 
reading in order to be able and come up with a first rough version of the requirements 
that follow. It should be noted that these requirements are only guidelines about the next 
steps of the project: 
 
• It should be examined whether SmartFrog can be used for the deployment of grid 

services and their infrastructure. 
 

• The complicated deployment of infrastructure should be automated.  
 

• The deployment of infrastructure and grid services should be done remotely. The 
administrator should not have to sit in front of each computer. 
 

• It should also be possible to update the infrastructure and grid services remotely. 
 

• As few people should manage the network of computers that runs grid services as 
possible. 
 

• The use of SmartFrog for the deployment of grid services may create issues that did 
not have to be addressed until now, such as security issues. Those should be identified 
and taken into consideration. 
 

• SmartFrog should be used to produce a scalable system. It should be able to 
accommodate any number of computers.  
 



 16

• The possibility of automatic remote deployment should be researched inside the 
boundaries of a specific scenario. Such a scenario should be defined according to 
realistic needs of grid services administrators. 
 

• It is not only important to examine SmartFrog's suitability, it is equally important to 
take into consideration the time that will be spent learning how to use SmartFrog and 
whether that time is worth the effort. 
 

• The system should be platform independent. It should be possible to arbitrarily deploy 
them on any kind of platform and they should perform adequately in all of them. 

 
 

4.2 Analysis 
 
The outcome of the elicitation process is a set of requirements that do not even come 
close to the final requirements of the project. They resemble questions that needed to be 
answered and those answers will then be used to move the project forward. However, at 
this stage the answers create more questions. 
 

• Is SmartFrog capable? 
The initial studying of SmartFrog has deemed that it is capable. However, simply the fact 
that it is capable does not make it a better choice than the traditional deployment method. 
It will depend on the effort that is needed to learn SmartFrog, and the effort to write 
components to deploy a grid service with it. It depends on whether the process of writing 
those components can be automated in any way, in other words if a different component 
needs to be written for each grid service or whether the same component can handle 
different grid services. 
 

• Can the deployment of infrastructure be automated? 
It is possible, with the use of SmartFrog. Theoretically a component can handle the 
deployment of all the programs that are needed.  
 

• Can it be done remotely? 
Yes. And that is very important because it means that there is no need for direct access to 
each computer. It solves the problem of distance between the computers. The problem 
that is created in this case is that, if the administrator is in a remote environment he would 
probably not have any physical access to the computers. This means that he would be 



 17

unable to monitor the resources of each computer and handle and errors that may occur. 
If a computer ceases functioning the administrator would not know why. 
 

• Are updates possible? 
A grid service can be undeployed and redeployed at any time so SmartFrog can handle 
grid service updates. The infrastructure however will have to be uninstalled and that 
would ask for another component that performs that operation.  
 

• How many administrators are needed? 
There should be just one. If the deployment can happen remotely there shouldn't be any 
reason for more than one. However it depends on the type of control that the 
administrator would have.  
 

• Can SmartFrog produce a scalable system? 
Yes, it can. By automating the process and by deploying remotely the administrator may 
initiate deployment onto a number of computers simultaneously. Computers can be added 
arbitrarily at any time. However, this creates a problem of management. It would be 
difficult for someone to control the number of computers and keep details as to which 
grid services are deployed on which computers. 
 

• Can it be platform-independent? 
That would be quite difficult. The components would need to run code and scripts which 
are platform-dependent. However, the possibility of platform-independence should be 
researched. 
 

• Other issues? 
Remote deployment, especially in the case of inter-organizational deployment, security 
becomes an important factor. OGSA has its own security built-in and that would protect 
the messages, which would be exchanged as part of the actual web service. SmartFrog 
also  provides some kind of security, which would protect the components of the system. 
The existence of security would, in other words, prevent an unauthorized user from 
taking control of the system. Both kinds of security are very important to the 
administrator and should be taken into consideration. 
 
 



 18

 

4.3 Scenario 
 
The requirements of the project will be largely based on a scenario. However, in our case 
it may be better to lax the explicit boundaries of that scenario. The reason is that the 
conclusions that will be drawn will deal with SmartFrog in general and not for a specific 
use. 
 
In that sense, regarding security it should be assumed that deployment may occur inside 
an organization's network in which case security is not paramount. However, it may also 
take place cross-organizationally and in that case security is important. Deployment may 
also take place over the Internet. From all these varied scenarios that call for different 
security requirements we choose the one, which is the toughest. Deployment over the 
internet. During the lifetime of this project it may be decided that such a deployment is 
actually not of interest to the project, possibly due to its complexity. But it should be 
investigated and therefore it should be considered a requirement. 
 
Platform heterogeneity is another possible scenario that is more complicated than one 
which deals with a network of homogeneous operating systems. Since the USDP calls for 
a number of iterations, it would probably be wise to begin with an iteration that includes 
a homogeneous environment and then possibly explore the heterogeneous environment in 
further iterations. It is important though to keep it in mind because a system that manages 
deployment on a heterogeneous environment is better equipped to handle most networks, 
which contain a variety of computers running different operating systems.  
 
Another point that should be considered is the nature of the grid services and how their 
use affects the resources of the computer. It is quite possible that heavy use may starve 
the resources and drive the operation of the computer to a halt. This is not a scenario, it is 
a fact. However, should the administrator, who will supposedly deploy the grid services 
remotely, have knowledge as to the state of resources of all the computers that he has 
used? The ideal answer to this, would be yes. Especially if we take into account a 
scenario where the computers that are used to run the grid services are also used for other 
reasons. In this last case it would be very important to have information regarding the 
resources of all the computers. That would not only allow to spot starved computers who 
are no longer doing any useful work but also in order to be able and get rough statistics 
regarding the demand for the grid services. Those statistics may actually create the need 
to increase or decrease the number of computers running the grid services. 
 



 19

This scenario does not mention many aspects of the requirements for the project. The 
reason is not only that we are aiming for a rather generalized approach but also because a 
specific scenario would not affect many requirements. For example, it is a given that 
deployment should occur remotely so there is no reason to consider a scenario where 
access to each computer would be needed. In fact, that is the problem that we are trying 
to solve! 
 
 

4.4 Some Further Analysis 
 
In order to get a better idea of the actions that would performed by a user of the system a 
Use Case diagram will be used.  

Figure 1 



 20

 
The “Administrator” actor is the administrator of the system. The “Remote Computer” 
represents any machine that the administrator may wish to control and use to deploy grid 
services. All the use cases have associations to both the “Administrator” and the “Remote 
Computer” except the “Update infrastructure” and “Update grid service” which receive 
functionality by extending “Deploy grid service”, “Undeploy grid service” and “Deploy 
infrastructure”, “Undeploy infrastructure” respectively.  
 
This Use Case diagram gives a good idea of what the functional requirements are. They 
follow in greater detail. 
 
 

4.5 Functional Requirements 
 
• Deploy a grid service automatically and remotely. 

 
• Undeploy a grid service automatically and remotely. 

 
• Deploy the infrastructure automatically and remotely. 

 
• Undeploy the infrastructure automatically and remotely. 

 
• Monitor remotely the resources of a computer that runs grid services. 

 
• Monitor remotely the state of the deployed infrastructure and grid services on each 

node. 
 
 

4.6 Performance Requirements 
 
• The system is scalable. It can accommodate an infinite number of computers. 

Computers may be added and removed at any time. 
 

• The system is platform independent. Grid services and their infrastructure can be 
deployed on any computer running any operating system. 
 



 21

• The deployment and undeployment of grid services and infrastructure is a secure 
process. The administrator's control cannot be compromised at any time. 
 

• The system can deploy secure grid services. It can build into its deployment 
mechanism the provision to include grid services security according to the 
administrators needs. 
 

• The system is usable. The sheer number of computers does not confuse the 
administrator and their control is not complicated or difficult. 

 
 

4.7 Design Constraints 
 
• The system must use SmartFrog as its deployment platform. 

 
• The system must use OGSA as its grid services implementation. 
 
Finally, it is important to stress once again that these requirements are not meant to guide 
the design and development of a product. They are meant to guide the attempt to use 
SmartFrog in order to deploy grid services and act as measurement guidelines so that we 
can judge whether SmartFrog is actually a worthwhile solution. Also, this version of 
requirements will not be used directly for any of the following requirements subsections 
in each iteration. These should be considered global requirements and they are only 
meant as a guide for the rest of the project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22

5 PROJECT MANAGEMENT 
 

Obviously, since a group project is different from a common assignment and an 
individual project, the application of project management techniques was required in 
order to guarantee that the project would run smoothly and efficiently. The use of 
software engineering techniques and project management, not only ensures the careful 
allocation of resources, but also helps us overcome many problems and risks throughout 
the whole lifecycle of the project. 

 

5.1 Group Organization and Structure 
The organization chart of our group project is shown below. The project supervisor, Dr. 
Wolfgang Emmerich naturally becomes a key stakeholder, being active in the field of 
distributed system and software engineering. In addition, Paul Brebner and Ben Butchart, 
members of the software systems engineering group of UCL, have been working on 
projects related to grid computing and Globus Toolkit 3.2.  
 

OrganisationOrganisation chartchart

Dr. Wolfgang 
Emmerich 

Project Supervisor –
Stakeholder 

Paul Brebner
Stakeholder

Ben Butchart 
Stakeholder

Sci App

Stefanos Koukoulas  
Project Manager

BPEL Expert

Thomas 
Karampaxoglou
Software Tester
Web Services 

Expert

Dimitrios 
Tsalikis 

System Architect
Grid Services 

Expert

Vesso Novov
Software Manager

Smartfrog 
Expert

Daisy Kong
Documentation Secretary

Development 
Environment 

(Eclipse,Ant,CVS) 
Expert

 
Figure 2 

 



 23

As far as our group’s organization is concerned, every team member was assigned a 
different role in the management of the project. Stefanos, acting as our Project Manager, 
was responsible for day to day management; Thomas, the Software Tester, was 
responsible for building our test cases and measurements; Dimitrios, the System 
Architect was responsible for ensuring the system operates as a whole in terms of 
hardware, software and applications; Vesso, the Software Manager, was responsible for 
ensuring that all software platforms are correct during the whole project life cycle and 
finally, Daisy, was the Project Secretary, responsible for documentation. 
 

5.2 Development Process 
 
We chose Unified Software Development Process (USDP) as our methodology because it 
suited our plan to first use the simple financial application as our test case and then 
extend our functionality to address non- functional requirements.  
The USDP lifecycle is divided into a sequence of phases. Each phase may include many 
iterations and each phase concludes with a major milestone. Iterations are organized into 
phases and contain workflows. The final result is, therefore, achieved through a sequence 
of iterations. Each iteration is like a mini-project covering planning, analysis and design, 
implementation and testing [26]. 
 
In terms of its technical aspects, USDP is an iterative and incremental process that gives 
considerable emphasis on the architecture of the system. Each iteration generates a 
release of various artifacts and deliverables that constitute the basis for the next iteration. 
An increment is the difference between the release of one iteration and the release of the 
next [26]. This Iterative approach is very controlled; iterations are planned in number, 
duration and objectives. We believe USDP was suitable for our project for the following 
reasons: 
 

• Flexible and easily customizable 
• Earlier starting risk mitigation process 
• Earlier starting integration process 
• Better process structure for accommodating changes 
• Ensuring better final product quality-   

 



 24

 

5.2.1 Flexibility 
 
As far as flexibility is concerned, USDP is a generic software engineering process that 
can be customized for our project. In particular, we decided there was no point in 
including a transition phase, because in the beginning we didn’t intend to create a final 
product, let alone a commercial product. The aims of the other phases are, in general, the 
following: in inception phase, to identify the project objectives and requirements is the 
main goal; during elaboration phase, we focus on the architecture of the project; finally, 
within construction phase, the main development and implementation of the project are 
carried out. Each phase included one iteration, but the elaboration phase, where we 
included a second smaller iteration, as well. 
Having being an academic research project rather than a commercial one, risks associated 
with financial, marketing and product distribution matters are not applicable. 

5.2.2 Risk Management 
 
The iterative approach lets us mitigate risks earlier. As our project started the early 
iterations, it went through all process components, exercising many aspects of the project 
and as a result, perceived risks proved not to be risks and new risks were revealed. 
Integration was not one big effort at the end of the life cycle; instead elements were 
integrated progressively. It was a continuous process beginning with fewer elements to 
integrate. 
 

5.2.3 Accommodating Changes 
 
The iterative approach lets us take into account requirements that change over time. It 
provides us with means of making tactical changes to the product – for example, we can 
decide to release a product early with reduced functionality. It also lets us accommodate 
technological changes. 
 
The iterative approach results in more robust architecture because we keep correcting 
errors over several iterations. By the end, the system would have been tested several 
times. Flaws and performance bottlenecks would be detected in early iterations, at a time 
when they could still be addressed.  
 



 25

The development process itself could be improved and refined along the way. The 
assessment at the end of each iteration would not only look at the status of the project, but 
would also analyze what should be changed in the organization and in the process to 
make it perform better in the next iteration. 
 
 

5.3. Project Evaluation  
 

5.3.1 Team Communication and Status Monitoring 
 
The group gave a considerable emphasis on the communication among the different 
members and on monitoring and control of the project. For each meeting of the group 
where important decisions were taken, the minutes were recorded. At the end of the 
week, a weekly group status short memo indicating the current progress and the aims for 
the coming week was sent out by the project manager. Then, by replying to that memo, 
every team member could present his own review and share different development 
experience with the other team members. 
 
Furthermore, a common directory in CS file space was created, so that we could work in 
the same directory. There we placed any software we needed to install for the project, the 
minutes of the meetings, the documentation we wrote and the source code files we 
created. In addition, CVS would be used to ensure management of source code and 
concurrent access of files. At the same time, a group website was created 
(http://www.lukulius.com/dcnds), which had three main usages:  
 

• track the project and the individual tasks assigned to each member  
• means of communication and discussion among us   
• an information centre to anyone outside the group who was interested in our 

project.  
 
The website consists of three sections. The first one, general overview, contains mostly 
general information, which can also be viewed by anyone else who visits the website, in 
order to get a better idea of what our project was about. The second section, project 
management, has various parts that helped us get better organized. The tasks region was 
very important and we kept checking it regularly to see if a new task had been assigned to 
us or whether our current task had changed. Each member could be assigned one or more 
tasks with a starting and ending date. The information in the task should be sufficient so 

http://www.lukulius.com/dcnds)


 26

that a meeting would not be needed to clarify it. The tasks were set by our project 
manager, who had the overview of the progress of the project and the individual 
contribution of each member. The meeting schedule contained up-to-date information 
about when and where the next meeting will take place and who needs to attend, since 
sometimes not all team members were required to attend the particular meeting, if the 
topic was irrelevant to their task. 
 
The website also included an administration section, where only the members had access 
and could upload information. The project manager used the website to add and update 
tasks and to set meetings. When any team member completed a task, he logged in to the 
admin part of the site, set the task “completed” and wrote a short memo of what the 
outcome of the task was. The project manager would then review the task and may mark 
it as “unsuccessful”, if he thought that the ideal result had not been accomplished. Tasks 
are classified hierarchically based on their importance. Tasks could have a high 
importance, which means that their successful completion was critical for the project. 
Tasks marked with low importance were not as critical as the highly important ones. By 
viewing the running tasks, our supervisor could keep an eye on our activities and what we 
were doing at each stage of the project. The project secretary, who was responsible for 
documentation, should use the admin section to upload the minutes of meetings regularly. 
 

5.3.2 Progress Evaluation Method 
 
The goal of measuring the progress of our project was to be able to evaluate how close or 
how far we were from the project’s objectives in terms of completion, quality and 
compliance with the requirements as well as to determine how we could improve the 
process over time. 
 
Considering this is only an academic research project and not a full scale commercial 
undertaking, the predominant way of measuring progress was through inspections and 
comparisons of the project milestones and percentage of work accomplished with each 
task identified in our group website. 
 
In a discussion with the project supervisor we were advised against identifying and using 
specific metrics and collecting raw metrics data. We were advised that the Software 
Engineering Institute, the developer of the Capability Maturity Model, had determined 
that collecting and using empirical data on software metrics should be undertaken by 
commercial organization which project management process is evolving from CMM 
level 3 to CMM level 4. 



 27

 
At the scale of our project such activities were unsuitable and would unnecessarily 
overburden our efforts. Ideally, by the end of August, we expected our project 
management process to have matured to CMM level 2 at the most, and even that would 
be really difficult to achieve.  
 

5.3.3 Quality Assessment Process 
 
Quality Assessment Process was an integral part of our project’s life cycle. This 
assessment process involved analytical and empirical evaluation of the degree of quality 
of each individual deliverable. 
 
The way we assessed quality was by testing. Different tests had different objectives and 
focus. In the inception phase, we evaluated the progress through peer-views and 
inspections whether deliverables achieved non-functional requirements such as 
efficiency, scalability and robustness. At the end of elaboration phase, we evaluated how 
stable the architecture had become by arguing and by testing how we had addressed the 
non-functional requirements. In the construction phase we assessed entirely through 
testing how much of the functionality had been incorporated in our deliverable. The 
testing techniques we used will be explained in the relevant sections of chapters 7 and 8 
analytically, where we will discuss our work during the elaboration and the construction 
phases.    
 

5.4 Brief Description of Project Evolution  
 

5.4.1 Time Schedule – Gantt Chart 
 
To implement a time schedule for our project, we had to create a Gantt chart (shown 
below) containing unambiguous milestones. We divided the process in different phases, 
as we explained above. In the inception phase, there were a lot of tasks we had to have 
running in parallel. We managed that by splitting and distributing the work. The 
elaboration lasted about 4 weeks and the rest of the time was spent for the construction 
phase.  



 28

 
 

Figure 3 

 



 29

 

5.4.2 Risk Management Process 
 
The risks that had impact on the project were primarily of technical and managerial 
nature. 
The identified risks were categorized into two main groups according to the degree of 
control the project team had on each risk: Internal Risks, risks upon which the team had 
high degree of control and External Risks, risks upon which the team had little or no 
control. 
 
The identified risks were classified hierarchically and assigned a value according to the 
probability of their occurrence: high probability of it marked as 3, medium of it marked 
as 2 and low of it marked as 1. The impact the risks may have on the project, had the 
same priority: high impact of the project marked as 3, medium of it marked as 2 and low 
impact of it marked as 1. 
 
Risk control activities involved mainly two ways: one was risk avoidance – structuring 
the project organization in such a way as to eliminate certain risks, and the other is risk 
acceptance – accepting the occurrence of certain risks, but preparing either ways of 
mitigating their affect or contingency activities. 
A Risk Register was started during the inception phase that would contain all those 
attributes. As scheduling and resource planning continued, the register was updated to 
reflect the status of the already identified as well as of newly identified risks. 
 



 30

6 INCEPTION PHASE 
 
Inception Phase is the first phase of the whole project. In this phase, the main goals 
included establishing feasibility of the project, creating a business case, capturing key 
requirements, scoping the system, identifying critical risks and creating proof of concept 
prototype as USDP required. In our case this phase will not include a concept prototype 
since we do not have a final product.  
 
As every phase was also a mini-project, due to the nature of USDP, inception includes 
requirements, analysis, design, implementation and test. In this phase, establishing 
business case, scoping the system can be considered requirements; establishing feasibility 
can be categorized as analysis; we did not deal with design; and test, since this is the first 
phase, is not applicable. [26] 
 
From the very beginning of our project, our supervisor highlighted the fact that there are 
five different areas of technology conceptually involved in our project: namely Web 
Services, Grid Services, SmartFrog, BPEL and Development Environment (Eclipse, Ant, 
CVS), so each of one of us was assigned to do a background reading on a specific area. 
This did not mean that a member would only know about his particular subject. It was 
done so that we could have an initial information resource for every area of the project. 
The information was shared among the members of the team. This background reading 
activity began at the mid of April and ended early May, during this period, every team 
member devoted himself into the topic that he was assigned, learn as much about it as he 
could by searching the topic, visiting various websites, subscribing to mailing lists, 
reading published papers and technical manuals etc to not only know the basic concept 
and background of the topic but also investigate and learn the latest progress of it. 
 
In May, a group seminar was hold, and every team member, the supervisor and another 
stakeholder attended this seminar. Every group member gave a presentation on the 
assigned topic with the use of slides in order to explain his knowledge area to the other 
members. At that point, the all the group members had an idea of what the project 
entailed. Also, our supervisor and the stakeholder were able to make sure that we have 
the necessary knowledge in order to continue with the next phase of the project. 
Then, we had a sequence of informal and formal meetings with three stakeholders. The 
purpose of those meetings was to get a better idea of their interest in the project. Those 
meetings helped to put together the global requirements. More about that can be found in 
the corresponding chapter. Also, we had the opportunity to find out more about the areas 
of expertise and the work that they have done. The latter part was very important since 



 31

we will be dealing with their work in the next phases of the project. We were given a lot 
of information regarding the projects that they did and the technology that is involved in 
them.  
 
Step by step, we obtained the key requirements of this project: producing an application 
building on Globus Toolkit 3.2 cooperating with SmartFrog to automatically deploy grid 
services and then to compare the solution which includes the use of SmartFrog with the 
traditional method which involved a lot of manual labor. 
 
 
 
 
 
 



 32

7 ELABORATION PHASE 
 

7.1 Introduction and Considerations for the Whole Project 

  
As we have already mentioned in our project management section, the Unified Software 
Development Process we followed specifies that, in general, the main goal of the 
elaboration phase is to create an architectural executable baseline of the system. In other 
words, in the elaboration phase we had to build a prototype, with which we could meet 
most of the functional requirements of our project. The major milestone after the end of 
that phase and the fundamental condition of satisfaction would be that executable 
architectural baseline to be considered functional, resilient and stable. Only if we were 
sure that our prototype and the basic functionality were tested extensively and proven 
stable, could we proceed to adding more functionality and enhancing the overall behavior 
of our system against the non-functional requirements during the construction phase. 
 
Since we were not going to include a transition phase in our project, the main work for 
the building of the architecture and the development of our system would be done during 
the elaboration and the construction phases. We believe it is much more helpful for the 
reader of the report, if we follow the same sequence as our development lifecycle. For 
that reason, we will give a detailed presentation of what we did in the elaboration and 
then in the construction phase. The structure for each of the phases is the following: 

 
§ Requirements: we will establish the specific requirements for that phase. We will 

capture the use cases of the system and identify the main goals (in other words 
milestones) of the phase. Also, we will describe our basic assumptions to show 
what we include in our scope and what not. 

  
§ Design: We will mention the major design considerations in detail and explain 

how the design meets the requirements and achieves its goals. We will present 
different views of how we modeled the system using various UML diagrams, 
which are very powerful tools for conveying the type of information we want in 
each case.  
 
We will first use component diagrams to present a high level view of our 
architecture for each phase. Then we will display class diagrams to show how 
broke the required functionality into a list of classes. However, since the class 



 33

diagrams are very detailed and rather complicated, we judged it would be better to 
include them in our developer’s section, which is part of a different document we 
handed in. Finally, we will use activity diagrams to describe the activities and the 
flows of data between activities. The activity diagrams clarify the different 
parallel execution threads of our system and break them out. Thus, they are 
particularly useful for the explanation of the Smartfrog components, because the 
system we created is rather complex, especially considering the fact that many of 
the components are Smartfrog components; thus, activity diagrams are much 
easier to understand than class diagrams. 

 
§ Implementation: We will explain the process of converting the design into a real 

executable system. In particular, we will refer to our specific technical 
considerations, mainly about Smartfrog API. We will describe: 

 
• how we implemented the design 
• why we made the specific implementation choice 
• what problems we encountered 
• whether the choice was good or we could have done something else 

instead    
 
§ Testing: We will elaborate on the testing techniques we used. In each phase we 

were interested in checking some specific aspects of the functionality as well as 
testing against the non-functional requirements. To be more specific, we chose an 
incremental process to implement the testing of each phase. First, we devised the 
test scenarios starting from simple unit tests and moving to more complex 
integration tests. For each scenario we will explain what we wanted to test and 
why. In addition, we will give examples of specific tests and the results, as it is 
obvious that we cannot practically fit all the test results in our report. Finally, we 
will evaluate if our testing process has proven that our implementation truly 
reflects the goals of the design, or some parts of our system are unstable and 
contain bugs.  
 

Now before starting to talk about what we did in the elaboration phase according to the 
above structure, we will first mention some considerations and how they affected the 
progress of our project. At the beginning of the project, the scope specified that what we 
wanted to achieve was to check and prove whether we could use Smartfrog as a 
deployment framework to deploy grid services automatically. For that purpose, our initial 
plan included two grid applications we were going to use as test cases to prove our 
concept; the financial and the chemical application.  



 34

 
Since the financial application was simpler, we used it to build the executable prototype 
of the elaboration phase. It was exactly what we needed at that point; a basic grid 
application, which could allow us to create an initial baseline of our project. Therefore, 
the initial design we created for that phase was accompanied with a major assumption: 
that we were going to use the chemical application as the test case for the construction 
phase. So, we had to create a very generic design that could be easily extended to 
incorporate the specific functionality we wanted for the design of the next phase. This 
means that we had to keep in mind that the design we would create and the basic solution 
we would provide should also be usable for Ben’s chemical application.   
 
However, at some point during the implementation of the above-mentioned initial design 
we found out that Ben’s application was quite customized in some aspects. For his own 
reasons, Ben wasn’t using the ‘standard’ way of deploying a grid service. By ‘standard’ 
we mean the way that people of Globus Alliance (major developers of GT3) have 
established, which is the use of a grid archive (gar) file, as we have already mentioned in 
a previous chapter. By no means do we claim this is the only way one can deploy a grid 
service. Gar files are only archive files that include all the necessary files for the 
deployment of a grid service (GWSDL files, implementation classes, and other useful 
files, such as deployment descriptors). GT3 encourages the use of those files to automate 
the process of preparing a grid service for deployment and actually deploying it. In 
particular, GT3 contains Ant tasks which compile the GWSDL files and the 
implementation classes, generate the necessary files (WSDL files, interfaces, stubs and 
skeletons) and place them in specific libraries and directories, so that the Globus Toolkit 
runtime environment can add the grid service in the set of the deployable grid services. 
Also, since we chose to use tomcat as the web services container and the hosting 
environment, GT3 includes Ant tasks to deploy OGSA as a web service in tomcat and 
redeploy it, while tomcat is running, to incorporate any new grid services or changes to 
the existing ones without shutting the web server down.  
 
If one chooses not to use the gar files, one has to perform all the above tasks manually. 
Ben, for example, decided that archiving his application files in a gar file wouldn’t suit 
his needs, as his application involved wrapping up legacy FORTRAN code with Java 
classes as well as using BPEL and the Sun grid engine. He chose to devise his own 
customized way of archiving the files, which involved creating a jar with all the 
implementation classes and putting it together with all the necessary files in the same 
directory. From that point, he did the rest of the work manually as explained above. So, 
our design for the elaboration phase was oriented towards those considerations. We 



 35

included Smartfrog components to automate the manual procedure and description files 
to deploy those components and provide them with the suitable parameters.  
 
As we have already said, we soon found out that having a design that can be extended to 
provide a generic solution for every kind of grid application, no matter how its files are 
archived, had no benefits for us. There was no need to reinvent the wheel and try to do 
with Java components what was already done with Ant scripts in GT3 core package. 
Therefore, in agreement with our supervisor, we decided to proceed with the definite 
assumption that a grid application is already compiled and archived as a gar file. At that 
point, we rejected using the chemical application as our second and final test case to 
check whether and how Smartfrog is useful in enabling automatic deployment of grid 
services.  
 
The greatest benefit of that choice is that we didn’t have to pay any trade-off. We didn’t 
have to limit the requirements or the scope of the project. On the contrary, we could 
extend the scope and the objectives, since we would have the necessary time budget in 
the construction phase. The only changes had to do with our time plan. Now we had the 
time to learn more things about how Smartfrog works and how it can be used to achieve 
what we wanted. Experimenting with Smartfrog framework would allow us to create a 
more complete solution in terms of management of the grid services to be deployed. 
 
We chose to explain those considerations to the reader before going into detail for each 
phase, so that the rest of the report makes sense and becomes self-explanatory. Now let’s 
describe the various stages of the elaboration phase. 

 

7.2 Requirements 
 
 

7.2.1 Main Goals of the Phase 
 
As we have already said, our objective during the elaboration phase was to create an 
executable prototype of our system using the financial application as test case. The 
prototype should, at least, incorporate the basic functionality defined for the global 
requirements of our project as discussed in chapter 4. Thus, and having the recently 
described considerations in mind, the main goal/milestone of the elaboration could be 
expressed as follows: to build a system that deploys a grid service automatically with 



 36

Smartfrog, by explicitly transferring the application files into specific locations in the 
OGSA servlet in the web server, making appropriate changes to specific web server files 
and restarting the web server, so that the new deployed grid service is accessible.       
 
Next we restrict our requirements for this phase by specifying the assumptions we would 
take into account. 

 
 

7.2.2 Basic assumptions  
 

• The grid application is already compiled and all the necessary server-side files 
(jar files with the implementation classes, WSDL schemas, wsdd files) are 
located in the same directory 

 
• Tomcat is used as the web server and the container of the grid services. 

 
• Globus Toolkit 3.2 is used as the environment for building and deploying grid 

services. However, as far as Tomcat is concerned, Globus Toolkit is only a 
servlet named OGSA.  

 
• There is a farm of machines available for hosting the new grid service. We 

assume each machine is clean in terms of any prerequisite environment or tools. 
The only necessary infrastructure consists of Java Runtime Environment (JRE) 
or Java Development Kit (JDK) and Smartfrog. Smartfrog is needed to enable 
the automatic download of all the necessary tools dynamically.  

 
• The machines have a UNIX-like operating system, with our main focus being 

on Sun OS (Solaris 9) and Linux. Although there is a Network File System 
(NFS) in the UNIX computer system of the CS Department, we assume that 
each host has a separate hard disk to make the applicability of our architecture 
more generic. 

 
• For the moment, we assume the machines belong to the same domain. 

Therefore, there are not any security restrictions stemming from the lack of trust 
in communications across organizational boundaries.  

 
 



 37

 

7.3 Design 
 

7.3.1 General explanation of the design     
 
It is clear that the first assumption constitutes the starting point of our design. Since all 
the server-side files of the grid application have already been generated and gathered in a 
specific place, there are certain things that have to be done for a grid service to be 
deployed: 
 

• Copy the jar files to the lib directory of the OGSA servlet in tomcat, so that they 
can be found as new libraries 

 
• Parse the deployment descriptor (wsdd file) of the grid service in order to find the 

<service> tag. 
 
• The wsdd file is a GT3-specific XML-based configuration file used to describe 

which parameters the grid service deployment environment (in our case the 
OGSA servlet in tomcat) will use to deploy the grid service. In particular, some of 
the basic configuration options defined in this file are the Grid Service Handle 
(GSH), which is effectively the URL of the grid service, the name of the factory 
of the grid service, the name of the class the provides the implementation of the 
grid service, the name of the factory service that will create instances of the grid 
service and the name of the WSDL file describing the interface of the grid 
service.  

 
• When the file is parsed, the whole <service> tag must be copied to the wsdd file 

of the OGSA servlet, which contains information of how all the grid services will 
be deployed. 

 
• Copy the grid service wsdl file into a specific location in OGSA directory in 

tomcat called ‘schema’. The name of the grid service wsdl file is retrieved from 
the <instance-schemaPath> parameter of the <service> tag. 

 
• Stop tomcat if it is already running 
 



 38

• Restart tomcat 
 

After the final step, the grid service will be up and running waiting to serve requests.   
  
Obviously, all the above presuppose that the basic support software, which we call 
infrastructure, is already downloaded, installed and deployed, if necessary. However, this 
assumption is not among the basic assumptions we mentioned earlier. Therefore, the 
infrastructure has to be deployed explicitly. In ‘deployed’, we include the essence of the 
three above terms together (‘downloaded, installed and deployed’). Those tasks will be 
implemented with Smartfrog description files, which will launch correspondent 
Smartfrog components (RMI objects) to download and install the infrastructure files 
dynamically, just before the classes that will implement the above 5 steps are themselves 
deployed. 
 

7.3.2 Illustration – UML Diagrams    
 
 
Next we use UML diagrams to display the system we want to build in practice. Before 
proceeding with explaining our design in more detail, it is now time to present an 
overview of a system that deploys grid services automatically using Smartfrog. Note that 
the view of the system is deliberately kept high, so that the reader understands how the 
basic communication works and how Smartfrog components can be deployed remotely 
using Smartfrog daemons. We do not show how the deployment is done in detail. It is 
only clear that the Smartfrog daemon of the central node that controls the deployment is 
responsible for delivering the deployment request to the local daemons, which in turn 
create the component that will realize the deployment. When explaining our final design 
in the construction phase, we will show a more detailed diagram of the architecture we 
chose to build. 
 
The diagram is shown on the next page as a UML component diagram. We chose this 
type of diagram, because it is very helpful in conveying the type of information we want 
at this point. In particular, it  
 

• shows the configuration of run time processing nodes and the components that 
live on them 

• shows a set of nodes and their relationships 
• illustrates the static deployment view of our architecture 

 



 39

 
 

 
 

Figure 4 

As we have said, the design in the elaboration phase was not extended in the construction 
phase, or in any way finalized to be complete and user-friendly. However, a considerable 
part of it would be used in the final design. Obviously, that part was the deployment of 
the infrastructure. Since we will explain that part when we discuss our final design in the 
construction phase, we will not include it in the following class diagram. As we won’t 
explain any Smartfrog components at this stage, we don’t need to include an activity 
diagram yet. 

 
 
 
 
 

7.4 Implementation 
 

Again, we will only be concerned with the explanation of the implementation issues 
related to the above-described classes, and not to the description files that install the 
infrastructure. The latter have been used and extended in the construction phase, so we 
will discuss their implementation process there. 
 
First of all, we must state that the choice of the programming language we would use was 
pretty much predefined. Smartfrog is implemented in Java and expects that Java 



 40

implementation classes provide the functionality for its components as well. Thus, we 
either had to implement our functionality using another programming language and then 
wrap it in Java classes, or use Java from the beginning. Of course, the latter solution was 
much better. Java would facilitate and actually simplify the development, while the 
performance would not suffer at all, as we are talking about simple transformations and 
copying of files with no computational load.    
 
The major challenge for this phase was the implementation of the XML parsing as well 
as the export and the import of XML elements from XML documents, as described in the 
second task of the general explanation of the design above. Researching the most 
effective ways to manipulate an XML document, we found out that the APIs that Sun 
Java provides are not really very convenient and adequate for the functionality we wanted 
to implement. In particular, Java includes two main XML parsers. The first is called SAX 
and is specified in the “javax.xml.parsers” and the “org.xml.sax” packages. The second is 
called Document Object Model (DOM) parser and is specified in the “org.w3c.dom” 
package. The advantage of the DOM parser is that it gives the chance to treat an XML 
element as an object of a special Java class, while the SAX parser does not provide any 
way of storing the info about an XML element in the memory other than as a string. In 
DOM, an XML document is viewed as a hierarchical structure (tree), so if we somehow 
extract it from a document, we can import it in a new document and insert it in a specific 
place or replace an older value of that tag. This is exactly what we had to do with the 
<service> tag, as described above. First we parsed the wsdd file of the application, 
exported the tag as a specific Java object, and appended it in the OGSA wsdd file as a 
new grid service. If we had used the SAX parser, we would have had to implement the 
parsing and the extraction of the value of the specific element manually, which would 
have involved much more work.  
 
Apart from those two packages, there are many customized open source Java APIs for 
XML parsing created by developers exactly because Sun’s APIs do not provide a lot of 
options or much flexibility. Probably it would have been even better for us to use one of 
those for our purpose considering the work needed to be done by our side. However, we 
judged that searching and learning how to use it would involve a learning curve high 
enough not to worth the effort and the time spent overall. Always keep in mind that we 
wanted to create only a prototype of our system in the elaboration phase. Therefore, it 
was reasonable to think that we should finish that phase as soon as possible to leave some 
more time for the construction phase, where the largest part of the work would have to be 
done.      
 



 41

Besides those issues, we didn’t encounter any other difficulties during the 
implementation of the Java classes of the elaboration phase. Of course, all those classes 
would have to be implemented as Smartfrog components. That means that they would 
have to extend the basic class for Smartfrog components (PrimImpl), which, among other 
things, defines specific deployment lifecycle methods (sfDeploy(), sfStart() and 
sfTerminate()). The runtime environment of Smartfrog invokes these methods to trigger 
each of the stages of the deployment lifecycle of a Smartfrog component.  
 

7.5 Testing 
 
The testing of each module of the executable prototypes as well as the testing of the 
system as a whole was determined by two factors.  The first was the fact we had chosen 
the Unified Software Development Process as our underlying project methodology.  The 
core characteristic of this methodology is that it is iterative and incremental.  Each phase 
of the process includes a testing artifact and each testing artifact is exercised as many 
times as many iterations of the phase are deemed necessary.  As a result, unlike some 
other project methodologies, the USDP’s testing process starts in the early stages of 
development.  The second determining factor was that the system was built upon the 
SmartFrog framework of interlinked components, therefore it had a highly 
compartmentalized, object-oriented design and implementation characteristic, since 
SmartFrog is itself built upon object-oriented principles in practice. 
 
Consequently from this the testing iterations started in this Elaboration phase as soon as 
the first fundamental building modules of this phase's prototype were developed.  Those 
early tests verified the basic functionality expected from the components.  The successful 
results of those tests allowed the next level of components to be created or extra 
complexity to be incorporated, thus, adhering to the incremental nature of the 
development process as a whole.  Applying that same incremental methodology into the 
testing sessions themselves, meant that each new group of components at each new level 
of the component hierarchy ( see developer’s section ) could completely rely on certain 
behavior and characteristic being present in the components at their base. 
 
The executable prototype of the Elaboration phase is a system of interlinked modules 
each build upon groups of components delivering certain functionality.  Since all of those 
components were SmartFrog compliant, they had to be implemented in the SmartFrog-
defined language.  To test the correctness of the components written in this proprietary 
language, a SmartFrog-provided parser was used on each individual implementation.  
The parsing of the implementation text files for each component guaranteed the 



 42

syntactical compliance of the code to the SmartFrog requirements as well as the compile-
time correctness of the components' attribute types, attribute values and the integrity of 
attribute references.  The successful parsing of the code of a given component guaranteed 
that the component ( and all its sub-components ) would be correctly constructed in 
memory as an object instance for run-time manipulation.   
 
The parsing of components' source code was the first step of testing the system modules 
building blocks.  The second was an actual independent, component-by-component or 
module-by-module execution where the visual verification of the results ( whether certain 
files were present or not, for example ) confirmed the availability of desired functionality. 
 
The following testing scenario and results are included here as an example of the testing 
techniques used during the Elaboration phase.  To keep this report concise only selected 
samples of the testing sessions and truncated test result output are shown next. 
 
All tests were performed on the following host: 
 
make: Dell Inspiron 5150 
OS:     RedHat Linux 9 
CPU:  1.6GHz 
RAM: 512MB 
HDD: 10GB 
Net:    10MB LAN 
IP:     128.16.80.24 
SW:    SmartFrog3.02.002.beta ( updated with CVS developer version as of July 12 2004 ) 
           Sun's Java(TM) 2 Runtime Environment, Standard Edition ( build 1.4.2_05-b04  
*  An instance of SmartFrog daemon was running during all tests. 
 
 
 
The first action in our grid deployment process creates a directory structure on the  
deployment host.  All downloaded and installed files/utilities/applications are placed in 
that working directory.  The directory creation is the task of the z15_4PrjectDirDeployer 
component.  As it is explained in the design section this component is built upon and it is 
an aggregate of SmartFrog-provided components.  In particular, components that execute 
Unix OS commands. 
 
The following are exerts from the configuration file sfConfig.sf showing the required, for 
this test, parameters and their values: 
 
baseHost  "128.16.80.24"; 



 43

baseDir    "/tmp/"; 
baseProjectDirName  "z15_4.2004"; 
baseProjectGarDirName "gar-files"; 
 
 
The parameters defined the test would be executed on the local host “128.16.80.24”, under 
the “/tmp/” directory and the name of the project directory created is going to be named 
"z15_4.2004" with a subdirectory named "gar-files".  The first step in the test is the parsing 
of the source code for the component using the provided for this purpose utility sfParse: 
 
[owner@localhost z15_4_SFDescription]$ sfParse z15_4ProjectDirDeployerTest.sf 
Warning: SmartFrog security is NOT active 
 Parser - SmartFrog 3.02.003_beta 
Copyright 1998-2004 Hewlett-Packard Development Company, LP 

. . . 
SFParse: SUCCESSFUL 
[owner@localhost z15_4_SFDescription]$ 
 
 
 
Evidently, the parsing was successful and before the actual execution a check was made 
proving that the project directory did not exist at the expected place: 
 
[owner@localhost z15_4_SFDescription]$ ls -lR /tmp/z15_4.2004 
ls: /tmp/z15_4.2004: No such file or directory 
[owner@localhost z15_4_SFDescription]$ 
 
 
Next the test was executed with the following results: 
 
[owner@localhost z15_4_SFDescription]$ sfStart localhost project_dir_test 
z15_4ProjectDirDeployerTest.sf 
Warning: SmartFrog security is NOT active 
SmartFrog 3.02.003_beta 
(C) Copyright 1998-2004 Hewlett-Packard Development Company, LP 
 - Successfully deployed: 'HOST localhost.localdomain:rootProcess:project_dir_test',  
[z15_4ProjectDirDeployerTest.sf],  host:localhost 
  
[owner@localhost z15_4_SFDescription]$ 
 
 



 44

These are the truncated log messages from the above test execution ( the component 
attempts to clear any existing directories with the same name before creating a new one): 
 
SmartFrog ready...  
[z15_4BaseInstallationUnDeployer:removeInstallationDir(bash)] LOG > Executing: rm -Rf z15_4.2004 
, SFRunShell, 2 
[z15_4BaseInstallationUnDeployer:removeInstallationDir(bash)] ERR > null 
. . . 
[z15_4ProjectDirDeployer:createDir(bash)] LOG > Executing: mkdir z15_4.2004, SFRunShell, 2 
[z15_4ProjectDirDeployer:createDir(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4ProjectDirDeployer:createDir(bash)] ERR > null 
 
After the execution another check for the existence of the project directory was made to 
verify the successful status of the test: 
 
[owner@localhost z15_4_SFDescription]$ ls -lR /tmp/z15_4.2004 
/tmp/z15_4.2004: 
total 4 
drwxrwxr-x    2 owner    owner        4096 Aug 27 21:33 gar-files 
  
/tmp/z15_4.2004/gar-files: 
total 0 
[owner@localhost z15_4_SFDescription]$ 
 
 
The output text above shows the successful execution of the test verifying the correct 
functionality of the z15_4ProjectDirDeployer component.  During a normal deployment this 
action is followed by the execution of a sequence of components that 
download/decompress/install a number of applications/utilities which form a required 
base for the deployment of grid service.  There is one such component for: GNU Tar, 
Apache Ant, Tomcat, Tomcat Deployer and OGSA.  To avoid overloading this report 
with identical repetitive test results only the first one is documented below.  The test 
attempted to verify that the components were capable of downloading a given resource – 
GNU Tar utility in that case, from a specified location – a Web server on the Internet, 
decompressing it and installing it under the project directory created in a manner shown 
on the preceding test.  The following were the parameters in the configuration sfConfig.sf 
file which in addition to the ones already used with the previous test were needed: 
 
gzTarFileName  "tar-1.13.tar.gz"; 
gzTarUrlAddress  ( "http://mirrors.kernel.org/gnu/tar/" ++ gzTarFileName ); 
tarFileName  "tar-1.13.tar"; 
tarDirName  "tar-1.13/"; 

http://mirrors.kernel.org/gnu/tar/


 45

 
 
The parameters defined the exact name of the target resource "tar-1.13.tar.gz", the location 
where it was going to be downloaded from  "http://mirrors.kernel.org/gnu/tar/, the name and 
the name of the local directory where it was going to be downloaded to "tar-1.13/".  The 
source code of the component was parsed to verify the syntax: 
 
[owner@localhost z15_4_SFDescription]$ sfParse z15_4GNUTarDeployerTest.sf 
Warning: SmartFrog security is NOT active 
Parser - SmartFrog 3.02.003_beta 
(C) Copyright 1998-2004 Hewlett-Packard Development Company, LP 
   
registerWith extends LAZY ; 
urlAddress "http://128.16.80.24:8080/z15_4/tar-1.13.tar.gz"; 
localDir "/tmp/z15_4.2004/"; 
localFileName "tar-1.13.tar.gz"; 
localFilePath "/tmp/z15_4.2004/tar-1.13.tar.gz"; 
. . .  
localTarFileName "tar-1.13.tar"; 
workingDir "/tmp/z15_4.2004/tar-1.13/"; 
  
SFParse: SUCCESSFUL 
[owner@localhost z15_4_SFDescription]$ 
 
 
The output of he sfParse utility shows the attribute values correctly set to the parameter 
values in the configuration file.  The actual component test was run next: 
 
[owner@localhost z15_4_SFDescription]$ sfStart localhost gnu_deployer_test 
z15_4GNUTarDeployerTest.sf 
Warning: SmartFrog security is NOT active 
SmartFrog 3.02.003_beta 
(C) Copyright 1998-2004 Hewlett-Packard Development Company, LP 
 - Successfully deployed: 'HOST localhost.localdomain:rootProcess:gnu_deployer_test',  
[z15_4GNUTarDeployerTest.sf],  host:localhost 
  
 
These are the truncated log messages from the above test execution: 
 
[z15_4GNUTarDeployer:unTarFile:gUnZip(bash)] LOG > Executing: gunzip tar-1.13.tar.gz, SFRunShell,  
. . . 
[z15_4GNUTarDeployer:unTarFile:unTar(bash)] LOG > Executing: tar -xf tar-1.13.tar, SFRunShell, 2 
. . . 

http://mirrors.kernel.org/gnu/tar/
http://128.16.80.24:8080/z15_4/tar-1.13.tar.gz


 46

128.16.9.178 ( highpark.cs.ucl.ac.uk )[z15_4GNUTarDeployer:runInstall(bash)] LOG > Executing: make 
install, SFRunShell, 2 
. . . 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > creating cache ./config.cache 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > checking host system type... i686-pc-linux-gnu 
. . . 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > Making all in lib 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > make[2]: Entering directory /̀tmp/z15_4.2004/tar-
1.13/lib' 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -I. -I../intl    -g -
O2 -c addext.c 
. . . 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > ranlib libtar.a 
[z15_4GNUTarDeployer:runInstall(bash)] OUT > make[2]: Leaving directory /̀tmp/z15_4.2004/tar-
1.13/lib' 
 
 
After the execution another check for the existence of the GNU Tar sub-directory in the 
project directory was made to verify the successful status of the test: 
 
[owner@localhost z15_4_SFDescription]$ ls -lR /tmp/z15_4.2004/ 
/tmp/z15_4.2004/: 
total 8 
drwxrwxr-x    2 owner    owner        4096 Aug 27 25:11 gar-files 
drwxrwxr-x   14 owner    owner        4096 Aug 25 23:22 tar-1.13 
  
/tmp/z15_4.2004/gar-files: 
total 0 
  
/tmp/z15_4.2004/tar-1.13: 
total 700 
. . . 
drwxrwxr-x    2 owner    owner        4096 Aug 25 23:22 bin 
-rw-rw-r--    1 owner    owner       50363 Jul  8  1999 ChangeLog 
. . . 
-r-xr-xr-x    1 owner    owner        5603 Mar  2  1999 install-sh 
drwxrwxr-x    2 owner    owner        4096 Aug 25 23:22 intl 
drwxrwxr-x    2 owner    owner        4096 Aug 25 23:22 lib 
-rw-rw-r--    1 owner    owner       13933 Jul  7  1999 Makefile.in 
. . . 
/tmp/z15_4.2004/tar-1.13/bin: 
total 548 
-rwxr-xr-x    1 owner    owner      554394 Aug 25 23:22 tar 
  
/tmp/z15_4.2004/tar-1.13/doc: 
total 996 



 47

 
 
The executions confirmed the ability of the component to perform the core functionality 
of the deployment process – the ability to access and download the required resources, 
perform any preparatory steps before their installation and installing them at the end.  
These characteristics and behavior is emulated in all of the specialized component groups 
that comprise the executable prototype.  Illustration of the tests carried for the other parts 
of the module, specifically the ones deploying the Apache Ant, Tomcat, Tomcat 
Deployer and OGSA are not included in the report as they were performed in identical 
manner as the test for the GNU Tar and yielded similar results.  After their tests 
confirmed they had incorporated the expected behavior as independent components, the 
next step of the testing sessions focused on the prototype as a whole executable unit.  The 
prototype itself consisted of two modules constructed by combining the lower 
hierarchical level autonomous components.  The first module z15_4NodeSystemBase was a 
combination of the just listed components that when executed in sequence resulted in a 
base of installed and configured resources on which the second module 
z15_4NodeSystemTier completed the deployment process by uploading the OGSA 
infrastructure onto Tomcat Web Server in the form of another web application and 
starting that server, effectively delivering access to the OGSA -contained Grid Services 
to potential client requests. 
 
The first module test was carried in the same manner as the tests before.  The sfParse 
utility was used to check for syntax errors: 
 
[owner@localhost z15_4_SFDescription]$ sfParse z15_4_NodeSystemBase.sf 
Warning: SmartFrog security is NOT active 
 Parser - SmartFrog 3.02.003_beta 
(C) Copyright 1998-2004 Hewlett-Packard Development Company, LP 
   
sfCodeBase "default"; 
sfClass "org.smartfrog.sfcore.workflow.combinators.Sequence"; 
sendTo extends LAZY ; 
registerWith extends LAZY ; 
actions extends LAZY  { 
        installationSequence1 extends  { 
                sfCodeBase "default"; 
                sfClass "org.smartfrog.sfcore.workflow.combinators.Sequence"; 
 . . .  
mainGUIeventQueue LAZY HOST localhost:test_event1:gui_eq; 
 SFParse: SUCCESSFUL 
[owner@localhost z15_4_SFDescription]$ sfParse z15_4_NodeSystemBase.sf 
 



 48

 
Next the module was executed expecting a full deployment of all required utilities.   The 
configuration parameters cold be found in the sfConfig.sf file: 
 
gzAntFileName  "apache-ant-1.6.1-bin.tar.gz"; 
gzAntUrlAddress  ( "http://apache.rmplc.co.uk/dist/ant/binaries/" ++ gzAntFileName ); 
antDirName  "apache-ant-1.6.1/"; 
 
gzTomcatFileName "jakarta-tomcat-5.0.25.tar.gz"; 
gzTomcatUrlAddress ( "http://apache.rmplc.co.uk/dist/jakarta/tomcat-5/v5.0.25/bin/" ++ 
gzTomcatFileName ); 
tomcatDirName  "jakarta-tomcat-5.0.25/"; 
tomcatUsersFileName "tomcat-users.xml"; 
 
gzTomcatDeployerFileName        "jakarta-tomcat-5.0.25-deployer.tar.gz"; 
gzTomcatDeployerUrlAddress    ( "http://apache.rmplc.co.uk/dist/jakarta/tomcat-5/v5.0.25/bin/" ++ 
gzTomcatDeployerFileName ); 
tomcatDeployerDirName             "jakarta-tomcat-5.0.25-deployer/"; 
 
gzOgsaFileName   "ogsa-3.2.tar.gz"; 
gzOgsaUrlAddress ( "http://www-unix.globus.org/ftppub/gt3/3.2/3.2.0/gt3_core/bin/" ++ 
gzOgsaFileName ); 
ogsaDirName  ogsa-3.2/"; 
ogsaWebAppName "ogsa"; 
 
 
These are truncated output messages for the completed test verifying the successful 
execution of all components as expected: 
 
[z15_4ProjectDirDeployer:createDir(bash)] LOG > Executing: mkdir z15_4.2004, SFRunShell, 2 
[z15_4ProjectDirDeployer:createDir(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4ProjectDirDeployer:createDir(bash)] ERR > null 
. . .  
[z15_4GNUTarDeployer:unTarFile:gUnZip(bash)] LOG > Executing: gunzip tar-1.13.tar.gz, SFRunShell,  
[z15_4GNUTarDeployer:unTarFile:gUnZip(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4GNUTarDeployer:unTarFile:gUnZip(bash)] ERR > null 
[z15_4GNUTarDeployer:unTarFile:unTar(bash)] LOG > Executing: tar -xf tar-1.13.tar, SFRunShell, 2 
[z15_4GNUTarDeployer:unTarFile:unTar(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4GNUTarDeployer:unTarFile:unTar(bash)] ERR > null SFRunShell, 1 
 [z15_4GNUTarDeployer:runInstall(bash)] LOG > Executing: make install, SFRunShell, 2 
. . . 
[z15_4BashUnTar(bash)] LOG > Executing: /tmp/z15_4.2004/tar-1.13/bin/tar -xzf apache-ant-1.6.1-
bin.tar.gz, SFRunShell, 2 
[z15_4BashUnTar(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4BashUnTar(bash)] ERR > null 

http://apache.rmplc.co.uk/dist/ant/binaries/
http://apache.rmplc.co.uk/dist/jakarta/tomcat-5/v5.0.25/bin/
http://apache.rmplc.co.uk/dist/jakarta/tomcat-5/v5.0.25/bin/
http://www-unix.globus.org/ftppub/gt3/3.2/3.2.0/gt3_core/bin/


 49

. . . 
[z15_4BashUnTar(bash)] LOG > Executing: /tmp/z15_4.2004/tar-1.13/bin/tar -xzf jakarta-tomcat-
5.0.25.tar.gz, SFRunShell, 2 
[z15_4BashUnTar(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4BashUnTar(bash)] LOG > Executing: /tmp/z15_4.2004/tar-1.13/bin/tar -xzf ogsa-3.2.tar.gz, 
SFRunShell, 2 
[z15_4BashUnTar(bash)] LOG > Executing: exit 0 
, SFRunShell, 2[z15_4BashUnTar(bash)] LOG > Executing: /tmp/z15_4.2004/tar-1.13/bin/tar -xzf jakarta-
tomcat-5.0.25-deployer.tar.gz, SFRunShell, 2 
[z15_4BashUnTar(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4BashUnTar(bash)] ERR > null 
. . . 
[z15_4OGSADeployer:runInstall(bash)] LOG > Executing: source /tmp/z15_4.2004/ogsa-3.2/etc/globus-
devel-env.sh, SFRunShell, 2 
[z15_4OGSADeployer:runInstall(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4OGSADeployer:runInstall(bash)] OUT > Buildfile: build.xml 
[z15_4OGSADeployer:runInstall(bash)] OUT > launchers: 
. . . 
[z15_4OGSADeployer:runInstall(bash)] OUT > BUILD SUCCESSFUL 
[z15_4OGSADeployer:runInstall(bash)] OUT > Total time: 19 seconds 
[z15_4OGSADeployer:runInstall(bash)] ERR > null 
 
The project directory on the deployment hosts was checked to confirm all files and 
subdirectories were correctly downloaded and configured: 
 
[owner@localhost z15_4_SFDescription]$ ls -l /tmp/z15_4.2004/ 
total 24 
drwxr-xr-x    6 owner    owner        4096 Feb 12  2004 apache-ant-1.6.1 
drwxrwxr-x    2 owner    owner        4096 Aug 25 11:52 gar-files 
drwxrwxr-x   11 owner    owner        4096 Aug 25 11:53 jakarta-tomcat-5.0.25 
drwxrwxr-x    5 owner    owner        4096 Aug 25 11:53 jakarta-tomcat-5.0.25-deployer 
drwxr-xr-x   13 owner    owner        4096 Aug 25 11:54 ogsa-3.2 
drwxrwxr-x   14 owner    owner        4096 Aug 25 11:53 tar-1.13 
[owner@localhost z15_4_SFDescription]$ 
 
 
The results above prove the test was successful and all base applications needed for the 
next module z15_4_NodeSystemTier were present. For this test also, the file 
z15_4_GridArchiveFileNames.sf, having the parameters defining the first grid service to be 
deployed into OGSA infrastructure, was used: 
 
baseGarUrlAddress "http://127.0.0.1:8080/z15_4/gt3_asian_AsianSpreadOption.gar"; 
baseGarFileName "gt3_asian_AsianSpreadOption.gar"; 
baseGarId       "gt3_asian_AsianSpreadOption"; 

http://127.0.0.1:8080/z15_4/gt3_asian_AsianSpreadOption.gar


 50

 
 
Next the last test for the prototype in this project phase was run probing the functional 
characteristics expected to be available before the start of the Construction phase: 
The parsing: 
 
[owner@localhost z15_4_SFDescription]$ sfParse z15_4_NodeSystemTier.sf 
Warning: SmartFrog security is NOT active 
  
Parser - SmartFrog 3.02.003_beta 
(C) Copyright 1998-2004 Hewlett-Packard Development Company, LP 
   
sfCodeBase "default"; 
sfClass "org.smartfrog.sfcore.workflow.combinators.Sequence"; 
sendTo extends LAZY ; 
registerWith extends LAZY ; 
actions extends LAZY  { 
        deployGridSrvc extends  { 
                sfCodeBase "default"; 
                sfClass "org.smartfrog.sfcore.workflow.combinators.Try"; 
 . . .  
mainGUIeventQueue LAZY HOST localhost:test_event1:gui_eq; 
  
SFParse: SUCCESSFUL 
[owner@localhost z15_4_SFDescription]$ 
 
 
And the execution of the module itself: 
 
[z15_4BaseGarDeployer:runInstall(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
deploy -Dgar.name=/tmp/z15_4.2004/gar-files/gt3_asian_AsianSpreadOption.gar, SFRunShell, 2 
[z15_4BaseGarDeployer:runInstall(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4BaseGarDeployer:runInstall(bash)] OUT > Buildfile: build.xml 
[z15_4BaseGarDeployer:runInstall(bash)] OUT > deployGar: 
. . .  
[z15_4BaseGarDeployer:runInstall(bash)] OUT > BUILD SUCCESSFUL 
[z15_4BaseGarDeployer:runInstall(bash)] OUT > Total time: 9 seconds 
[z15_4BaseGarDeployer:runInstall(bash)] ERR > null 
. . .  
[z15_4WebServicesDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
deployTomcat -Dtomcat.dir=/tmp/z15_4.2004/jakarta-tomcat-5.0.25/, SFRunShell, 2 
[z15_4WebServicesDeployer(bash)] LOG > Executing: exit 0, SFRunShell, 2 
[z15_4WebServicesDeployer(bash)] OUT > Buildfile: build.xml 
[z15_4WebServicesDeployer(bash)] OUT > deployTomcat: 
. . . 



 51

[z15_4WebServicesDeployer(bash)] OUT > BUILD SUCCESSFUL 
[z15_4WebServicesDeployer(bash)] OUT > Total time: 4 seconds 
. . . 
[z15_4WebServicesDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/jakarta-tomcat- 
.0.25/bin/startup.sh, SFRunShell, 2 
[z15_4WebServicesDeployer(bash)] ERR > null 
 
 
The test verified the expected functionality – the grid service file specified in the 
configuration file above gt3_asian_AsianSpreadOption.gar was successfully deployed onto 
OGSA infrastructure, the OGSA infrastructure was then mounted onto the Tomcat 
installation and the Web Server itself started.  The test was the last one of the sequence of 
tests attempting to check whether the components the dependent on them groups of 
components and dependent on them module, all comprising the prototype built at the end 
of the Elaboration phase, had the behavior and operational characteristics as defined in 
the design documentation and whether the implementation followed the design 
specifications.  The test confirmed the abilities of the prototype to deploy a grid service 
on a given deployment host with minimum interaction from the user.   
 

 

 

 

 

 



 52

8 CONSTRUCTION PHASE 
 

8.1 Requirements 
 
The goal of our design for the construction phase includes the basic goal of the design for 
the elaboration phase, which is essentially the primary goal of our project: to create a 
system that deploys a grid service automatically with Smartfrog. However, by no means 
do we believe this is enough. The deployment of a grid service must be accompanied by a 
more sophisticated functionality, which will allow the user to: 
 

• Choose which grid service to deploy 
• Choose the machines (servers) the grid service will be deployed on 
• Check the resources of a server before choosing it as a candidate for hosting a 

grid service as well as after it is chosen. The check must be periodic to notify 
the user of the new situation. 

• Manage the deployment of the grid service. That means check the status of 
deployment on a particular server and possibly proceed to action (for 
example, if something failed or if the resources are considered inadequate). 

• Select the type of deployment of a grid service. The type of deployment 
depends on whether the infrastructure is already installed and tomcat is 
running or not.  

• Undeploy a grid service or the whole infrastructure to clean the server. 
Manage the undeployment in the same way as the deployment.     

  
In general, demonstrating that Smartfrog, as a general-purpose deployment framework, 
enables the deployment of grid services automatically was not the only objective of the 
project. As we will show later, Smartfrog provides that functionality. What we wanted to 
experiment on were the capabilities of Smartfrog in terms of the management of the 
deployment and other non-functional requirements, such as:  
 

• Scalability 
• Security  
• Fault-tolerance 
• Resource awareness 
• Heterogeneity 

 



 53

For that reason, we wanted to build a demonstration system that encompasses the above-
explained functionality. We want to emphasize the term ‘demonstration’. When setting 
the requirements for that phase, he had certain things in mind about the capabilities we 
wanted the user to have. As we will explain shortly, we decided some things should be 
controlled by the user and some other by the system. Those considerations are not 
significant at all. What is of paramount importance is to show which management 
capabilities Smartfrog can offer to give the developer or the user a greater level of control 
over what is going on.  

 
    

8.1.1 Basic assumptions 
 
The only difference with the assumptions listed for the elaboration phase concerns how 
the application files are packaged. As we have already explained above, we assume that 
the grid application has already been compiled and packaged as a gar file using 
straightforward Ant tasks. The rest of the assumptions (numbered 2-5) remain essentially 
the same in this phase as well. 
 
We would like to expand on the issue related to the security restrictions that may occur 
across organizational boundaries and might prevent the actual communication from being 
achieved. One of our assumptions (number 6) states that all the available for deployment 
servers belong to the same organization. We included that to ensure that we wouldn’t 
have to deal with situations where we would want to test our system on machines in 
different domains, because a lot of problems would come up that wouldn’t have to do us. 
The most important of these problems would be the refusal of firewall administrators to 
open specific ports, so that RMI communication between Smartfrog components can take 
place across different domains. 
 
Furthermore, our primary goal was to develop a system with the minimum requirement to 
run on UNIX machines, because that was the kind of machines we could use in the labs 
of the Computer Science Department. Therefore, we had to at least make sure we would 
not create a system that used Solaris-specific features and then could not run on Linux 
machines, just because the labs we worked in had Solaris machines. As far as the 
requirements stage is concerned, enabling the deployment of our system on a Windows 
environment was not assigned a high priority. We just wanted to first secure the 
deployment on UNIX and if we had time, we would extend the applicability of our 
system on a Windows environment as well. However, the most important thing was to be 
able in the end of the phase to tell and document which specific implementation choices 



 54

were OS-dependent and what changes or specific extensions needed to be done to make 
our system work under Windows.   
 

8.2 Design 
 
 

8.2.1 General explanation of the design 
 
The basic architectural elements that the design of our system should include to meet the 
specified requirements are the following: 
 

A. Components for the deployment of the infrastructure and the grid service on the 
remote servers 

B. Components for checking the resources on the remote servers periodically and 
reporting the results 

C. A management console that resides on a central machine and lets the user view 
and control the deployment of the grid service on the remote servers 

D. A mechanism that enables the communication between the management console 
(C) and the components on the remote servers (A, B) 

 
We now provide an explanation of the designing features of each one of these 

elements. 
 

A. Deployment of the infrastructure and the grid service 
 
Since we have decided to use Smartfrog as our deployment framework, it is evident that 
the components that will actually implement the deployment on the remote servers must 
be Smartfrog components. That means that we either have to create our own classes with 
the functionality that we want them to incorporate, or we can use pre-existing 
components that come with the Smartfrog installation package. 
 
Smartfrog includes several APIs that help in specific areas of deployment, as well as 
descriptions of their classes, so that they can be used in customized description files via 
the use of prototypes and parameterization. There is no point in explaining how this 
mechanism works. We just need to say that it resembles the inheritance in Object 
Oriented Programming. Hence, we can use the Smartfrog descriptions as the base ‘type’ 
(‘prototype’ in Smartfrog terminology) of our component descriptions and then override 



 55

some of the attributes or add some more in order to achieve the desired behavior. For 
detailed explanation about the Smartfrog component descriptions and the 
parameterization mechanism the reader is requested to refer to Smartfrog Notation in 
Smartfrog reference manual (Hewlett-Packard Development Company 7 Jul 2004, p 12-
32). 
 
First of all, the fundamental designing consideration we had to make was related to the 
general functionality those components should accomplish. What options did we want the 
management console to have when requesting remote deployment? Would we include the 
deployment of the infrastructure and the grid service in the same description file or would 
they have to be invoked separately? What about the undeployment?  
 
We had to answer several questions like these to come up with the design of the remote 
components. We decided that the management console should be able to invoke: 
 
§ Full deployment: first deploy the infrastructure and then the grid service. The 

deployment of the infrastructure is treated as an atomic component, which means 
that it either terminates successfully or all the changes are undone and the 
machine is left clean, as it was at the beginning. If it is successful, the grid service 
can then be deployed as an atomic component again.  

 
§ Partial deployment: deploy only the grid service, assuming that the infrastructure 

is already installed, so it’s not needed to be reinstalled. If Tomcat is already 
running, do not stop it and restart it. Instead, deploy the grid service without 
affecting tomcat. 

 
§ Full undeployment: undeploy the whole infrastructure and leave the machine 

clean. 
 
§ Partial undeployment: Undeploy the specific grid service only, without affecting 

tomcat or the whole infrastructure.    
  

By deploying the infrastructure, we mean the following sequence of actions: 
 

• Download, untar and install GNU Tar, the implementation of the Tar program, 
which is used for manipulating tar archives. Usually, most of the UNIX 
machines include tar as an internal command. However, the installed Solaris 
operating system on the machines we used in the lab did not include a fully 
featured version of the Tar program. In particular, we tried to untar files we 



 56

downloaded from the internet, but we were getting strange errors, until we 
found out that the default-installed version of the Tar program had bugs. 
Therefore, we had to use GNU Tar to be able to untar all the rest of the 
infrastructure. 

 
• Download, untar and install Apache Ant   

 
• Download, untar and install Apache Tomcat, which will be used as our grid 

service container 
 

• Download, untar and install Globus Toolkit. After that, deploy Globus Toolkit 
as a servlet in Tomcat, using an Ant target.  

 
Having done all that, we say that the infrastructure is deployed. The next logical action is 
to deploy a grid service. To do that, we need to first call an Ant target to deploy the grid 
service in Globus Toolkit and then another Ant target to redeploy OGSA, which is the 
Globus Toolkit seen as a servlet in the web server, in Tomcat. The full undeployment 
requires the deletion of all the installation files of the infrastructure, while for the partial 
deployment we only need to first call an Ant target to undeploy the grid service in Globus 
Toolkit and then another Ant target to redeploy OGSA in Tomcat. 
 
The actual way we will accomplish all those design decisions will be presented in 
following subsections. 

 
 

B. Checking the resources 
  
First of all, we need to explain why we want to provide this element in our system. When 
a pool of machines is available to host grid service, not all of the machines may meet 
some minimum requirements that will allow them to serve the grid service requests. At 
some point, a machine may be overloaded, so its response time for a grid service 
invocation can be unacceptable. In the same way, a machine may run out of memory, 
which will again result in a bad service provision or no service provision at all. Thus, we 
want to track these situations and act, if we think it is necessary. An inspiring example is 
the load balancing technique, which is very commonly used in distributed systems 
nowadays. If, at some point, a server is overloaded, a load balancer comes into play and 
redistributes the service requests to other machines.  
 



 57

There are also cases where we want to have info about the status of the deployment on a 
remote server. For example, we would like to know if the infrastructure is installed and if 
OGSA is running in order to trigger the appropriate type of deployment on a remote 
server. In the last case we do not exactly check any resources, but we choose to call the 
whole of this functionality as ‘resources check’.  

 
For all these reasons we included this functionality in our design. Again, since we want 
those components to be executed remotely but triggered from a central machine, they had 
to be designed as Smartfrog components. The ‘resources’ or the ‘status’ we want to check 
on each server consist of the following: 

 
§ Available memory on the machine. Because our remote components will actually 

be Java programs, in practice we are interested in the available free memory 
within the Java Virtual Machine (JVM) and not the available RAM in the 
operating system. 

 
§ CPU load. As we said above, we want to know how loaded each server is. 

 
§ Free hard disk space. It plays an important role mainly when we consider 

deploying the infrastructure on a server, because the infrastructure needs quite a 
lot of hard disk space.  

 
§ Whether the infrastructure is installed. This would help us a lot when we have to 

decide if the deployment needs to be full or partial to avoid reinstalling the whole 
infrastructure. 

 
§ Whether OGSA is running or not. If it is, we know that Tomcat is running (as it 

hosts OGSA) and the grid services are also up and running. 
 
We will not cover how we achieved to retrieve all this information from a remote server, 
as this is an implementation issue.  However, what we need to consider in the designing 
stage is what level of detail the information that the remote components return to the 
central server will have. In particular, we need to answer whether it is useful if the remote 
component just sends back the specific number of a particular check to the management 
console or only a general feedback indicating whether the result was satisfactory or not. 
For example, if the available memory is 20MB, should the remote component return that 
number or just a simple string showing that the memory is enough?  
 



 58

Clearly, each option has advantages and disadvantages. Returning the exact number 
allows a higher level of control. As we will show shortly, the user can see this number 
and have a clearer image about the resources in the remote machine. On the other hand, 
we must take into account the fact that at some point the number of servers may be large. 
If the user sees a panel with a continuous flow of numbers, would not be very helpful but 
rather useless. He would have to constantly check the numbers on the panel to be able to 
act, which is not very convenient or practical. For that reason we decided to send only an 
indication whether the particular resource was enough or not. The decision for that would 
be made by the remote component directly.         

      
 
C. Management Console 
 
The management console contains a Graphical User Interface (GUI) to allow interaction 
with the user as well as an underlying functionality that supports this interaction and the 
central management of the deployment. From now on, we will use the terms 
‘management console’ and ‘GUI’ interchangeably. Of course, there must be no confusion 
between our ‘management console’ and the ‘Smartfrog management console’, which is 
something completely different. We will explain the Smartfrog management console 
later. In general, we will use this term to refer to our management console. 
 
In the same way as before, we want to explain the reasons for adding the functionality of 
a management console to our system before discussing any designing considerations. The 
main goal is to have a central point of the management of the deployment. As we have 
stated several times, the basic objective of our projective was to implement the automatic 
deployment of a grid service on many servers using Smartfrog. The automatic 
deployment, however, has no point, if you have to go to each server and start the 
description files, as we did in the prototype we created in the elaboration phase. This is 
the first step towards automatic deployment, but not the final. It is absolutely essential to 
be able to start and control the deployment from a central point. This capability becomes 
additionally important in cases where the servers are not in the same location, bur rather 
in distant premises from each other; they may even belong to different organizations. 
 
Moreover, apart from a central point of control, we want to have the chance to manage 
the deployment. We would like the user to be able to see how the deployment progresses 
and act, if he thinks it is necessary. This is a key element of our system, since everything 
changes so quickly during the deployment on a large number of machines. We may start 
with a number of servers and, at some point, decide we want to remove a server or add 
another one. Or we may wish to deploy two grid services on some servers and one on 



 59

some others. In general, the conditions can change rapidly during run-time. Therefore, we 
don’t only want to deploy something automatically in the least possible time. We need to 
be able to manage the deployment using dynamic information as our compass. 
The final reason for creating the management console was because we want to let the 
user/administrator control a number of factors. It would be easier for us to create a central 
component, which would manage the whole process, but would take all the decisions 
transparently. What is really vital, is to let the user decide what needs to be done and not 
to hardcode the decisions in all possible cases in our system. The GUI must be user-
friendly and in the same time functional to give all the necessary information to the user 
and the chance to configure the deployment the way he wants at run time.       
 
Functionality of the management console 
 
Next we give an overview of the functionality we want the management console to 
incorporate. We won’t explain how the GUI works in detail, because we are interested in 
describing our designing decisions and considerations at this stage. From the User Guide 
the reader can have a clearer demonstration and understanding of the GUI.  
 
At first, the GUI shows a list of all the available servers for deployment. The user selects 
some of them to be added to the GUI. The GUI sends a request to start the remote 
component that checks the resources on each of these servers automatically. The user can 
see the results of the resources check and chooses one type of deployment depending on 
these results or other initial information about the state of the servers (we will explain 
how this information is obtained shortly). This means that if the infrastructure has been 
installed, the user will choose partial deployment for that server.   
 
When the deployment starts, the remote deployment components send messages 
continuously notifying the management console whether the specific step of the 
deployment process was successful or not. These messages are displayed to the user. 
There is an output window that shows the entire flow of messages to the user, and 
another window that shows only the messages that constitute warnings or errors. This 
way the user can view all the messages about errors in deployment or low level of 
resources in one place and can understand far more quickly and more securely whether he 
needs to act somehow. 
The GUI must allow the user to view more details about a server. In particular, it is 
important to store the profile of server, which contains information about: 
 

• the resources – if the level of each resource is above the minimum or not 
• if the infrastructure is installed or not 



 60

• if OGSA (and consequently Tomcat) is running or not 
• which grid services have been deployed on the server 

 
Obviously, to be able to obtain this information, the management console must process 
all the incoming messages and update the specific server profile dynamically. 
 
We chose not to give the GUI the ability to send a message to a remote component. Only 
the remote components send back feedback to the GUI about the resources of the servers 
or the state of the deployment. Similarly, we judged there is no point in allowing the GUI 
to ‘terminate’ a remote component (using the terminology of Smartfrog). The reason for 
this choice is very simple. In order to start the program, the user has to start the Smartfrog 
daemon, which encompasses a window and allow him to start a Smartfrog management 
console for any host. The latter enables the user to view the status of any component on 
any host with details, as well as terminate it, if he wants. Consequently, we did not need 
to reinvent the wheel and provide the same functionality as Smartfrog. Instead, we 
wanted our program to be complementary to Smartfrog. We aimed at creating a 
management console to have a central point of gathering of the information about all the 
servers. The user can utilize it to see what is going well and what not. If he wishes to 
retrieve more details about a remote component (for example, why it failed during 
deployment), he can use the Smartfrog management console to view the status of that 
particular host and proceed with more drastic action, such as termination.       
 
Furthermore, another characteristic we would like the GUI to have is to store all the 
messages in a log file. As the flow of messages on the output window may be 
overwhelming and confusing, the user may use the log file to see what has happened so 
far in terms of the deployment; which servers have been used and at which stage the 
deployment is for each of them. Also, we want the profiles of the servers to be stored in a 
different file, so that the GUI retrieves this information when it starts. One could well 
argue that information about the resources or if OGSA is running are not useful during 
start-up, because a lot of things may have changed since the profiles were stored and this 
information is also available through the dynamic resources check. However, we 
considered the significance of knowing whether the infrastructure is installed when the 
console starts, as this would allow the user to choose partial deployment instead of full 
and save much time. 
 
A final issue we needed to address was how the central management component would 
start the deployment of the remote components, which are described in Smartfrog 
description files, as we said. Clearly, this is a designing consideration and must be done 
at an early stage, because it affects the design of our system and the choice of the 



 61

communication mechanism we will describe next. Researching the Smartfrog API we 
found that Smartfrog requires our management console to be a Smartfrog component as 
well, if we want to start a Smartfrog description file from inside its class.     

  
 
D. Communication mechanism 
 
The communication mechanism between the management console and the remote 
components is a fundamental part of our system. As we have shown above, our design for 
the GUI requires the flow of messages to be one-way. Only the remote components are 
allowed to send messages to the GUI and not vice-versa. 
 
The question we had to answer next was how we would build this mechanism. 
Obviously, we could choose some of the usual ways of communication between 
distributed components, such as RMI or plain sockets. The matter is that we use 
Smartfrog as our deployment framework. Hence we could exploit its capabilities. 
Smartfrog is built on RMI model, but goes well beyond that in many aspects. It provides 
a communication mechanism based on events. Currently, the events are allowed to be 
only strings and the mechanism is very simple and does not cover many needs. For more 
information about the ‘workflow mechanism’, as it is called, and the respective 
components, the reader may refer to the Smartfrog workflow document (Hewlett-Packard 
Development Company 7 Jul 2004, p 1-4).   
 
Since the possible messages the remote components can send are a lot and must contain 
some common details, we wanted to create a standard format for them, such as if we were 
going to design our own protocol. The GUI could then understand the information each 
message carries more easily. The format we chose is the following:  
 

0 or 1 (string) :: Name or IP of remote host 
Message body 

  
The initial 0 or 1 denotes whether the remote component checks the resources or is a 
deployment component. Then a string gives the name or the IP address of the remote 
host, so that the GUI knows where each message comes from. The message body starts in 
a new line. 
  
 
 
 



 62

8.2.2 Illustration – UML Diagrams    
 

 
In the same way as in the elaboration phase, we will first present a component diagram 
that shows the high level view of our final system. We can see which high level 
components are deployed on the central host and on a random remote server and how 
they interact with each other.  

 
 

 

 
 

Figure 5 

 
Next we will give the detailed diagrams for our system. The Smartfrog component 
descriptions will be treated as classes and will also be described with class diagrams in 
the developer’s index. The different activities taking place during the deployment of the 



 63

Smartfrog components are described with activity diagrams. As the number of the classes 
and the components of our system are very large, we choose to split the class and the 
activity diagrams for the different parts of our system, so that we can show the 
functionality of each part in detail. 

 

Figure 6: ActivityDiag-01  

The ActivityDiag-01 provides an overall view of our deployment system.  It encompasses 
the major action components designed to provide the required basic functionality.  The 
system starts by allowing the user to choose one or more hosts on which to deploy the 



 64

desired number of Grid Services.  As the diagram indicates the deployment of the 
services is undertaken as an independent process for each chosen host.  An autonomous 
component on each host checks the availability of the minimum necessary resources as 
well as the presence of pre-deployed infrastructure.  The subsequent decision about the 
type of the deployment depends on the availability and presence of those pre-deployed 
resources.  This design logic allows the user to interrupt the deployment process on a 
given host and proceed at a later time as well as it gives them the ability to structure the 
grid service deployment as an incremental process addressing a number of different 
scenarios. 
The first of these scenarios occurs with 'clean' hosts – hosts on which there have not been 
deployed any of the necessary resources.  The user is given the option to do a Full 
Deployment.  The following diagram ActivityDiag-02 illustrates a step down the hierarchy 
from the previous overview level.  The process is logically divided in two sub-processes 
– Deploy Base and Deploy Tier.  The analysis of the project requirements concerning the 
actual grid services installation reviled what specific files, applications and resources 
were necessary for their deployment and the steps preceding the deployment of the 
OGSA onto a Web Server ( Apache Tomcat in our case ) installation.  

            Figure 7: ActivityDiag-02 



 65

 
The download and installation of these basic resources is grouped in the Deploy Base action 
while the loading of the OGSA structure onto Tomcat's installation ( as a Web 
application ) and the activation of the Web Server is grouped in the Deploy Tier action 
component.  In case of a failure after or during the Deploy Base action the application 
automatically starts Clean sub-process, which is designed to undo/remove Deploy Base 
actions.  This 'roll-back' logic is incorporated in order to enforce all-or-nothing rule 
guaranteeing that no deployment is to proceed without the minimum of resources 
successfully installed on the host. 



 66

   

Figure 8: ActivityDiag-03 



 67

 
 
ActivityDiag-03 reveals further the details incorporated in the Deploy Base action group. 
This is a sequence of action each resulting in a required resource being downloaded and 
installed.  Following the steps on the diagram; the first step is removing and recreating of 
file directory structure where the actual installation of required deployment resources 
takes place.  The status of this step as well as the statuses of the subsequent steps are sent 
to the User Interface for run-time monitoring of the progress.  A failure in this or 
subsequent steps will trigger the automatic 'roll-back' action described in the previous 
paragraph.  The next step is the download, decompression and installation of the GNU 
version of the Unix based Tar utility.  This specific application and this version are 
required for the decompression of the subsequent resources that stipulate it in their 
release documentation.  The next step in the sequence is the download and 
decompression of the Apache Ant utility.  Ant is principle way of the deployment of Web 
applications and respectively Grid Services applications (which are base on Web Services 
infrastructure).  The process makes extensive use of XML scripts provided with the 
installation packages and written under Ant specifications. 
After the installation of Ant, the next three actions do not depend on the execution of 
each other, therefore, they are started in a parallel fashion.  All three threads download 
and decompressed the installation packages of the Apache Tomcat, Tomcat Deployer and 
GlobusToolkit3.2.  Just like the steps in the sequence before, the exit status of each thread 
is sent to the User Interface and a failure with each one causes the same 'roll-back' action 
described in the above paragraph.  A successful exit status of the Deploy Base action as 
illustrated in ActivityDiag-02 triggers the next action in the sequence at the upper 
hierarchical level – Deploy Tier in ActivityDiag-04. 



 68

    Figure 9: ActivityDiag-04 

 
The Deploy Tier module is yet another sequence of actions that build on the resources 
deployed by Deploy Base.  The first action of the sequence is the download of the Grid 
Service Archive (GAR) file and running the Ant scripts included in the GlobusToolkit3.2 
installation for deploying Grid Services in the OGSA directory structure.  The second 
action uses similar Ant scripts to deploy the OGSA directory structure as another Web 
application onto the Tomcat Web server and start up the server by running a provided for 
this purpose Unix shell script.  The successful execution of these actions results in the 
Grid Service being effectively deployed onto a Web server and made accessible to client 
requests.  The exit status of the sequence's step is again sent to User Interface for 
monitoring. 
 
 
 



 69

The activity diagrams so far illustrate the core functionality of the system – deploying 
grid services along with all necessary resources on a given host chosen by the user.  The 
process is repeatable and incremental and it is independent of other processes running on 
other deployment hosts. 
  
Based on the architectural design described in the preceding pages at the end of the 
phase, an executable architecture prototype was built in two or three iterations.  While an 
evolutionary prototype of a production-quality component is always the goal for the 
Elaboration phase, our development process included one exploratory, throw-away 
prototype which was used for early demonstrations and helped us mitigate specific risks 
such as design/requirements trade-offs, component feasibility study etc.  That first 
prototype reflected the initial project requirements that subsequently changed. 
 
During the construction phase, all remaining components and application features were 
developed and integrated into the existing prototype, and all features were thoroughly 
tested.  During the development process in this phase, more emphasis was placed on 
managing resources and controlling operations to optimize feature details, schedules, and 
quality.  The way we structured our project allowed us to spawn parallel construction 
increments.  These parallel activities significantly accelerated the availability of 
deployable releases.  During the construction phase, an expanded version of the previous 
phase prototype was iteratively and incrementally developed and made ready for a final 
demonstration.  This included finishing the implementation and testing of the software as 
a complete system from a user prospective.  The additions made to the earlier prototype 
include, in terms of functionality, the incorporation of signal passing scheme for inter-
component communication and tying the deployment process flow to the type of those 
signals passed as well as the capability of the system to handle 'scenarios' where only 
partial deployment ( full deployment is covered in the preceding section ) and un-
deployment or full or partial de-installation was needed. 
 
 
 
 
 
 
 
 
 
 



 70

       Figure 10: ActivityDiag-05  

 
ActivityDiag-05 illustrates one such scenario.  The diagram is an expanded view of the 
Partial Deployment action in ActivityDiag-01.  The user is allowed to choose this option only if 
the previous actions Check Resources and Check Installation confirm the availability of 
sufficient computing resources and the presence of a pre-installed base of components ( a 
result of successful Full Deployment execution, for example ).  In this case the user is given 
the ability to add another Grid Service to the group of services already provided by the 
OGSA installation on a given deployment host ( see ActivityDiag-04 ).  This process starts 
by downloading the GAR file from a location determined by the user to the project 
installation directory on the deployment host.  At the next step an Ant script, already 
included with the OGSA installation package, is executed to deploy the new grid service 
onto the OGSA's infrastructure.  A successful exit status triggers the third step that in turn 
executes an Ant script, included with Tomcat installation package, 'hot' re-loading OGSA 
into Tomcat.  The use of this 'hot' re-loading feature eliminates the need of shutting down 
and re-starting the web server.  Such start-stop downtime would cause disruptions of the 
other already running services and would result in failures of those services' client 



 71

requests.  The two Send Status Signal actions are part of the signal passing scheme mention 
in the previous paragraph providing run-time status information to the User Interface.  
The successful completion of the process covered in this diagram results in the grid 
service chosen by the user being made available for client requests. 

  

   Figure 11: ActivityDiag-06    

 
ActivityDiag-06 illustrates another scenario the Elaboration phase prototype was expanded 
to handle.  The diagram is an expanded view of the Partial Undeployment action in 
ActivityDiag-01.  The user is allowed to choose this option only if the previous actions Check 
Resources and Check Installation confirm the availability of sufficient computing resources 
and the presence of a pre-installed base of components ( a result of successful Full 
Deployment execution, for example ).  In this case the user is given the ability to remove a 
Grid Service from the group of services provided by the OGSA installation on a given 
deployment host ( see ActivityDiag-04 ).  The process is a reverse of Partial Deployment 
described in the previous paragraph.  It starts by executing an Ant script, already included 
with the OGSA installation package, that un-deploys the grid service from the OGSA's 



 72

infrastructure.  A successful exit status triggers the second step that in turn executes an 
Ant script, included with Tomcat installation package, 'hot' re-loading OGSA into 
Tomcat.  The use of this 'hot' re-loading feature eliminates the need of shutting down and 
re-starting the Web server.  Such start-stop downtime would cause disruptions of the 
other already running services and result in failures of those services' client requests.  The 
two Send Status Signal actions are part of the signal passing scheme providing run-time 
status information to the User Interface.  The successful completion of the process 
covered in this diagram results in the grid service chosen by the user being made no 
longer available for client requests. 
 
*  For the purpose of keeping this report concise all UML Class diagrams illustrating the 
components providing the actual functionality of the Activity diagrams on the preceding 
pages have been moved to the Developer’s Section document. 
 

8.3 Implementation 
 
Once again, we will discuss the implementation issues and our decisions for each one of 
the four building blocks of our system that we introduced in the design section.  
 
 

8.3.1 Deployment of the infrastructure and the grid service 
 

For this part we had to create the following components:  
 

• deployment of the infrastructure 
• deployment of a grid service 
• redeployment of a grid service 
• undeploy a grid service 
• undeployment of the infrastructure 

 
Combination of one or two of these components corresponds to the functionality 
expected by the management console for the remote deployment components. For 
example, combination of the deployment of the infrastructure and the deployment of a 
grid service would result in full deployment, whereas partial deployment would be 
implemented using either the component for the deployment of a grid service or for the 
redeployment of a grid service, depending on whether OGSA is running or not.  



 73

 
Now let’s see what is needed to implement each of the five components mentioned 
above. The most complex of all is the deployment of the infrastructure by far. The 
infrastructure consists of several parts, namely GNU Tar, Ant, Globus Toolkit and 
Tomcat. To deploy each of these parts there is a common sequence of actions that must 
take place; the respective tar.gz file must be downloaded from the Internet, then untared 
and unzipped, and finally a script which will complete the installation possibly needs to 
be executed. After the support software is installed, OGSA is deployed in Tomcat by 
calling a simple Ant script.   
 
The deployment and the undeployment of a grid service are also done with a simple Ant 
script. For the undeployment we just need to delete the whole directory where the 
infrastructure is installed. Redeployment of a grid service happens when we deploy a grid 
service in OGSA and then redeploy OGSA in Tomcat while Tomcat is running. The key 
issue here that we don’t want to shut down the web server and then restart it; instead, we 
want to force Tomcat to take the redeployment of OGSA (and, consequently, of the new 
grid service) into account, while it is running. After thorough research into Tomcat’s 
capabilities and documentation, we found out there is a tool called Tomcat Manager, 
which allows for the management of the web applications running under Tomcat in real 
time. Tomcat Manager needs to be configured, so that the users that can make the 
changes and their permissions are set beforehand. Fortunately, the installation package of 
Tomcat comes with an Ant script, which allows for the easy configuration of Tomcat 
Manager. 
 
The next thing we had to consider for the implementation of this part was how we could 
implement a sequence of actions in Smartfrog descriptions. Note that this is absolutely 
essential, because the deployment of each one of the five Smartfrog components 
mentioned above is broken down to a sequence of sub actions. Smartfrog provides that 
functionality through the use of the workflow component Sequence. Sequence defines a 
list of subcomponents to be executed in order of description. The second subcomponent 
starts only after the end of the lifecycle of the first component and so forth. An important 
characteristic of all the workflow components is that when one of the subcomponents 
fails and terminates abnormally, the whole workflow parent component terminates as 
well. For example, when one of the subcomponents taking part in the sequence of actions 
for the deployment of the infrastructure fails, the whole deployment terminates 
automatically, which is very helpful in our case. Furthermore, we may define a specific 
behavior when a Sequence component terminates abnormally (or normally), by wrapping 
the whole Sequence in a workflow Try component and by catching its exit status. This is 



 74

particularly useful when we have to think ways of sending messages with the result of the 
deployment back to the central management console.  
 
Another implementation issue is related to the fact that a lot of our components share 
some common functionality or are dependent on each other. As we said, the deployment 
of the various parts of the infrastructure is broken down to the same sequence of actions. 
The best way to take advantage of this feature is to create a basic component (called 
‘installer’ or ‘deployer’) which incorporates this functionality and then make all the other 
components extend this component by overriding some of the attributes or adding new 
attributes and subcomponents where required.  
 
In general, it is a very good programming technique in Smartfrog to create some initial 
base components and make the subsequent components inherit from them using the 
parameterization mechanism of Smartfrog. We tried to apply this principle as broadly as 
possible. On top of the hierarchy we created files with global configuration, which affect 
the whole of our descriptions, such as names for the installation directories and the files 
to be created during the installation and so forth. In addition, we created a file containing 
all the base components needed for the installation. Finally, we described each one of the 
executable components mentioned at the beginning of the section in a separate file 
making sure that they extend and override the behavior of the base components as 
required to implement the desired functionality. The greatest advantage of this technique 
is that if we want to make a change into the behavior of one based component, we only 
need to make it in one place, but it affects all the executable components that depend on it 
automatically; just like the inheritance mechanism in OOD.  
 
In the description of our implementation so far we have used a top-to-bottom way of 
explaining the hierarchy of our components. First we explained how the executable 
components are expressed as a sequence of actions and then how the subcomponents, 
which form that sequence, extend our base components, which is described in a different 
file. This method is continued until the lower levels of the hierarchy. The base 
components that lie on the bottom of the hierarchy are: 
 

• downloader; used to download a file from a URL in the Internet 
• untar; unzips and untars a file  
• run a command; runs an operating system (usually shell) command. It is used in 

various cases, such as the creation of the installation directories and the execution 
of Ant or shell scripts. 

 



 75

Therefore, the final question we had to answer was how we were going to implement 
these components. Everything else could be described in Smartfrog description files 
using the inheritance mechanism we mentioned before. For these base components we 
had two alternatives. We either had to write our classes to implement their behavior or we 
could use Smartfrog components that achieve the same functionality. Fortunately, 
Smartfrog deployment framework includes such components, because they are very 
useful in several deployment occasions. Downloader, Untar and RunCommand 
components covered all of our needs.  
 

8.3.2 Resources Check 
 
The major challenge for this part of our system was how we going to measure/check the 
resources. In this case, Smartfrog does not include any components/classes offering this 
functionality, so we had to create our own special classes.  
 
The available virtual memory of the Java Virtual Machine could easily be retrieved using 
a simple Java instruction. However, in order to measure the CPU load and the free hard 
disk space we had to use command line scripts. There were two issues we had to consider 
here: 
 

• how we were going to execute commands from inside a Java class 
• how we were going to deal with the inherent heterogeneity problem due to the 

dependence of the commands on the underlying operating system. 
 
For the first issue we created our own utility class, which takes a command as an 
argument and executes it, while it also creates two threads, which print the output and 
error streams of the command. Thus we could see the exit value of the command, the 
output results and possible error messages. We chose to write our own customized class 
and not use the RunCommand component as before, because we want to add some more 
customized behavior in it, which had to do with the way it would interact with the main 
CheckResources class and how it would notify the latter class of the results.   
 
As far as the second issue is concerned, we explained earlier that our main targets were 
UNIX-like systems. For that reason, we used UNIX commands and scripts. Beyond that, 
we included some lines of code in our class to check the type of the operating system, so 
that the addition of a Windows version of the commands and scripts could be done more 
easily. For the check of the CPU load we used the command ‘uptime’, while for the 
check of the free hard disk space we wrote our own script. The problem was that there is 



 76

no standard UNIX command that returns the load of the CPU as a % percentage. We 
regarded the command ‘uptime’ as the closest and the easiest way to measure the CPU 
load, although what it shows in reality is the average number of jobs in the CPU queue 
and not the average CPU load, as we would like. The script for measuring the free hard 
disk space, on the other hand, functioned very well and returned the exact arithmetic 
result we wanted.      
 
Finally, part of the functionality of the CheckResources class was to check whether 
OGSA (and consequently Tomcat) is running. Reading Tomcat documentation we 
concluded that the most secure way to implement the check was to open the URL of 
OGSA with a browser and see if the servlets and the web applications are there. 
Obviously, in a java program we could not open a browser, but rather create a URL 
connection and check if the URL exists and contains what we expect. 
 
 

8.3.3 Management Console 
 
We believe there is no point in expanding on the implementation of the GUI. The reason 
for that is that the way we chose to present the buttons, the windows, etc is not that 
important for the functionality of our project. We described the capabilities of the GUI in 
the design section. We will only say that we used the Java Swing package. In general, 
GUI development does not have surprises. The tools you have are quite standard; you 
know what you want to create, so it’s just a matter of putting the effort and the time to do 
it. However, GUI development is very time-consuming. We needed to write a lot of 
classes and devote a substantial amount of time to create a user-friendly GUI, which had 
the functionality we set in the design.  
 
A fundamental part of the implementation of the management console was related to the 
underlying functionality that launched the remote components. Under real circumstances, 
the management console must be capable of managing the deployment on a large number 
of servers. Thus it is not reasonable as well as efficient to have the execution of the main 
program stopped each time a remote component has to be launched. For that reason, we 
decided to make our console spawn different threads that will be responsible for 
instructing Smartfrog to deploy the components described in the proper description file. 
In addition, we wanted to exploit the observation that the implementation of the 
deployment of the remote components from a java program is done in a common way for 
all the threads and for all the description files. Hence, we included this common behavior 
in a class called RemoteHostDeployer.      



 77

 
An important issue that concerned us when implementing that class was how we were 
going to make dynamic changes to Smartfrog component descriptions. The way 
Smartfrog deploys components described in description files is the following:  
 

• the file with the component descriptions is parsed 
• Smartfrog components (RMI objects) are created in memory 
• they are deployed by the Smartfrog runtime environment based on the 

characteristics (values of attributes) of their descriptions.   
 
An attribute of an already parsed Smartfrog component can change dynamically by using 
specific methods of the Smartfrog API.  
 
The attributes we wanted to be defined dynamically by the management console and 
could not be hardcoded in the description files are the following: 
 

• hostname: the name of the remote host the particular on which deployment will 
take place 

• messages event queue: the name of the EventQueue component where the 
messages would be sent and stored before being consumed by the management 
console (see subsection D below) 

• gar URL: the URL for downloading the gar file representing the grid service to be 
deployed   

• gar ID: the name of the gar file; it is used during the undeployment of the grid 
service 

 
The problem in our case is that many attributes in our static component descriptions 
depend on the above attributes. In the same way, many attributes depend on the attributes 
of the first level of the dependency tree and so forth. The dependencies reach very deeply 
in this tree. Obviously, we had to change the values of the attributes in this tree 
dynamically as well, because they had been statically defined before. The number of 
changes would be very large, which renders that solution impractical and inefficient. 
Although Smartfrog provides a mechanism that enables you to specify that the value of 
an attribute will be defined at run-time and after the parsing, the need for successive 
changes along the dependent attributes would still exist. After trying all the possible ways 
to deal with this issue, we ended up writing the values of those three attributes in a new 
description file just before parsing. It was the easiest, most effective and probably the 
only trick we could use. This way we were sure that the dependent attributes would have 



 78

the correct values even just after the parsing and the deployment could flow with no 
further problems.       
 
A last issue that concerned us during the implementation of the management console was 
how we would store the server profiles in a file. We chose the serialization of objects in 
Java as the best to do it. At the start-up the GUI reads the file and deserializes the object 
to retrieve the server profile information. We only had to make that the class, which 
contains the server profile, could be serialized indeed, for not all Java classes are 
serializable.          
 
 

8.3.4 Communication mechanism 
 
As we said, we used the Smartfrog Event Mechanism to implement the communication 
between the remote components and the management console. To send a message a 
remote component uses an EventSend component, whose purpose is exactly that; to send 
a message. All Smartfrog workflow components that implement certain interfaces can 
send or receive messages, as long as they are registered to a component, which will send 
them the messages, or that component has a certain attribute that specifies the 
components it will send the messages to. In order to render our management console 
capable of receiving messages we just had to make it extend one of the Smartfrog 
workflow components (in our case EventCompound). Another component called 
EventQueue was needed to receive the messages from the remote components and store 
them, until the management console can consume them.  
 

8.4 Testing 
 
Just like it was done during the Elaboration phase the testing iterations during the 
Construction phase started as soon as the first module additions to the previous phase's 
prototype were developed.  Unlike, however, those early tests that verified the basic 
functionality expected from the components, the new tests verified the synchronized 
work of the expanded system.  The successful results of the tests verified the extra 
complexity incorporated guaranteed compliance with the project scope set at the 
beginning of the process and refined through the duration of it. 
 
The testing of the software at this phase focused primarily on the complete system from a 
user prospective.  The additions made to the earlier prototype include, in terms of 



 79

functionality, the incorporation of signal passing scheme for inter-component 
communication and tying the deployment process flow to the type of those signals passed 
as well as the capability of the system to handle 'scenarios' where only partial deployment  
un-deployment or full or partial de-installation was needed. 
 
The following testing scenario and results are included here as an example of the testing 
techniques used during the Elaboration phase.  To keep this report concise only selected 
samples of the testing sessions and truncated test result output are shown on the next 
pages. 
All tests were performed on the following resources: 
 
make: Dell Inspiron 5150 
OS:     RedHat Linux 9 
CPU:  1.6GHz 
RAM: 512MB 
HDD: 10GB 
Net:    10Mb LAN 
IP:     128.16.80.24 
SW:    SmartFrog3.02.002.beta ( updated with CVS developer version as of July 12 2004 ) 
           Sun's Java(TM) 2 Runtime Environment, Standard Edition ( build 1.4.2_05-b04  
* An instance of SmartFrog daemon was running during all tests. 
 
Make: SunBlade 100 
OS:     Solaris 8 
CPU:  500MHz 
RAM: 128MB 
HDD:  35MB 
Net:     10Mb LAN 
IP:      128.16.9.178 
SW:    SmartFrog3.02.002.beta ( updated with CVS developer version as of July 12 2004 ) 
           Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_01-b06) 
          Java HotSpot(TM) Client VM (build 1.4.2_01-b06, mixed mode) 
* An instance of SmartFrog daemon was running during all tests. 
 
All of the following tests were performed from an outside user’s prospective.  The first 
host 128.16.80.24 ( vnovov-p.cs.ucl.ac.uk ) was used as a management console from which all 
deployment sessions were started, monitored and controlled remotely on the second host 
128.16.9.178 ( highpark.cs.ucl.ac.uk ).  The test scenarios in this section centered on the 
framework structured in the design documentation.  There are four primary modules 
corresponding to the four scenarios a user might encounter by running the system.  Those 
are Full Deployment, Partial Deployment, Partial Undeployment and Full Undeployment ( see Design 
section ).   



 80

 
For the first scenario Full Deployment, the remote deployment host 128.16.9.178 ( 
highpark.cs.ucl.ac.uk ) was checked for sufficient resources and the absence of any previous 
partial or full system deployments.  The type of deployment is delivered by executing the 
modules in the z15_4_SystemComponents.sf on the management host.  The test execution 
results in a full system deployment on the remote host i.e. All required 
files/application/utilities are downloaded, decompressed, installed and configured in the 
created for this purpose project directory /tmp/z15_4/ and respective sub-directories.  The 
grid service specified in the z15_4_GridArchiveFileNames.sf – gt3_asian_AsianSpreadOption is 
deployed.  Tomcat Web Server is started and facilitates access to that grid service.  The 
screen shots below show the status of the remote system after this test was completed ( 
the selected exerts from the log files have been truncated for clarity ): 
 
sfTrace: ROOT[3800]>HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployBase:action:installationSequence1:deployP
rojectDir, DEPLOYING in rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
sfTrace: ROOT[3800]>HOST highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployBase:HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployBase_actionRunning sending 1::localhost 
systemBase-SUCCEEDED 
. . . 
sfTrace: ROOT[3800]>HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployTier:action:deployGridSrvc, DEPLOYING 
in rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
[z15_4BaseGarDeployer:runInstall(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
deploy -Dgar.name=/tmp/z15_4.2004/gar-files/gt3_asian_AsianSpreadOption.gar, SFRunShell, 2 
. . . 
sfTrace: ROOT[3800]>HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployTier:action:deployWebSrvc:HOST 
highpark.cs.ucl.ac.uk:rootProcess:sending 1::localhost deployGridSrvc-SUCCEEDED 
. . . 
[z15_4WebServicesDeployer(bash)] OUT > deployWebapp: 
[z15_4WebServicesDeployer(bash)] OUT >      [copy] Copying 2 files to /tmp/z15_4.2004/jakarta-tomcat-
5.0.25/webapps/ogsa 
. . . 
sfTrace: ROOT[3800]>HOST highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployTier:HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_deployment_test:deployTier_actionRunning, sending 1::localhost 
systemTier-SUCCEEDED 
 
 



 81

A scan of the project directory /tmp/z15_4/ contents shows all necessary files and 
directories were present as well as the deployment of OGSA onto Tomcat directories 
along with the specified grid service gt3_asian_AsianSpreadOption: 
 
/tmp/z15_4.2004/: 
total 96 
drwx------   6 vnovov   msc          950 Feb 12  2004 apache-ant-1.6.1 
drwx------   2 vnovov   msc          205 Aug 27 17:18 gar-files 
drwx------  11 vnovov   msc          939 Aug 27 17:15 jakarta-tomcat-5.0.25 
drwx------   5 vnovov   msc          564 Aug 27 17:16 jakarta-tomcat-5.0.25-deployer 
drwx------  14 vnovov   msc         2140 Aug 27 17:18 ogsa-3.2 
drwx------  13 vnovov   msc         2496 Aug 27 17:12 tar-1.13 
. . . 
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/schema/gt3.asian: 
total 16 
drwx------   2 vnovov   msc          203 Aug 27 18:15 AsianSpreadOption 
  
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/schema/gt3.asian/AsianSpreadOption: 
total 16 
-rw-------   1 vnovov   msc         3508 Aug 27 18:15 AsianSpreadOptionService.wsdl 
. . . 
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/WEB-INF/lib: 
total 9792 
-rw-------   1 vnovov   msc      1174629 Aug 27 17:19 axis.jar 
-rw-------   1 vnovov   msc        16217 Aug 27 17:19 cog-axis.jar 
-rw-------   1 vnovov   msc        13018 Aug 27 17:19 gt3.asian.AsianSpreadOption-stub.jar 
-rw-------   1 vnovov   msc         3776 Aug 27 17:19 gt3.asian.AsianSpreadOption.jar 
 
 
Using a Web Browser and the OGSA Service Browser utility it was verified that the grid 
service gt3_asian_AsianSpreadOption was successfully deployed and it was accessible for 
client requests on 128.16.9.178 ( highpark.cs.ucl.ac.uk ): 
 
 
 
 



 82

Figure 12 

 
The second scenario tested was Partial Deployment.   This type of deployment is delivered 
by executing the modules in the z15_4_NodeSystemRedeployTier.sf on the management host.  
The test execution results in a new grid service being deployed onto the OGSA's 
directories, OGSA being re-deployed as Web application directories inside the Tomcat 
Web Server installation ( both deployed by the preceding tests ) and Tomcat being 'hot' 
re-loaded at the end.  The screen shots below show the status of the remote system after 
this test was completed ( the selected exerts from the log files have been truncated for 
clarity ): 
 
sfTrace: ROOT[3800]>HOST highpark.cs.ucl.ac.uk:rootProcess:partial_deployment_test:deployGridSrvc, 
DEPLOYING in rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
[z15_4BaseGarDeployer:runInstall(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
deploy -Dgar.name=/tmp/z15_4.2004/gar-files/gt3_european_StandardEuropeanOption.gar, SFRunShell, 
. . . 
[z15_4WebServicesReDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
redeployTomcat -Dtomcat.dir=/tmp/z15_4.2004/jakarta-tomcat-5.0.25/, SFRunShell, 2 
. . . 
[z15_4WebServicesReLoader(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant reload -
Dpath=/ogsa, SFRunShell, 2 



 83

 
A scan of the project directory /tmp/z15_4.2004/jakarta-tomcat-5.0.25/ contents shows all 
necessary files and directories were present as well as the deployment of OGSA onto 
Tomcat directories along with the specified service gt3_european_StandardEuropeanOption: 
 
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/schema/gt3.european: 
total 16 
drwx------   2 vnovov   msc          208 Aug 27 17:46 StandardEuropeanOption 
  
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/schema/gt3.european/StandardEuropeanOption: 
total 16 
-rw-------   1 vnovov   msc         3456 Aug 27 17:46 StandardEuropeanOptionService.wsdl 
 
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/WEB-INF/lib: 
total 9840 
-rw-------   1 vnovov   msc      1174629 Aug 27 17:46 axis.jar 
-rw-------   1 vnovov   msc        16217 Aug 27 17:46 cog-axis.jar 
-rw-------   1 vnovov   msc        13018 Aug 27 17:46 gt3.asian.AsianSpreadOption-stub.jar 
-rw-------   1 vnovov   msc         3776 Aug 27 17:46 gt3.asian.AsianSpreadOption.jar 
-rw-------   1 vnovov   msc        12917 Aug 27 17:46 gt3.european.StandardEuropeanOption-stub.jar 
-rw-------   1 vnovov   msc         3555 Aug 27 17:46 gt3.european.StandardEuropeanOption.jar 
 
Using a Web Browser and the OGSA Service Browser utility it was verified that the grid 
service gt3_european_StandardEuropeanOption along with gt3_asian_AsianSpreadOption, was 
successfully deployed and it was accessible for client requests: 



 84

Figure 13 

 
 
 
The third scenario tested was Partial UnDeployment.   This type of deployment is delivered 
by executing the modules in the z15_4_PartialGridServiceUnDeployer.sf on the management 
host.  The test execution results in a grid service being un-deployed from the OGSA's 
directories , OGSA being re-deployed as Web application directories inside the Tomcat 
Web Server installation ( both deployed by the preceding tests ) and Tomcat being 'hot' 
re-loaded at the end.  That has an exactly reverse to the previous scenario effect.  The 
screen shots below show the status of the remote system after this test was completed ( 
the selected exerts from the log files have been truncated for clarity ): 
 
sfTrace: ROOT[3800]>HOST 
highpark.cs.ucl.ac.uk:rootProcess:partial_UNdeployment_test:unDeployGar:action, DEPLOYING in 
rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
[z15_4BaseGarUnDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant undeploy 
-Dgar.id=gt3_european_StandardEuropeanOption, SFRunShell, 2 



 85

. . . 
[z15_4BaseGarUnDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant 
redeployTomcat -Dtomcat.dir=/tmp/z15_4.2004/jakarta-tomcat-5.0.25/, SFRunShell, 2 
. . . 
[z15_4WebServicesReLoader(bash)] LOG > Executing: /tmp/z15_4.2004/apache-ant-1.6.1/bin/ant reload -
Dpath=/ogsa, SFRunShell, 2 
 
 
A scan of the project directory /tmp/z15_4.2004/jakarta-tomcat-5.0.25/ contents shows all 
necessary files and directories were removed as well as the deployment of OGSA onto 
Tomcat directories without the specified service gt3_european_StandardEuropeanOption: 
 
/tmp/z15_4.2004/jakarta-tomcat-5.0.25/webapps/ogsa/WEB-INF/lib: 
total 9840 
-rw-------   1 vnovov   msc      1174629 Aug 27 17:46 axis.jar 
-rw-------   1 vnovov   msc        16217 Aug 27 17:46 cog-axis.jar 
-rw-------   1 vnovov   msc        13018 Aug 27 17:46 gt3.asian.AsianSpreadOption-stub.jar 
-rw-------   1 vnovov   msc         3776 Aug 27 17:46 gt3.asian.AsianSpreadOption.jar 
 
Using a Web Browser and the OGSA Service Browser utility it was verified that the grid 
service gt3_european_StandardEuropeanOption was successfully un-deployed and it was not 
accessible any longer for client requests on 128.16.9.178 ( highpark.cs.ucl.ac.uk ): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 86

Figure 14 

 
 
 
 
The fourth scenario tested was Full UnDeployment.   This type of deployment is delivered 
by executing the modules in the z15_4_FullInstallationUnDeployer.sf on the management host.  
The test execution results in the whole installation in the remote deployment host being 
removed completely.  The module execution shutdowns Tomcat Web Server and it then 
deletes the project directory /tmp/z15_4/ along with all its contents.  The screen shots below 
show the status of the remote system after this test was completed ( the selected exerts 
from the log files have been truncated for clarity ): 
 
sfTrace: ROOT[3800]>HOST highpark.cs.ucl.ac.uk:rootProcess:full_UNdeployment_test, DEPLOYING in 
rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
[z15_4FullInstallationUnDeployer(bash)] LOG > Executing: /tmp/z15_4.2004/jakarta-tomcat-
5.0.25/bin/shutdown.sh, SFRunShell, 2 
. . . 



 87

sfTrace: ROOT[3800]>HOST 
highpark.cs.ucl.ac.uk:rootProcess:full_UNdeployment_test:action:removeInstallationDir, DEPLOYING in 
rootProcess at highpark.cs.ucl.ac.uk/128.16.9.178:3800 
. . . 
[z15_4BaseInstallationUnDeployer:removeInstallationDir(bash)] LOG > Executing: rm -Rf z15_4.2004, 
SFRunShell, 2 
 
A scan of the directory /tmp/ where the project directory z15_4.2004/ was created shows all 
previous files and directories were removed: 
 
2 vnovov@highpark% ls -lR /tmp/z15_4.2003/ 
/tmp/z15_4.2004/: No such file or directory 
3 vnovov@highpark% 
 
Using a Web Browser it was verified that Tomcat Web Server was not available on the 
remote deployment host 128.16.9.178 ( highpark.cs.ucl.ac.uk ): 

 
 

 Figure 15 



 88

9 MEASUREMENTS 
 
During the project many measurements have been taken and in this chapter they will be 
used in order to criticize the use of SmartFrog and its efficiency. The financial 
application that was created by Charaka Goonatilake has been used for all the 
measurements. 
 
 

9.1 Measurements and conclusions about deployment 
 
This part deals with the measurements that have been taken during the deployment of the 
grid services and their infrastructure with and without SmartFrog. It will include 
measurements of the traditional manual process, of the first incarnation of our system 
created during the elaboration phase and of the final incarnation of the construction 
phase. These measurements will allow us to figure out whether the use of SmartFrog 
speeds up the deployment process. Specific details will show what the difference is of 
using and not using SmartFrog and also whether there is any difference between the two 
incarnations of our system during the elaboration and the construction phase. 
 
The platform that has been used for these measurements is the same as the one where the 
testing took place. The specs of the computers are the following: 
 
Sunblade 100 
SunOS 5.8 
Solaris 8 
500 Mhz 
128 MB 
 
It is important to take into consideration a couple of important factors: 
 
• All the measurements have been taken on the same computers. Certain computers 

perform in a different way than others but that will not make any difference since the 
same computers have been used for all the different sets of measurements. 

• The computers are all located in a lab. This means that it is not possible for us to 
calculate a very important overhead of the traditional deployment process. In another 
scenario the computers that will be used may actually be located far apart. In different 
buildings, different cities, even different countries. Therefore the administrator would 



 89

either have to visit these computers in other buildings are arrange for a cooperation 
with administrators in other cities and countries to do part of the deployment. In any 
case there is a great overhead that we will not take into account. It should be noted 
though that this overhead would certainly increase the value of SmartFrog as a 
deployment tool. 

 
 

9.1.1 Traditional approach 
 
It is quite certain that the traditional approach is lengthier than the system created with 
SmartFrog. However, in order to establish the exact benefit that SmartFrog provides it is 
important to measure the time that it takes to deploy grid services and their infrastructure 
in a manual way. 
 
Note: The deployment of infrastructure and of the grid service is quite complicated. 
Before taking the actual measurements, the deployment process was practiced so that 
they would not include any time lost due to unfamiliarity. 
 
Deployment of infrastructure: Tomcat and GT3 were downloaded from the internet and 
installed on ten machines. The simplest most basic configuration options were used. The 
process was done sequentially on each of the ten machines 
 
Time: 12 minutes for each computer 
 
Deployment of grid service: The grid service file (GAR) was transferred to a specific 
directory on each machine, it was deployed with Ant and then Tomcat was started. The 
process was done sequentially for each of the ten machines. 
 
Time: 5 minutes for each computer. 
  
Comment: It should be noted that during the 12 minutes, which are, needed for each 
computer the administrator can not take on other tasks. His full and continuous attention 
is needed in order to deploy the software.  
 



 90

 

9.1.2 Measurements of Elaboration  
 
The SmartFrog components that have been designed and implemented take care of the 
entire deployment process. The only manual labor that the administrator must undertake 
is to start the SmartFrog daemon on each computer. The time that is needed to do that has 
not been included because it's possible to start the daemon with the operating system's 
start-up script. 
 
Deployment of infrastructure and grid service: In order to begin the deployment a single 
line is used as a command, which runs the SmartFrog component. The infrastructure is 
deployed along with a grid service. 
 
Time: 7 minutes for each computer 
 
Comment: It is quite clear that SmartFrog allows for a much faster deployment. The gain 
in time is even bigger if one considers that more than one deployments can occur almost 
simultaneously. That will become clearer later on.  
 
 

9.1.3 Measurements of Construction 
 
Once again the SmartFrog daemon must be running on each computer that will be used. 
This time the administrator can use the GUI and control deployment on all machines 
from that.  
 
Deployment of Infrastructure and grid service: The administrator simply has to start the 
GUI and use it to perform deployment and undeployment of infrastructure. 
 
Time: 7 minutes for each computer 
 
Deployment of grid service: This time there an extra option to deploy an extra grid 
service. 
 
Time: 1 minute for each computer 
 



 91

Comment: It is important to mention here that the administrator does not actually need 
knowledge of SmartFrog's inner workings in order to perform the deployment. The 
messages that the GUI receives provide adequate information. Also, the measurements of 
construction are the same as the ones of elaboration. The reason is that in elaboration we 
tried to better manage and control the process rather than automate. Finally, during the 
deployment process the administrator does not need to pay any attention to the 
computers. The process is automated and the administrator will be alerted when 
something is wrong. So during the time of deployment he may deal with other tasks. 
 
 

9.2 Measurements and conclusions about the use of SmartFrog 
 
It became obvious, from the above measurements, that SmartFrog does indeed greatly 
reduce the time that is needed for deployment. However, the most important gain is the 
fact that the deployment process is now automated and can occur remotely which means 
that it can occur simultaneously. The following graph depicts the time that is needed to 
deploy the infrastructure up to 20 computers with and without SmartFrog. 

 

Figure 16  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

25

50

75

100

125

150

175

200

225

250

Method Comparison: Deployment of Infrastructure

Traditional
SmartFrog

No. of computers

Ti
m

e 
in

 m
in

ut
es



 92

The slim line is the traditional method. It increases immensely because the deployments 
are done sequentially by one administrator. Similar is the chart for the deployment of a 
grid service. 

Figure 17 

From the two graphs, figures 16 and 17, it is obvious that SmartFrog is a great asset, 
which can greatly reduce the time that is needed for deployment. The gain in time is 
related to the number of computers that will be used. So, for example, 100 computers 
must be used, SmartFrog would reduce the time from 1200 minutes to just 7, saving 
almost 20 man-hours. If one considers the possible updates and new grid services that 
may need to be deployed, it becomes obvious that SmartFrog can help. 
 
We have now established that using SmartFrog as a tool to deploy grid services provides 
great advantages. However, we need to think about the effort that was needed in order to 
learn how to use it, and the effort that is needed in order to write the components to 
deploy a grid service. In order to do that we will use the notes that we kept throughout the 
project.  
 
Important: The following calculations are arbitrary and are based on our own work. They 
are meant to give an idea about SmartFrog's ability and just that. We need to find out 
whether learning SmartFrog is worth the effort. In order to do that we will use our 
measurements. Those measurements depend fully upon our capabilities as individuals, we 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

Method Comparison: Grid Service Deployment

Traditional
SmartFrog

No. of Computers

Ti
m

e 
in

 m
in

ut
es



 93

quickly we managed to learn SmartFrog and how quickly we managed to design and 
implement the components.  
 
We needed 160 man-hours to learn SmartFrog. That is, 160 man-hours per person. That 
is something that depends a lot on the individual's experience so it should be assumed 
that it would be very different for a senior developer than it is for a student. Also, 
SmartFrog is still in beta testing. It does not have adequate documentation and there are 
not many sources of information. In the future that will probably change. Moreover, after 
160 man-hours our knowledge of SmartFrog was not complete. It had simply reached a 
point where we were able to start designing and implementing the components. Many 
gaps had to be filled along the way. 
 
We needed 224 man-hours to design, implement and test the SmartFrog components 
during the elaboration phase. That is not an accurate and fair calculation because during 
these hours we were still learning about SmartFrog. During the construction phase the 
time that was needed was greatly reduced, 128 man-hours, which means that as our 
experience with SmartFrog increased, the time that is needed to write the components is 
reduced. 
 
In order to make a meaningful comparison we need to have a scenario.  
 
Important: Once again, many assumptions will made. We need a scenario in order to 
contradict what we did it (using SmartFrog) with what someone else would do (manual 
approach) in order to be able and calculate gains. The manual approach requires 
absolutely no work (learning, designing, implementing) beforehand so it's clear that it 
will have zero costs in the beginning. But, it will have high costs as far as the actual 
deployment is concerned.  
 
One could say that the following formula gives the total time that will be spent when 
dealing with the deployment of grid services: 
 
Total time spent = Time spent learning and implementing the deployment system + Time 
spent deploying the grid services over a length of time 
 
We need to find out what the total time spent is for both approaches, SmartFrog and 
traditional. 
 
So, a scenario is needed. This scenario needs to be close to the realistic needs of an 
administrator that is using grid services. We assume the existence of an administrator 



 94

who has a hundred computers running grid services. There are ten grid services running 
on each computer. The administrator must deploy the infrastructure and the grid services 
on each computer. He must also update the infrastructure four times every year because 
of updates of the programs. He must also update the grid services themselves five times 
per year.  
 
In Figure 18 we have mapped the cost in man-minutes that is needed to deploy grid 
services against the length of time for both approaches. 
 

Figure 18 

 
The traditional approach has a much lower starting cost in man-minutes because all the 
work that is needed is simply to deploy the infrastructure and the grid services on the 
computer. On the contrary, SmartFrog needs 23048 minutes to learn it and implement its 
components.  
 
However, after that, SmartFrog's line is almost kept completely horizontal since the 
updates are easy and fast, whereas the traditional approach has a line, which rockets high 

0 2 4 6 8 10 12 2 4 6 8 10 12
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000

Overall Comparison

SmartFrog
Traditional

Time (in months)

C
os

t (
in

 m
an

-m
in

ut
es

)



 95

up. After two year the total cost in man minutes is almost triple than what it is for 
SmartFrog. 
 
The table used for the chart in Figure 18 can be seen in Figure 19. 
 

Figure 19 

 
I should note again that the scenario upon which the above chart is based, is arbitrary. We 
assumed what the number of computers should be, the number of grid services and the 
number of upgrades. But the length of each upgrade, for infrastructure and grid services 
is based on our calculations and should therefore be considered relatively accurate. The 
scenario should give a good idea about what the administrator stands to gain from using 
SmartFrog. 
 
 
 

Months SmartFrog Traditional
0 23048 6200
2 23058 12400
4 23068 18600
6 23078 24800
8 23080 29800
10 23088 31000
12 23090 36000
2 23100 42200
4 23110 48400
6 23120 54600
8 23122 59600
10 23130 60800
12 23132 65800



 96

10 FURTHER WORK AND ENHANCEMENTS 
 

10.1 SmartFrog 
 
The development of a final executable prototype consumed significant amount of the 
project time.  The functional capabilities incorporated into the design and final 
implementation constitutes the minimum operational functionality to make the prototype 
a “prove of concept”.  The development efforts focused on the core requirements of the 
project: building a Grid Service deployment system using SmartFrog as a base platform.  
Due to time constraints and limited expertise and manpower the final executable system's 
characteristics have not been explored to the full extend of its capabilities, the capabilities 
of the underlying framework or to incorporate any other suitable software solutions.  The 
following paragraphs cover some of the major issues or potential directions that 
eventually require more research and development effort. 
 
As it stands right now the execution sequence, the system goes through, in run-time relies 
on status messages indicating the success or failure of a given component or module in 
that sequence.  The status messages in turn rely exclusively on the default functionality of 
the SmartFrog-provided Try component.  There is an unresolved issue occurring with the 
use of combination of components handling Unix OS command and shell script 
executions.  SmartFrog system seems to accept as successful the completion of the 
deployment of the components only, regardless of the exit status of the executed OS 
command or shell file.  Very often a failure exit status does not propagate up the 
component hierarchy resulting in the mention Try components incorrectly indicating a 
successful execution that further affects the dependent sequence logic. 
 
The management abilities provided to the user are directly connected to that status 
message passing mechanism mentioned in the previous paragraph.  Considering that all 
underlying SmartFrog components are implemented in Java, the management 
functionality of the prototype should be significantly improved by further exploring the 
Sun's Java Management Extensions ( JMX ) infrastructure.  Moreover, the SmartFrog 
documentation indicates that the platform incorporates the JMX technology. 
 
The submitted prototype has been tested on local-area settings in UCL Computer Science 
department laboratories.  The deployed Grid Services technology is an extension of the 
Web Services standards.  Inherently they are built to be used over wide-area/Internet 



 97

settings.  A logical next development step would be expanding and testing the prototype 
performance when used across organizational boundaries.  A significant attention should 
be paid to issues with computer security and the computer security policies put in place 
by potential users' organizations. 
 
As part of the final prototype version there is a module running on each deployment host 
checking for available resources and presence of any partial or full deployment system 
infrastructure.  The functionality of this module, however, is only rudimentary consisting 
of periodic resource checking and reporting.  The module could be expanded to 
incorporate the more complex capabilities of making the deployment system adapt 
dynamically to changes in the hosting environment.  A good example of such 
functionality is demonstrated by an example solution developed by the creators of 
SmartFrog and provided to the public trough the SmartFrog's web site – “Dynamic Web 
Server Demonstrator”. 
 
Because of the restrictions mentioned in the first paragraph the implementation of the 
submitted deployment system was targeted for the Unix type OSs.  The system was tested 
to successfully run on Sun's Solaris 8 and RedHat Linux 9.  To take advantage of the fact 
that the underlying SmartFrog platform is implement in Java, thus, capable of running on 
different types of OSs, further effort should be made towards making the executable 
solution be more “aware” of the little differences among the different Unix OSs as well 
as be portable to MS Windows OS. 
 
 

10.2 Security 
 
In the context of this project, the issue of security spans across two distinct levels; the 
grid services level and the level of the application that carries out the grid service 
deployment.  
 
The first level is concerned with the configuration of security for the grid platform; the 
Globus Toolkit. The goal is to enable grid services to use GT3’s security infrastructure. 
After conducting research we determined that theoretically GT3’s security configuration 
is possible, if not quite easy, to achieve and that it can be performed as part of the 
Smartfrog deployment steps. Our assumptions were that the GT3 simpleCA will be used, 
which is sufficient for simple grid services, and that the hosts, which the grid services are 
deployed, are going to request certificates from the CA that resides to a central machine. 
The process involves transferring the CA's distribution package, which was created 



 98

during the CA's installation on the central machine [25], and modifying a particular 
script. However, we decided that not deal with the configuration of the GT3.2 security as 
the project is concerned merely with the deployment of grid services and in particular a 
grid application that do not implement security.  
 
The second level is concerned with the secure deployment of grid services and the 
security infrastructure SmartFrog [16] [19] uses itself.  Security in this case is a key issue 
of concern, and specifically its aspects concerning privacy, integrity and authentication. 
Smartfrog could be used as a platform to deploy malicious code, such as viruses or 
Trojan horses. Therefore, strong authentication mechanisms should be employed to 
combat this problem. Moreover, the communications between the Smartfrog daemons 
may take place over insecure networks or the Internet. An attacker may eavesdrop on the 
exchange of system description files and deployment configurations, and obtain sensitive 
configuration information or even modify it. Therefore, privacy and/or integrity should 
be ensured. Finally, SmartFrog allows resources such as configuration descriptions, java 
bytecode, scripts and executable files to be downloaded from web servers. This imposes 
security risks in the light of loopholes found on web servers very often. Therefore, there 
is a need to ensure the integrity of the resources being downloaded. 
 
“Two important steps must be carried out to ensure that the security of the SmartFrog 
framework is not compromised. The first is to initialize the SmartFrog security 
infrastructure and the second is to ensure that every resource (test file, URL, etc) is 
loaded through the secure mechanisms provided” [19]. Our research showed that the first 
step can be achieved by running Ant scripts provided by the SmartFrog distribution and 
then configuring the infrastructure appropriately. The second step can be carried out by 
signing the jar files that contain the resources so that the two SmartFrog features of 
remote class loading and downloading from web servers are secured. Moreover, inter-
domain deployment with the use of multiple CAs is another issue, which falls under the 
umbrella of the security. All these are areas for further investigation. 
 
 



 99

11 CONCLUSION 
 
The primary goal of this project has been the investigation of the possibility of using a 
deployment platform for distributed systems, such as Hewlett- Packard's Smart 
Framework for Object Groups - SmartFrog, to automatically and easily deploy Grid 
Services over a large number of hosting environments.  The process involved not only 
theoretical research into the availability of various deployment applications and 
frameworks and their capabilities but also significant amount of development effort for 
the design and implementation of the executable prototype of a proposed solution. 
 
During the theoretical research phase of the project a number of software configuration 
and deployment platforms provided by different vendors were explored.  These included 
SoftwareDock by a group of researchers from the Software Engineering Research 
Laboratory at the University of Colorado,  Tivoli Configuration Manager by IBM, JMX ( 
Java Management Extensions ) by Sun Microsystems and the above mentioned 
SmartFrog.  They were carefully analyzed not only for the operational capabilities they 
offered but also to their ease of use, implementation, learning curve and suitability to the 
particulars of the project requirements. 
 
The executable prototype of a proposed solution for deployment of Grid Services is 
entirely based on SmartFrog framework.  This framework is capable of scaling from 
small systems to very large.  The development of the prototype took advantage of the 
ability, SmartFrog provides to the platform user, to alter the low-level semantics by 
replacing functional units while still providing standard capabilities by offering default 
implementation of those units.  The final working system has been successfully tested 
and it has proved to:  
 

• operate in a variety of environments, ranging from a single machine to local-area 
distributed setting that leverages the connectivity offered by organizational 
networks;  

• provide a way to access and reason about a software system configuration, which 
includes dependencies and constraints inherent in the system; 

• make it possible to monitor the environment surrounding a deployed system, 
watch for changes in that environment; 

• provide a way to describe site and software system configuration information, 
which includes the hardware and software environment at a site. 

 



 100

It has to be noted, though, that the above mentioned characteristics have not been 
developed to the full extent of the underlying platform and the prototype's capabilities.  
Some suggestions for further work in areas of potential interest have been outlined in the 
Further Work section.  However, all the laboratory tests as well as the measures taken 
have clearly demonstrated that deployment systems are more quickly implemented using 
the technology and the structure imposed upon the implementations by the use of 
SmartFrog should be beneficial for long-term reliability, usability and manageability of 
the said dependent deployment systems. 
 



 i 

APPENDIX A: BIBLIOGRAPHY  
 
[1] A.Carzaniga, A. Fuggetta, R.S. Hall, A. van der Hoek, D. Heimbigner, A.L. Wolf. 
(1998 ). “A Characterization Framework for Software Deployment Technologies”. Dept. 
of Computer Science, University of Colorado. 
 http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-857-98.pdf 
 
[2] Goonatilake, C., (2004). Comparing Grid Technologies for the Evaluation of 
Computationally Demanding Financial Applications. University College London.  
 
[3] Hall, R.S., et al., (1997). “The Software Dock: A Distributed, Agent-based Software 
Deployment System”. Dept. of Computer Science, Univ. of Colorado 
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-832-97.pdf 
 
[5] Foster, I., Kesselman, C. and Tuecke, S. (2001). “The Anatomy of the Grid: Enabling 
Scalable Virtual Organizations”. www.globus.org/research/papers/anatomy.pdf. 
 
[6] CVS: Concurrent Versions System.  https://www.cvshome.org/ 
 
[7] Eclipse. http://www.eclipse.org/ 
 
[8] Foster, I., Kesselman, C., eds. (2003). “The Grid: Blueprint for a New Computing 
Infrastructure”. Morgan Kaufmann.  
 
[9] Foster, I., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Kishimoto, H., Maciel, F., 
Savva, A., Siebenlist, F., Subramaniam, R., Treadwell, J., Reich, J.(2004)."The Open 
Grid Services Architecture, Version 1.0". Open Grid Services Architecture Working 
Group. 
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-spec/en/19 
 
[10] Banks, T., (2004). Open Grid Service Infrastructure Primer. OGSI-WG, 
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=43&category_id=392 
 
[12] Foster, I., Kesselman, C., Nick, J., Tuecke, S. (2002). “Grid Services for Distributed 
System Integration”.  
http://www.globus.org/research/papers/ieee-cs-2.pdf 
 
[13] Foster, I. Kesselman, C. Nick, J., Tuecke S. (2002). “The Physiology of the Grid: An 
Open Grid Services Architecture for Distributed Systems Integration”. The Globus 
Project 
http://www.globus.org/research/papers/ogsa.pdf. 
 
[15] Berman, F., Fox, G., Hey, T., (2003). Grid computing : making the global 
infrastructure a Reality. John Wiley and Sons Ltd. 
 

http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-857-98.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-832-97.pdf
http://www.globus.org/research/papers/anatomy.pdf
https://www.cvshome.org/
http://www.eclipse.org/
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-spec/en/19
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=43&category_id=392
http://www.globus.org/research/papers/ieee-cs-2.pdf
http://www.globus.org/research/papers/ogsa.pdf


 ii 

[16] Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft. P.(2003). 
"SmartFrog: Configuration and Automatic Ignition of Distributed Applications". HP 
Labs, Bristol, UK 
http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HPOVA03.May
.pdf 
[17] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maquire, 
T. Sandholm, T., Snelling, D., Vanderbilt, P.(2003)."Open Grid Services Infrastructure 
(OGSI), Version 1.0". 
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=43&category_id=392 
 
[18] Chappell, D., Jewell, T., (2002). Java Web Services. O’Reilly 
 
[19] "The SmartFrog Reference Manual".(2004).HP Labs, Bristol, UK 
http://www.hpl.hp.com/research/smartfrog/papers/sfReference.pdf 
 
[20] The Apache Ant Project http://ant.apache.org/ 
 
[21] Armstrong, E., Ball, J., Bodoff, S., Carson, D., Fordin, S., Green, D., Evans, I., 
Haase, K., Jendrock, E., (). The Java Web Services Tutorial. Sun, 
http://java.sun.com/webservices/docs/1.3/tutorial/doc/index.html 
 
[22] "SmartFrog WorkFlow".(2004).HP Labs, Bristol, UK 
http://www.hpl.hp.com/research/smartfrog/papers/sfWorkflow.pdf 
 
[23] Apache Jakarta Tomcat. http://jakarta.apache.org/tomcat/ 
 
[25] Sotomayor, B., (2004). The Globus Toolkit 3 Programmer's Tutorial. 
http://www.casa-sotomayor.net/gt3-tutorial-unstable/multiplehtml/ch12s03.html 
 
[26] http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C05-03-04/USDP.pdf 
 

http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HPOVA03.May
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=43&category_id=392
http://www.hpl.hp.com/research/smartfrog/papers/sfReference.pdf
http://ant.apache.org/
http://java.sun.com/webservices/docs/1.3/tutorial/doc/index.html
http://www.hpl.hp.com/research/smartfrog/papers/sfWorkflow.pdf
http://jakarta.apache.org/tomcat/
http://www.casa-sotomayor.net/gt3-tutorial-unstable/multiplehtml/ch12s03.html
http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C05-03-04/USDP.pdf

