

University College London
Department of Computer Science

M.Sc Data Communications, Network and Distributed Systems

LINX Network Monitoring
Group Report

Group Members
Agron Fazliu

Alexander Papitsch
Andreas Protopapas

Felipe Huici
Giorgos Savvides

Supervisor

Saleem Bhatti

In Collaboration With
The London Internet Exchange

September 6th, 2004

Abstract

Traditionally, Internet Exchange Points (IXPs) have been developing network

monitoring toolkits that are specifically suited to their needs, requirements and

infrastructure. Because of this approach, it has rarely been possible for one IXP to

use a monitoring tool developed by another IXP. The LINX network monitoring

project, conducted with the collaboration of the London Internet Exchange Point,

addresses precisely this problem. This report describes the design of an entirely new

system architecture on which future network monitoring tools can be based so that

they can be deployed on IXPs having disparate hardware and software infrastructures.

Further, this report discusses the implementation of a network monitoring toolkit that

is based on said system architecture in addition to a description of the necessary set of

standards used to make this inter-IXP compatibility possible. The actual monitoring

functionality implemented is based on requirements provided by LINX throughout the

course of the project. Moreover, the report touches on project management including

the methodology used, the project’s requirements and the technologies employed.

Finally, the report discusses future work that could be carried out to improve on the

achievements of this project.

 2 LINX Network Monitoring

Acknowledgements

We would like to acknowledge Dr. Saleem Bhatti who kindly supervised this

DCNDS project. We would also like to thank him for his invaluable suggestions,

feedback, resources and ideas that he provided during all stages of this project.

In addition, we would like to thank John Souter and Robert Lister from LINX

who made this project possible and also spared time and resources for analysis, testing

and deployment purposes at LINX headquarters.

 3 LINX Network Monitoring

Table of Contents

Abstract __ 2

Acknowledgements ___ 3

Table of Contents __ 4

List of Figures and Tables __ 7

Chapter 1: Introduction __ 8

1.1 Purpose___ 8

1.2 Client Background___ 8

1.3 Existing Tools __ 8

1.4 Problem Space ___ 9

1.5 Motivation for the Work __ 10

Chapter 2: Background ___ 11

2.1 Introduction ___ 11

2.2 Internet Exchange Point (IXP)___ 11

2.3 Peering __ 12

2.4 Autonomous System__ 12

2.5 Secure Sockets Layer___ 12

2.6 Current LINX network monitoring tool (IXP-watch) ___________________________ 12
2.6.1 Syslog-ng___ 13
2.6.2 SNIPS ___ 13

Chapter 3: Objectives and Scope ___ 14

3.1 Objectives __ 14
3.1.1 Standardise Data Representation and Format __________________________ 14
3.1.2 Standardise Data Display __ 14
3.1.3 Develop a Prototype __ 14
3.1.4 Create a Toolkit for Data Analysis ____________________________________ 14
3.1.5 Integration at LINX__ 15
3.1.6 Perform Client Acceptance Testing ___________________________________ 15
3.1.7 Meet the Client’s System Requirements _______________________________ 15

3.2 Scope__ 15

Chapter 4: Requirements Analysis __ 16

4.1 Overview ___ 16

4.2 Functionality Requirements___ 16

4.3 Data Display Requirements __ 17

4.4 Security Requirements __ 18

Chapter 5: System Architecture __ 19

Chapter 6: Remote Monitoring Functions _______________________________________ 23

6.1 RTTvsTime ___ 23
6.1.1 Introduction ___ 23
6.1.2 Glue and Backend __ 24
6.1.3 PoD ___ 25
6.1.4 GUI ___ 25

 4 LINX Network Monitoring

6.2 ThresholdRTT ___ 27
6.2.1 Introduction ___ 27
6.2.2 Glue and Backend __ 27
6.2.3 PoD ___ 28
6.2.4 GUI ___ 28

6.3 ThresholdRTTRealTime ___ 30
6.3.1 Introduction ___ 30
6.3.2 Glue and Backend __ 30
6.3.3 PoD ___ 31
6.3.4 GUI ___ 31

6.4 LinkStatus __ 32
6.4.1 Introduction ___ 32
6.4.2 Configuration File__ 32
6.4.3 Glue and Backend __ 33
6.4.4 PoD ___ 34
6.4.5 GUI ___ 35

6.5 MinMaxPing __ 36
6.5.1 Introduction ___ 36
6.5.2 Configuration File___ 37
6.5.2 Glue and Backend __ 38
6.5.4 PoD ___ 39
6.5.5 GUI ___ 41

Chapter 7: Other Components ___ 43

7.1 PoDRegistry __ 43

7.2 GUI ___ 44

Chapter 8: Protocols ___ 47

8.1 Introduction ___ 47

8.2 PoDRegistry Protocol (version 1) __ 47

8.3 VP Protocol (version 1) __ 50

Chapter 9: Security __ 54

9.1 Motivation __ 54

9.2 Implementation __ 54

Chapter 10: Development Tools & Technologies _________________________________ 56

10.1 Programming Languages ___ 56
10.1.1 Java __ 56
10.1.2 C++ __ 56

10.2 Tools ___ 57
10.2.1 Ujac __ 57
10.2.2 Fping ___ 57
10.2.3 IXP-watch ___ 58
10.2.4 Javadoc ___ 58
10.2.5 CppDoc ___ 59
10.2.6 Keytool__ 59
10.2.7 Together ControlCenter 6.0.1 ______________________________________ 59
10.2.8 Microsoft Visio __ 59

10.3 Operating Systems __ 60
10.3.1 Windows __ 60
10.3.2 Solaris __ 60
10.3.3 Linux (Knoppix, Penguin Sleuth Kit) _________________________________ 60

Chapter 11: Project Management ___ 61

 5 LINX Network Monitoring

11.1 Client Interaction __ 61

11.2 Scope __ 61

11.3 Assumptions and Constraints __ 62

11.4 Development Methodology __ 63

11.5 Team organisation __ 64

11.6 Team and Client Communication _______________________________________ 64

11.7 Project Schedule and Milestones _______________________________________ 66

11.8 Status Monitoring ___ 68

11.9 Risk Management ___ 68

Chapter 12: Testing and Deployment __ 71

12.1 Testing ___ 71

12.2 Deployment__ 73

Chapter 13: Future Work__ 75

Chapter 14: Conclusion___ 78

Appendix A: User’s Manual __ 80

A.1 System Requirements __ 80

A.2 Installation ___ 80
A.2.1 Compiling the Source Files ___ 80
A.2.2 Creating Key Pairs and Certificates___________________________________ 81
A.2.3 Configuration Files ___ 83

A.3 Running the Application ___ 83
A.3.1 Server Side (PoDs and PoDRegistry) _________________________________ 83
A.3.2 Client Side (GUI) ___ 83

Appendix B: Class Diagrams___ 85

Appendix C: Sequence Diagrams ___ 94

Appendix D: Bibliography ___ 96

 6 LINX Network Monitoring

List of Figures and Tables
Chapter 5
FIGURE 5.1: System architecture ... 19
FIGURE 5.2: Architecture of a Remote Monitoring Function .. 20

Chapter 6
FIGURE 6.1: RMF RTT vs. Time... 24
FIGURE 6.2: The Data object.. 24
FIGURE 6.3: The PoDInformation object .. 25
FIGURE 6.4: Screen capture of the RTTvsTime RMF.. 26
FIGURE 6.5: RMF ThresholdRTT ... 27
FIGURE 6.6: Screen capture of the ThresholdRTT RMF.. 29
FIGURE 6.7: RMF ThresholdRTTRealTime.. 30
FIGURE 6.8: RMF LinkStatus ... 32
TABLE 6.1: LS-RM.config fields .. 33
FIGURE 6.9: Screen capture of the LinkStatus RMF.. 36
FIGURE 6.10: RMF MinMaxPing .. 37

Chapter 7
TABLE 7.1: Graph type literals for PoDInformation’s podType member................................. 45
FIGURE 7.1: Screen capture of the GUI ... 46

Chapter 8
TABLE 8.1: PoDRegistry protocol, byte encoding for operation id = 1 48
TABLE 8.2: PoDRegistry protocol, graph type literals... 48
TABLE 8.3: PoDRegistry protocol, byte encoding for operation id = 2 48
TABLE 8.4: PoDRegistry protocol, byte encoding for operation id = 3 48
TABLE 8.5: PoDRegistry protocol, byte encoding for operation id = 4 49
TABLE 8.6: PoDRegistry protocol, byte encoding for operation id = 6 49
TABLE 8.7: PoDRegistry protocol, byte encoding for operation id = 7 50
TABLE 8.8: PoDRegistry protocol, byte encoding for operation id = 8 50
TABLE 8.9: VP protocol, byte encoding for operation id = 2... 51
TABLE 8.10 VP protocol, byte encoding for operation id = 3.. 51
TABLE 8.11: VP protocol, byte encoding for operation id = 4... 52
FIGURE 8.1: Example of VP protocol’s operation id 1.. 52

Chapter 9
FIGURE 9.1: Creating, exporting and importing certificates for SSL 54

Chapter 11
FIGURE 11.1: Project schedule .. 66

Chapter 12
FIGURE 12.1: Screen capture of data being obtained remotely from LINX 73
FIGURE 12.2: Screen capture of real-time data obtained remotely from LINX and UCL....... 74

Chapter 13
FIGURE 13.1: Display of RMF BGPMonitor (a future tool) ... 76

Appendix A
TABLE A.1: Keystore names... 82
TABLE A.2: Truststore names... 82
TABLE A.3: Aliases ... 83

 7 LINX Network Monitoring

Chapter 1: Introduction

1.1 Purpose

The purpose of this document is to provide its readers with a thorough

description of the project. It aims to give a detailed account of the processes adopted

and the many decisions that were made by the group during the different phases of the

system development lifecycle that allowed the implementation of a functional

network monitoring toolkit that met the client’s needs. Furthermore, this report

incorporates a detailed outline of the project’s objectives, its scope, the requirements

analysis, the system design and the implementation phases, and discusses the project

management techniques employed. The report also includes an account of system

testing and an evaluation of whether the objectives have been met. Finally, this report

concludes with a section on future work suggesting enhancements to the system.

1.2 Client Background

This project differs from many other DCNDS projects which have been

undertaken in the past and are currently being undertaken in that it is being carried out

on behalf of a real customer. The customer in this case is LINX, which stands for the

London Internet Exchange. A detailed description of what an Internet Exchange

Point (IXP) is and what purpose it serves can be found in Section 2.2 of this report.

LINX was founded in 1994 and is regarded as the largest and most successful

Internet Exchange Point in Europe with a world class reputation for quality,

performance and technical excellence. Being a non-profit organisation, LINX is also

one of the founder members of Euro IX, the European Internet Exchange Association.

Euro IX was founded in May of 2001 with the goal to further develop, strengthen and

improve the Internet Exchange Community throughout Europe.

1.3 Existing Tools

 The Milan Internet Exchange (MIX) created, in cooperation with the

University of Padova, the Inter-Provider Network Analyzer (IPNA). Although this

tool also serves for network monitoring purposes, it is very different from the tool

delivered by this project. More specifically, IPNA spots anomalies in traffic, analyzes

the relationships among these anomalies and displays these results in a user interface.

It bases its analysis on Expected Traffic Intensity (ETI), tracking fluctuations in the

 8 LINX Network Monitoring

amount of traffic that runs through the network. While IPNA is a useful tool, it was

specifically designed for MIX: the format that the data is captured in and that is

subsequently used to display graphs is not standardized, nor is the actual display of

the graphs. As a result, IPNA is not easily ported, so other IXPs cannot benefit from

its analysis.

 Another tool that exists is SmokePing. SmokePing is a network latency

monitoring tool which is written in Perl. It consists of a daemon process responsible

for data collection and a CGI script used for displaying the data in graphical form on

the web for easy interpretation. SmokePing has some probes which integrate the

pinging utility fping in order to measure round trip times. Because some IXPs are

already utilising SmokePing in order to monitor the status of their networks, it would

be relatively easy for them to integrate LinkStatus and MinMaxPing, two of the tools

developed for this project, since they both make use of fping to generate data (please

refer to Sections 6.4 and 6.5, respectively, for a description of these tools). These

IXPs could then benefit from the fact that the toolkit developed for this project does

not only yield graphs to the client like SmokePing does, but rather the data

themselves; this provides an IXP with much greater flexibility (for instance, a

programmer would not be forced to create a graphical user interface when a much

simpler text-based client would suffice to display the data).

 Yet another tool is the Multi Router Traffic Grapher (MRTG). MRTG is

written in Perl and the time-critical sections in the C programming language. This

tool is currently available for UNIX and Windows NT. MRTG measures the traffic

load on network links, constructs relevant graphs and generates HTML-format pages

containing PNG images which provide a live visual representation of this traffic. Like

SmokePing, MRTG has the shortcoming that it gives graphs of the data, not the data

themselves. If the network administrator is not content with the type of graph that

MRTG uses, he or she would not be able to create a more suitable graph since MRTG

does not yield the actual data. The toolkit developed for this project does not have

this limitation and, unlike MRTG, it is platform independent.

1.4 Problem Space

As part of a DCNDS weekly seminar, John Souter from LINX gave a

presentation on the issue of monitoring network traffic at the London Internet

Exchange. During this presentation it became apparent that collaborating IXPs find it

 9 LINX Network Monitoring

difficult to share traffic data for comparison and analysis purposes. Yet another

problem is that of one IXP wanting to share a tool it has created with other IXPs,

since each IXP runs different types of hardware and the tool is unlikely to work with

all of them.

As discussed during the presentation, LINX has developed a network and alarm

monitor toolkit which is suited to LINX’s hardware and meets its requirements. The

presentation also made it clear that it is common practice for each IXP to develop its

own network monitoring tools. Since these tools are typically built to work with the

existing network hardware, it is unlikely that they will also work with hardware from

other IXPs. As a result, IXPs retrieve, store, analyse and display traffic data in a

variety of different ways, which makes it nearly impossible for data and software to

be shared with other IXPs.

This project therefore aimed to investigate a possible solution which would make

it possible for IXPs to use the same network monitoring toolkit and allow them to

share data as a result of using a common data representation. Once a solution was

found, a system architecture was designed and a network monitoring toolkit

implemented based on this architecture.

1.5 Motivation for the Work

Most of the major Internet Exchange Points in Europe share the same

problem. Due to in house development of network monitoring tools which do not

comply with any standard, most Internet Exchange Points cannot exchange traffic

data for troubleshooting purposes. Having custom built tools means that data are

represented in different manners, sometimes in a text-based form, others visually in a

graphical user interface; this makes it complicated for interested parties to compare

their internal data with data from other IXPs. Many IXPs would be interested in a

solution that not only conquers this problem but also allows for remote access to real

time data of other member IXPs. When John Souter came to University College

London on November 25th, 2003, he outlined the data exchange problems IXPs were

facing and suggested this as a challenging and rewarding project for a DCNDS group.

The group was keen to undertake this project, as it entailed finding a solution to a real

problem and developing a system that could potentially be used by many IXPs

throughout Europe and perhaps even beyond.

 10 LINX Network Monitoring

Chapter 2: Background

2.1 Introduction

This chapter provides the reader with some background information on

general and technological aspects that are relevant to this project. Since the project

was carried out on behalf of an IXP some background information on IXPs is

included.

2.2 Internet Exchange Point (IXP)

According to Euro-IX, an Internet Exchange Point (abbreviated as IXP in this

text) is defined as a physical network infrastructure operated by a single entity with

the purpose of facilitating the exchange of Internet traffic between Internet Service

Providers.

An IXP is a network to which many ISPs can connect. Any ISP that is

connected to the IXP can exchange traffic with any of the other ISPs connected to the

IXP; this is done using a single physical connection to the IXP, thus overcoming the

scalability problem of having multiple individual interconnections. Also, by enabling

traffic to take a more direct route between many ISP networks, an IXP can improve

the efficiency of the Internet, resulting in better and cheaper service for the end user.

Furthermore, since many networks have more than one connection to the Internet, it is

not unusual to find several routes to the same network available at an IXP, thus

providing a certain amount of fault tolerance.

Since it acts as a central point for traffic exchange, an IXP must ensure the

effective and reliable operation of its network infrastructure. IXPs therefore rely on

software tools which allow them to monitor network traffic and inform them of any

occurring or potential problems. To ease the troubleshooting process it would be

beneficial if IXPs could exchange information and monitor other IXPs’ traffic to share

knowledge of past problems as well as current traffic patterns. Currently remote

monitoring of other IXPs and information exchange are not possible due to the

incompatibility of each IXP’s monitoring tools and, consequently, its data. As a

result, this project implemented a standardised network monitoring toolkit that could

be used to address this exchange problem.

 11 LINX Network Monitoring

2.3 Peering

Peering is the arrangement of traffic exchange between Internet Service

Providers. An Internet Exchange Point is the physical location where Autonomous

Systems are physically interconnected with each other and where traffic is forwarded

to the peering partners. Peering agreements are usually negotiated between ISPs.

IXPs are not, generally, involved in the peering agreements between connected ISPs;

whom an ISP peers with, and the conditions of that peering, are a matter for the two

ISPs involved. IXPs such as LINX do however have requirements that an ISP must

meet to connect to the IXP.

2.4 Autonomous System

An autonomous system (AS) is a collection of IP networks under control of a

single entity. This single entity is usually assumed to be an Internet Service Provider.

Each autonomous system is allocated a unique AS number to be used in BGP routing.

AS numbers are assigned by the same authorities that assign IP addresses. There are

public AS numbers that range from 1 to 64511 usually used on the Internet, as well as

private AS numbers which are in the range from 64512 to 65535 and are to be used

within an organisation.

2.5 Secure Sockets Layer

The Secure Sockets Layer (SSL) is a protocol developed by Netscape with the

purpose of transmitting private information across the Internet in a secure way. SSL

operates at the socket interface, located between transport and application layer in the

TCP/IP model. SSL can either be used to perform one-way authentication, which is

usually the authentication of the server by the client, or can also be used to perform

mutual authentication, which includes both the authentication of the server by the

client and the authentication of the client by the server. Public key cryptography and

certificates can be used to obtain such authentication and all communication is

encrypted using the strongest cipher common to both communicating parties.

2.6 Current LINX network monitoring tool (IXP-watch)

The current network monitoring tool used by LINX is called IXP-watch. IXP-

Watch combines information from SNIPS and Syslog-ng (see sections 2.6.1 and 2.6.2

respectively). It suppresses downstream alarms and, at the same time, it correlates

 12 LINX Network Monitoring

and classifies events and decides how to treat these. The created output contains

information which is a combination of fragments from all logs that each monitoring

tool recorded. IXP watch filters these logs and creates an output containing only

information of high importance.

2.6.1 Syslog-ng

Syslog-ng provides a centralized, securely stored log of all devices on a

network, whatever platform they run on. System logs contain a lot of false positives

so there is a need to suppress these messages. Syslog-ng was designed to make

message filtering much more efficient and filters messages in a content-based manner.

In this way only the messages that are of particular importance manage to reach the

destination.

2.6.2 SNIPS

SNIPS is a network monitoring tool that runs under UNIX. Among other

tasks, this tool checks the reachability of different hosts and routes system resources.

It is important to note that SNIPS logs an event only if a user’s defined threshold

value is passed. For example, if the threshold for a round trip time (RTT) value is set

to 50 ms, only values bigger then 50 ms will be recorded.

SNIPS also has three threshold indicator levels: warning, error and critical.

1. Warning indicates that one poll is missed or the value passed the first

threshold.

2. Error indicates two polls are missed or the value passed the second specified

threshold value.

3. Critical indicates three polls are missed or the value passed the third specified

threshold value.

Another level called “info level” is present, which provides information about the

current status of the devices and whether they are currently up and running properly.

It also serves to provide information when a device comes back from the Warning

indicator level.

 13 LINX Network Monitoring

Chapter 3: Objectives and Scope

3.1 Objectives

3.1.1 Standardise Data Representation and Format

This objective targets a common problem that IXPs currently face, discussed

in the introductory part of this report. Briefly, IXPs have not established or follow

any data representation standards when implementing and utilising network

monitoring software. As a result, data formats used by one IXP are unique, which

implies that its data formats and, consequently, its toolkits cannot be adopted by other

IXPs without the need for major changes. The objective was therefore to design a

common data representation for network traffic.

3.1.2 Standardise Data Display

As IXPs currently deploy their own toolkit for monitoring their network

infrastructures, data are represented and visualised in different ways. Due to these

presentational differences, IXPs face again yet another hurdle in sharing information

effectively. The objective was to overcome these presentational differences by

designing a standardised data display which allows data from different IXPs to be

presented in the same manner.

3.1.3 Develop a Prototype

Another objective was to implement a prototype to provide proof of concept

for the project’s system architecture. The prototype did not necessarily provide any

network monitoring functionality; instead, it had the sole purpose of demonstrating

that the system architecture was feasible. The prototype served as a stepping stone

before beginning the actual implementation of the system.

3.1.4 Create a Toolkit for Data Analysis

As outlined before, IXPs currently have developed their own set of network

monitoring toolkits which are unlikely to be compatible with other IXPs’ hardware.

The objective was therefore to create a toolkit for data analysis that could be used by

all IXPs, alleviating the problem of information sharing.

 14 LINX Network Monitoring

3.1.5 Integration at LINX

Because this project was suggested by LINX and because the desired outcome

was an implementation of a system providing network monitoring functionality, it

was essential to integrate the developed system at our client’s location. Testing the

system there provided feedback on whether or not it could operate in an IXP

environment.

3.1.6 Perform Client Acceptance Testing

Since this project has a real client, a vital part of measuring its success was

performing an acceptance test to see if the system developed met the client’s

expectations.

3.1.7 Meet the Client’s System Requirements

Since this is a project that could potentially be used by many IXPs, and since

each IXP has, generally, quite different hardware and software platforms, it was an

important objective to create a toolkit that could be deployed with little or no change

to the IXP’s current infrastructure.

3.2 Scope

Since this project was suggested by LINX and being undertaken on its behalf,

the project concentrated on the requirements of this client. The use and testing of the

toolkit by other IXPs was not considered due to time constraints and lack of access to

the relevant resources. However, upon completing the implementation phase relevant

documentation was created that gives detailed instructions to other interested IXPs on

how to deploy the toolkit in their networks.

 15 LINX Network Monitoring

Chapter 4: Requirements Analysis

4.1 Overview

In order to clearly understand the requirements, it is important to illustrate the

problems LINX and other IXPs had identified. A short summary is given below.

o Each IXP/ISP has different hardware supporting different monitoring tools.

o Different IXPs retrieve, store, analyze and display traffic data in different

ways. They have their in-house built tools that cannot be used by other IXPs.

o Storing the data depends on the method of retrieving them. Many IXPs use

SNMP and MySQL, while others use SNIPS and RRDs.

o A traffic analysis tool developed by one IXP cannot be used by another one

because their data are incompatible and the data analysis techniques used are

likely to be different.

o There is no standard on what method should be used for displaying the data.

LINX, for instance, uses HTML pages which follow the SNIPS design and

standard of displaying the data.

4.2 Functionality Requirements

Initial requirements were set out during the presentation John Souter gave as

part of the DCNDS seminars. One of the key requirements outlined during this

presentation was the need for a rudimentary network monitoring toolkit that could be

used by multiple Internet Exchange Points. Since it was stated that IXPs would not

want to change their existing data representation formats, the initial step suggested

was to design a completely new system architecture on which the suite of monitoring

functions could be based.

 An additional number of requirements for such a network monitoring toolkit

were set out by LINX during the first meeting at the client’s location. Monitoring of

an IXP’s network infrastructure was required to take place from any location,

suggesting a client-server architecture. Another requirement of the toolkit was to

allow remote monitoring of other member IXPs. This feature would allow an IXP

such as LINX to examine the network performance of other IXPs and enable LINX to

investigate and suggest any solutions to problems the remotely monitored IXP might

 16 LINX Network Monitoring

encounter. The monitoring toolkit was also required to be easily extensible in its

functionality, meaning that it should be possible to add or remove monitoring

components at later stages. This requirement suggested a system consisting of small

modular components that could be easily plugged in or easily changed without

affecting other modules. Another requirement for the toolkit was the ability to

monitor the network in real time.

In terms of the actual monitoring functionality of the toolkit, the requirements

were not as clearly defined as some of the general requirements and it was therefore

suggested, as a guide, to research the functionality of existing monitoring tools such

as IXP-watch. However, it was made apparent that monitoring to see if a device or a

link is up and testing whether round trip times exceed a certain threshold value were

some of the necessary features.

4.3 Data Display Requirements

Before this project, the network monitoring solution utilised by LINX did not

provide a very powerful package for the graphical visualisation of data. Most of the

data such as round-trip times were displayed in text format while throughput was

visualised though a simple graphing component which did not provide many features.

LINX stated the need for a graphical user interface from which the user could select

what kind of data to display. The graphs displayed by the graphical user interface

were required to be standardised so that the visualisation of data from different IXPs

was the same. Such a GUI along with its standardised graphs would ensure that

network administrators could understand displayed data very easily even though it

might have come from a variety of IXPs.

In addition, since the toolkit was required to allow for the remote monitoring

of other IXPs, the graphical user interface had to provide a mechanism to display data

from different IXPs side by side. This would aid and simplify the comparison of data

from a variety of IXPs.

Because LINX has to monitor many machines on their infrastructure one of

the requirements was the ability for a user to define certain parameters. These

parameters included defining whether all interfaces or just one should be monitored

and defining a specific monitoring interval for real-time tools, meaning that the user

would be able to specify the age of the data to be displayed (for instance, display data

that are at most five minutes old). In addition, the need for a prioritisation mechanism

 17 LINX Network Monitoring

was mentioned during the requirements capture meeting. This mechanism would list

and display the data of any machines in critical conditions before the less critical

ones, which would be displayed further down the list.

Finally, as Internet Exchange Points tend to collaborate with each another, it

was suggested that a particular nice feature would be the ability to save the data of a

graph to a file in order to share it with an interested party. More concretely, it was

suggested to implement a save and open menu bar that would allow a user to save the

displayed data in a certain standard file format. This file could then be forwarded to

another IXP by means of email or another mechanism and then be opened and

displayed again for analysis.

4.4 Security Requirements

As the data LINX generates from monitoring their customers’ traffic and their

own hardware have to be kept confidential, there was a requirement to ensure its

confidentiality through encryption as well as to provide mutual authentication of the

parties involved in the exchange of these data.

 18 LINX Network Monitoring

Chapter 5: System Architecture Chapter 5: System Architecture

FIGURE 5.1: System architecture

The system architecture consists of several components. The process begins

when a real resource such as a switch or router generates data (perhaps in the form of

log files); these are shown in Figure 5.1 as grey boxes and are labelled IXP. The next

component, called a Glue, then gathers these data and puts them in a standard format.

In the case of a log file, a Glue simply reads each line, parses the fields in the line and

stores them. The storing of the data, which are now in a standard format, can be done

using another file, a data structure or even a database. Thus this component provides

the “glue” between the real resource and the rest of the system.

The next component, called a PoD, performs two functions: it analyses the

data supplied by the Glue and acts a server that provides the analysed data to clients

(each request from clients is handled by spawning a separate thread). The final

component consists of a Graphical User Interface (GUI), essentially the client. It is in

charge of connecting to a PoD, requesting the data and displaying the results

 19 LINX Network Monitoring

graphically in a standard way. In addition, the GUI provides a list of all available

PoDs that the user can access information from.

Each set of real resource, Glue, PoD and GUI represents a Remote Monitoring

Function (RMF) or tool. The concept is shown in Figure 5.1, where the IXP on the

left contains two different tools, one focusing on packet loss and the other one on

round trip-times for pings. Since the tools are disparate, each component in them

performs a different function than its counterpart. For instance, the PoD in the first

tool will be basing its analysis on how many packets have been lost, while the PoD in

the second tool will look at how long the round-trip times are. They both still perform

analysis and act as servers, but their specific tasks depend largely on the type of data

they are dealing with. Figure 5.2 shows a closer look at the architecture of a

particular Remote Monitoring Function. Note how all communication between

components (except between the Glue and the real resource, G-RP) is standard. Also,

the Glue is logically divided into two parts, the resource-specific part (G-RS) that

deals with data in a non-standard format and the resource-independent part (G-RI)

that communicates with the PoD:

FIGURE 5.2: Architecture of a Remote Monitoring Function

 20 LINX Network Monitoring

The system also needs to have some mechanism whereby the GUI can find the

PoDs. To solve this problem, a PoDRegistry was designed. Each IXP has its own

PoDRegistry, which is initially empty. When a PoD begins running, but before it

starts to accept connections from clients, it registers itself with the PoDRegistry,

telling the registry its name, its address, its port number, what type of PoD it is (see

Section 7.2) and a short description of what it does. The PoD knows where to contact

the registry because the registry runs at well-known port 5555 and at a well-known

address determined individually by each IXP. Once all PoDs are registered with their

local registries, it is up to the GUI to contact these registries and to request all entries

from them. The location of all registries is done through an out of bounds

mechanism, perhaps using a URL such as podregistry.ixpname.com and of course

well-known address 5555. In the final step the GUI displays all the PoDs it found and

the user selects those he or she wishes to see data from.

Since the data being transmitted are likely to be confidential, according to one

of the client’s requirements all communication between a PoD and a GUI is done

using SSL and mutual authentication (see Chapter 9). Communication between a

PoD and the PoDRegistry and again between the GUI and the PoDRegistry is

unencrypted, since the location of a PoD is not confidential.

One of the great advantages of this architecture is that it allows a tool

developed by an IXP to be easily ported over to another IXP. If the real resources in

each IXP differ, the second IXP need only rewrite the G-RS: the new G-RS will be

capable of talking to the new real resource and put the obtained data in the same

standard format as the one being used by the G-RS in the first IXP. In this way, IXPs

can share tools they develop, and, as a result of this collaboration, significantly

improve their network monitoring capabilities.

Another important advantage is the system’s modularity: since all

communication between components is performed in a standard way (either through

protocols as described in chapter 8 or through standard data formats) each component

(Glue, PoD, GUI, even the PoDRegistry) can be written individually from the others

and in different programming languages. Thus if while porting a tool an IXP

discovers that it is unsatisfied with the way the other IXP implemented a particular

component, it can replace it with its own without having to change any of the other

components. This also allows for easy upgrades, since upgrading a component has no

 21 LINX Network Monitoring

effect on the others, provided that the new component still communicates using the

same protocols and standards as the previous version.

A final advantage is the fact that the graphical display of the data is done in a

standard fashion, allowing an IXP to quickly compare data from its network to data

from other IXPs’ networks by displaying graphs side by side. This could potentially

be used to roughly predict when a fault will occur: if an IXP saved a graph right

before an error occurred, another IXP could use it as a signature for identifying a

problem that is about to take place.

 22 LINX Network Monitoring

Chapter 6: Remote Monitoring Functions

6.1 RTTvsTime

6.1.1 Introduction

 RTTvsTime began its life as the prototype described in Section 3.1.1,

eventually developing into a full RMF. RTTvsTime consists of a simple tool that

monitors and graphs the round trip-time for a given interface. This is done in non-real

time, that is, the RMF retrieves all data for that interface regardless of how stale that

information is. In addition, the PoD performs no real analysis, it simply allows clients

to connect to it and retrieve the data. The reason for creating such a simple RMF was

to show proof of concept for the system’s architecture. Even still, if the data are

relatively up to date, the RMF provides a useful graph depicting the fluctuation of

round-trip time over time. All components of this RMF are implemented in Java (the

names of the actual class files appear on top of the components in Figure 6.1).

 Figure 6.1 gives a detailed description of the RMF and in particular the

different standard data formats used. For instance, the standard output from the Glue

is shown: each entry is an array of strings containing the date, the time, the IP address

and the round-trip time. While communication between this Glue and the PoD in the

current implementation is done through Java’s Vector object, it could just as easily be

done over a network or even a file. In both cases the same standard data format

would have to be used in order to comply with the system’s architecture. In the latter

case, each line in the file would contain one entry, separating the entry’s fields by

commas; in the former case, an array of bytes containing the different arrays of strings

would be sent using a protocol similar to the VP protocol described in Section 8.3.

Such a protocol is considered future work (see Chapter 13). Note that all the RMFs in

this chapter contain a diagram similar to that found in Figure 6.1 and that the

explanation just provided applies to these as well.

 Finally, the graphics display is also standardised, in this case by using Ujac’s

charting library.

 23 LINX Network Monitoring

FIGURE 6.1: RMF RTT vs. Time

6.1.2 Glue and Backend

The real resource as depicted in Figure 6.1 consists of a log file named

alarms.log. This file is created by IXPwatch, a tool developed by LINX. A typical

entry in this log file looks as follows:

2004-06-07 00:08:13 : : ippingmongw : tr2.tfm7 : ICMP-RTT : down :
Warning/infrastructure : tr2.tfm7 (195.66.232.62) ICMP-RTT 83 down

Since the file contains entries for all types of events, the Glue reads in only those that

contain the literals “ICMP-RTT” and “ippingmongw”; in other words, the Glue

retrieves only round-trip time events generated using the Internet Control Message

Protocol. As a result the Glue / Resource Protocol (G-RP) depicted in Figure 6.1 is in

this case the Java file libraries used to read alarms.log. Once a line is read, the Glue

begins populating a Data object (shown in Figure 6.2), which is essentially a Vector.

FIGURE 6.2: The Data object

 24 LINX Network Monitoring

Each element in the Vector consists of an array of Strings representing the fields in

one line of the alarms.log file. For instance, the first element in the Vector is an

array of Strings for the first line in the log file which contained the two literals

desired, and the first element in the array is the date on which the event was logged.

Figure 6.1 shows that each array of Strings contains in fact four elements: the date,

the time, the interface’s IP address and the measured round-trip time.

6.1.3 PoD

 The PoD begins by retrieving the Data object from the Glue. Thus, the PoD /

Glue protocol (P-GP) shown in Figure 6.1 is represented by this object. Since, as

previously mentioned, the PoD performs no real analysis, the PoD does not change

any of the data given to it by the Glue (again, see Figure 6.1). It simply services

requests from clients for this data.

6.1.4 GUI

 While the GUI implemented for this project can be used as part of RMFs of

different types, this discussion will be limited to the display of the RTT vs. Time

RMF. First, the GUI contacts the PoDRegistry for the desired IXP and retrieves the

information for the PoD. This information consists of an object of type

PoDInformation, as shown below:

FIGURE 6.3: The PoDInformation object

 25 LINX Network Monitoring

The GUI uses the podType to determine what type of graph to display (type

GraphEnum is a simple enumeration class for types of graph; see Appendix B, class

diagrams, for more details). In the case of this RMF the graph type is “NORMAL”.

Next the GUI displays the PoD’s information, the user clicks on the PoD and hits the

Select button. This causes the GUI to display a dialog box asking the user to specify

an IP address for the interface to obtain data for. Once the user has selected an

address, the GUI contacts the PoD and retrieves the Data object. Note that this

communication uses SSL layered on top of the VPprotocol described in section 8.3.

Once the object has been received, the GUI uses Ujac’s charting library to display the

round-trip times over time. Figure 6.4 shows a screen capture of a graph being

displayed; also, note on the left hand side the fact that the RTT vs. Time PoD has

been selected.

FIGURE 6.4: Screen capture of the RTTvsTime RMF

 26 LINX Network Monitoring

6.2 ThresholdRTT

6.2.1 Introduction

While the previous RMF graphed round-trip times, this tool bases its analysis

on thresholds. The concept for this tool arose from output created by IXPwatch (the

alarms.log file) and a suggestion by the client that this tool could come in handy

when monitoring the network’s health. A threshold is simply a level that separates

two status zones. As far as this RMF is concerned, three thresholds exist, making

round-trip times fall into one of four categories: info, warning, error and critical.

Thus the first threshold separates the status info from the status warning, the second

one separates the status warning from the status error, and so on. The PoD takes each

round-trip time and assigns a status to it, allowing the GUI to later graph this status in

a standard format using one of four colours: green for info, yellow for warning,

orange for error and red for critical. This RMF is non-real time and all its

components are implemented in Java (the names of the actual class files appear on top

of the components in Figure 6.5). Also, should the user wish to query all interfaces,

he or she can input “all” at the relevant prompt from the GUI.

FIGURE 6.5: RMF ThresholdRTT

6.2.2 Glue and Backend

Since the data for this tool also come from the alarms.log file, the Glue for

this RMF is in fact exactly the same as the Glue for the previous RMF: it simply reads

 27 LINX Network Monitoring

the file, filters out the lines it does not care for and stores the parsed fields in a Data

object.

6.2.3 PoD

 For each given round-trip time the PoD must figure out its status. It does so

by using the three thresholds that divide the four status zones. Each threshold is

configurable, but in the case of alarms.log the thresholds used by LINX were 60, 80

and 150 milliseconds. Thus, for example, a round-trip time of 65 ms. would be

deemed warning since it falls between the first and second thresholds, while one of 55

ms. would be considered info since it is below the first threshold. The Data object

returned by the PoD is then exactly the same as the one given by the Glue, except that

the last field of each array of Strings (the fourth element) now contains the status as

opposed to the round-trip time (see Figure 6.5). The status can be one of the

following literals: “INFO”, “WARNING”, “ERROR” or “CRITICAL”.

6.2.4 GUI

 The display for this tool varies significantly from that of the RTTvsTime

RMF, so much so that it was discovered that Ujac’s charting library was not flexible

enough to accommodate its data. Consequently, new graphics capabilities had to be

built from scratch using Java’s 2D graphics libraries. A description of this standard

display follows. Essentially, the display is a horizontal bar graph, where each bar

corresponds to a particular interface. Each bar is composed of segments of different

colours, each of which represents the amount of time that the interface remained in

that particular state (the x-axis represents time). In addition, the display shows a

coloured circle next to each interface’s IP address, signifying its current state.

Finally, all the interfaces are sorted by current status, listing those that are critical at

the top, followed by those in the error state and so on. Figure 6.6 shows a screen

capture of such a graph being displayed. Note that the first segment for all interfaces

but one is grey. This is because before drawing the graph, the graphics package that

plots it determines the leftmost and rightmost (oldest and newest) event from all

interfaces. Since only one interface had the oldest event, all others display a grey

segment (no data available) from the leftmost point on the graph. This type of graph

allows a system administrator to very quickly determine which interfaces require

immediate attention: those in the critical state will fill in the first rows of the graph.

 28 LINX Network Monitoring

Finally, should the administrator wish to focus on a particular interface, this RMF

allows him or her to display it on its own. This graph, as well as the ones for

ThresholdRTTRealTime, LinkStatus and MinMaxPing (see sections 6.3.4, 6.4.5 and

6.5.5, respectively), was designed according to some of the guidelines found in the

book “The Visual Display of Quantitative Information” by R.E. Tufte. In particular,

it aims to avoid graphical distortion by providing a clear labelling of the different

interfaces and a legend explaining the meaning of the colours being displayed.

Another guideline is the presentation of many numbers in a small space, which

ThresholdRTT certainly accomplishes since it presents a vast amount of data in

usually just one screen full. Further, Tufte calls for a graph that encourages the eye to

compare different pieces of data. This graph does so by not only presenting a history

of all interfaces, but by drawing vertical lines representing what the state of the

network was at a specific point in time. A final guideline is to have the graph reveal

the data at several levels of detail, from a broad overview to a fine structure. This

graph provides a broad overview by displaying the circles that signify the current state

of the interfaces; conversely, it presents a finer structure by allowing its user to

identify the state of any interface at any point in time.

FIGURE 6.6: Screen capture of the ThresholdRTT RMF

 29 LINX Network Monitoring

6.3 ThresholdRTTRealTime

6.3.1 Introduction

 As useful as the previous RMF would be to a system administrator, it would

be even more useful if it was capable of displaying the same type of information in

real time, updating itself at regular intervals with the latest events logged in the

alarms.log file. This is precisely the aim of ThresholdRTTRealTime.

 While the type of information handled and eventually displayed is the same as

the ThresholdRTT tool, the fact that this is a real-time RMF mandated changes from

the backend all the way to the GUI. In particular, the PoD (and consequently the

Glue) must be able to return all data that is newer than a given amount of time. For

instance, the PoD could return all events that took place in the last five minutes. All

components of this RMF are written in Java (the actual class names appear at the top

of each component in Figure 6.7). Also, should the user wish to query all interfaces,

he or she can input “all” at the relevant prompt from the GUI.

FIGURE 6.7: RMF ThresholdRTTRealTime

6.3.2 Glue and Backend

 The backend is again the log file alarms.log. Since the Glue needs to

retrieve the most recent events, it has to be able to read the file backwards, that is,

read the last line first, the second to last line next, and so on (log files generally store

the most recent events at their end). To do so, the Glue makes use of the auxiliary

 30 LINX Network Monitoring

class TailFileReader, and more specifically its readUnixPreviousLine() and

readWindowsPreviousLine() functions. As is probably apparent, this Glue can

handle both UNIX files which use only the line feed character (\n) to separate lines

and Windows files which use the carriage return followed by the line feed character

(\r\n) to separate lines. In addition, the Glue makes use of another auxiliary class,

Timer, to determine when it has read enough lines. It does so by first taking the

difference between the newest time (the timestamp for the last line in the file that

contained the literals “ICMP-RTT” and “ippingmongw”) and the current time (the

timestamp of the line the Glue is currently processing); if this difference is greater

than the time submitted by the user to the GUI (and subsequently to the PoD and the

Glue) then the Glue stops reading.

6.3.3 PoD

 The PoD for this tool is in fact exactly the same as the PoD for the

ThresholdRTT RMF with one minor difference: it supplies the Glue with how much

data it should read (in terms of time).

6.3.4 GUI

 Because it is a real-time tool, when the user selects the PoD for this RMF the

GUI will prompt him or her to input not only the IP address to display information for

(possibly all of them) but also how recent the data to be displayed should be (in

seconds). Thus if the user wanted to retrieve data for all the interfaces in the last five

minutes he or she would type “all” in the first dialog box and 300 in the second one.

Finally, the user must tell the GUI how often to refresh the information, again in

terms of seconds. If the user types 5, then every 5 seconds the GUI will return data

for all the interfaces that are no older than five minutes and display them on the bar

graph described in section 6.2.4. This provides a very powerful tool for a system

administrator: at a glance, he or she can see exactly which interfaces require attention,

follow how their status develop and also see a brief history of the status of these

interfaces. Note that no screen capture is provided since it would look nearly the

same as the one provided for RMF ThresholdRTT. For the justification of the graph’s

design please see section 6.2.4.

 31 LINX Network Monitoring

6.4 LinkStatus

6.4.1 Introduction

 This tool is based around the program fping, a more powerful version of the

ping program, and arose again from a client requirement of being able to, at a glance,

see the status of relevant interfaces. The administrator sets up a configuration file

with those interfaces he or she is interested in testing as well as thresholds for

determining when a round-trip time should require further attention. Since this is a

real-time tool, the RMF then periodically fpings the desired interfaces and displays

the results graphically. All components of this RMF are written in Java except for the

resource-specific part of the Glue (see G-RS in Figure 6.8) which is written in C++.

The reason for this was to show proof of concept that the different components of an

RMF could be written in different languages. Also, should the user wish to query all

interfaces, he or she can input “all” at the relevant prompt from the GUI.

FIGURE 6.8: RMF LinkStatus

6.4.2 Configuration File

 Both parts of the Glue make use of a configuration file named LS-RM.config

(standing for Link Status – Remote Monitoring). A typical file looks as follows:

0.0.0.0 I_D_10 I_L_5 W_D_20 W_L_10 E_D_30 E_L_15 C_D_40 C_L_20 N_2 T_100 R_10000
127.0.0.1 I_D_30 I_L_33 W_D_50 W_L_44 E_D_70 E_L_55 C_D_90 C_L_66 N_3 T_200

 32 LINX Network Monitoring

144.82.194.58
144.82.200.33
144.82.11.5
222.33.66.77
10.12.34.12

The first line must contain the address 0.0.0.0 to denote that this is the line for default

values. If any of the lines that follow is missing any value, the value from the first

line will be used. Most of the fields are used by the PoD to perform its analysis, so an

explanation of them is discussed in section 6.4.4. However, here is a brief description

of their semantics:

Field Description
I_D “Info” threshold for the delay (the round-trip time).
I_L “Info” threshold for the loss (the amount of ping packets lost due to timeouts).
W_D “Warning” threshold for the delay.
W_L “Warning” threshold for the loss.
E_D “Error” threshold for the delay.
E_L “Error” threshold for the loss.
C_D “Critical” threshold for the delay.
C_L “Critical” threshold for the loss.
N The number of pings to send to this particular interface.
T The timeout value for the ping to this particular interface.
R Refresh time, the amount of time (in milliseconds) that the program should

sleep for after having pinged all interfaces in the configuration file and before
pinging them again (this value is only allowed in the first line of the file).

TABLE 6.1: LS-RM.config fields

Thus in the example configuration file given above, all interfaces except 127.0.0.1

will be pinged twice (N_2) and their timeout will be set at 100 milliseconds (T_100).

Likewise, all these interfaces will share the same thresholds, except 127.0.0.1, for

which the default values are overridden. The program sends pings to all the interfaces

and goes to sleep for 10 seconds (R_10000) before pinging all interfaces again.

6.4.3 Glue and Backend

 As previously mentioned, the Glue, unlike those in the previous RMFs, is

physically split into two parts, following the logical partition shown in Figure 6.8.

This discussion will first focus on the resource-specific part of the Glue (G-RS). The

real resource in this case is not a log file but rather the fping program used to obtain

round-trip time (delay) and packet loss information. The G-RS runs the fping

 33 LINX Network Monitoring

commands and stores the results in a file called fping.log. Here are some typical

entries from such a file:

144.82.194.58 : [0], 84 bytes, 22 ms (0.06 avg, 21% loss)
144.82.194.58 : [1], 84 bytes, 0.05 ms (0.05 avg, 0% loss)
127.0.0.1 : [0], 84 bytes, 32 ms (0.06 avg, 45% loss)
127.0.0.1 : [1], 84 bytes, 0.04 ms (0.05 avg, 0% loss)

The first field denotes the interface that was pinged, the second field is the ping

number (since each interface can be pinged more than once), the third field is the

number of bytes in the ping packet, the fourth field is the round-trip time, the fifth

field is the average round-trip time and the sixth field is the percentage loss. Note that

some of the actual values have been altered by hand for testing purposes.

 It is now up to the resource-independent part of the Glue (G-RI, see Figure

6.8) to read and parse the fields of the file fping.log. For each line it creates an

array of strings of size 6, as shown in Figure 6.8. In addition, the G-RI provides a

function to read the configuration file that is used by the PoD to retrieve the threshold

values (8 in total, see table 6.1) for each interface.

6.4.4 PoD

 The PoD calculates the status (either “info”, “warning”, “error” or “critical”)

for each ping result (each line in the fping.log file). It does so by first matching the

IP address of the result it is currently processing with an entry in the configuration

file. When it finds a match, it retrieves all thresholds for that particular interface. It

then uses these values along with the round-trip time (delay) and the percentage loss

for the ping result to determine the status in the following way:

o If both the delay and loss values are below the “info” thresholds, then the

status is “info”.

o If the previous statement fails and the delay and loss values are below the

“warning” thresholds, then the status is “warning”.

o If the previous statement fails and the delay and loss values are below the

“error” thresholds, then the status is “error”.

o Finally, if the previous statement fails then the status is “critical”.

For instance, if the log file contained the fping result

 34 LINX Network Monitoring

144.82.194.58 : [0], 84 bytes, 22 ms (0.06 avg, 21% loss)

and the configuration file contained the entry

144.82.194.58 I_D_30 I_L_33 W_D_50 W_L_44 E_D_70 E_L_55 C_D_90 C_L_66 N_3 T_200

then the status would be “info”, since both values (22 ms and 21%) fall under the

“info” thresholds. If the value for the delay had been, for instance, 72 ms, then the

status would have been “critical”, since the value is above the “error” threshold of 70.

6.4.5 GUI

 The PoD gives the GUI a set of pairs of the form < IP address, status>. The

GUI begins by grouping all the different ping results by IP address. It then displays

the information using a horizontal bar graph, where each interface is allotted, in fact,

four bars, one for each type of status. Thus, the number of “info” results is plotted as

a horizontal green bar, the number of “warning” results as a yellow bar, the number of

“error” results as an orange bar and the number of “critical” results as a red bar. In

addition, the actual number of results is printed at the end of each bar, along with a

percentage relative to the other types of results for the same interface. For instance, if

an interface had two results in each of the four categories, each bar would display

25% (two divided by eight) followed by the number two. Figure 6.9 shows a screen

capture of the GUI displaying a graph for this RMF. Like the Threshold graphs, this

one follows the Tufte guidelines discussed in section 6.2.4. More specifically,

LinkStatus gives large amounts of data (many round-trip time results) in a very small

space, usually less than a screen full. In addition, it encourages the eye to compare

different pieces of data by using a different colour for each status; in this way, the

user can easily compare, for instance, the number of pings in the “error” level for all

interfaces (the same could be done, of course, for all the other types of status).

Finally, the graph presents different levels of detail, from the broad overview of the

colours and the length of the bars to the more detailed percentage and number of

pings found at the end of the bars.

 35 LINX Network Monitoring

FIGURE 6.9: Screen capture of the LinkStatus RMF

 Live the previous real-time RMF, this tool asks the user to supply how often to

refresh the information. The user also has the option to display information from a

single interface or from all interfaces in the log file. The strongpoint of this tool is

that it condenses quite a bit of information (8 thresholds, a delay value and a loss

percentage value) into a single coloured segment on a graph, allowing a system

administrator to quickly gauge which interfaces require further attention.

6.5 MinMaxPing

6.5.1 Introduction

 Like LinkStatus, this RMF is based on fping. Its purpose is to use the results

from ping tests to derive statistical measures such as average, minimum and

maximum round-trip times, maximum outliers and standard deviation. MinMaxPing

is very useful because it gives the user the range of RTT values: if these values are

very different they will result in a fluctuation in the ranges plotted in the graph,

alerting the administrator that there might be a network problem or that abnormal

packet processing at the destination host is taking place.

 36 LINX Network Monitoring

The process begins when the network administrator sets up a configuration file

specifying which interfaces to ping as well as the timeout value and the number of

pings to perform for each interface. MinMaxPing is a real-time RMF, so the user of

the GUI specifies how often to refresh the information being displayed. All

components of this tool are written in Java except for the resource-specific part of the

Glue, which is written in C++. Also, should the user wish to query all interfaces, he

or she can input “all” at the relevant prompt from the GUI.

FIGURE 6.10: RMF MinMaxPing

6.5.2 Configuration File

 The configuration file for this tool, called maxmin.config, is considerably

simpler than the one used in the LinkStatus RMF. A typical file looks like this:

0.0.0.0 T_200 N_10
127.0.0.1 T_300 N_8
144.82.194.58

As with the previous RMF, the first line of the configuration file represents the

defaults and must have 0.0.0.0 as the IP address. The only two values that can be

specified are how many times to ping a particular interface (in this case the default is

10) and the timeout (200 milliseconds in the default case). Any subsequent line in the

 37 LINX Network Monitoring

file can override these defaults, but should a value be missing, the default value is

used.

6.5.2 Glue and Backend

 The real resource in this case is fping and the resource-specific part of the

Glue is a program written in C++. A probe begins when this program reads the first

line in the configuration file and executes the fping command specified therein. Once

it has finished executing the pings for all the lines in the configuration file, the G-RS

prints out a time stamp containing the current time; this marks the end of the probe.

The G-RS then waits a constant amount of time (currently set at 2 seconds, enough

time for the timestamp to be printed) before starting the next probe. All results from

the pings including the timestamp that marks the end of the probe are outputted to a

file called maxmin.log. Thus, a typical log file looks as follows:

127.0.0.1 : [0], 84 bytes, 62 ms (60 avg, 0% loss)
127.0.0.1 : [1], 84 bytes, 50 ms (50 avg, 0% loss)
144.82.194.58 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
144.82.194.58 : [1], 84 bytes, 57 ms (50 avg, 0% loss)
144.82.194.58 : [2], 84 bytes, 50 ms (50 avg, 0% loss)
2004-07-23 22:07:00
127.0.0.1 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
127.0.0.1 : [1], 84 bytes, 53 ms (50 avg, 0% loss)
127.0.0.1 : [2], 84 bytes, 45 ms (50 avg, 0% loss)
127.0.0.1 : [3], 84 bytes, 50 ms (50 avg, 0% loss)
127.0.0.1 : [4], 84 bytes, 49 ms (40 avg, 0% loss)
144.82.194.58 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
144.82.194.58 : [1], 84 bytes, 180 ms (50 avg, 0% loss)
144.82.194.58 : [2], 84 bytes, 70 ms (50 avg, 0% loss)
144.82.194.58 : [3], 84 bytes, 53 ms (50 avg, 0% loss)
2004-07-23 22:07:30
144.82.194.58 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
144.82.194.58 is unreachable
144.82.194.58 : [2], 84 bytes, 50 ms (50 avg, 0% loss)
127.0.0.2 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
2004-07-23 22:07:40

Notice how the timestamps act essentially as delimiters between probes. Also, the

reason that the number of pings and even some of the IP addresses change between

probes is because the configuration file was changed.

 The resource-independent part of the Glue has the task of reading in this log

file and parsing all of its entries. The G-RI ignores any incomplete probes, that is,

any probes that have not been time stamped yet. In particular, it begins reading from

the end of the file, ignoring all lines until it finds a line containing a time stamp; the

G-RI determines that it has found a time stamp by searching for a dash (-) character

 38 LINX Network Monitoring

in the line. For each complete probe, the G-RI parses each line and stores the fields in

it in an array of strings. Since the line can have a different number of fields

depending on whether it is a regular line, a time stamp or a line representing a

timeout, the number of elements in each array of string varies. For a regular line, the

array contains 6 elements:
[0] The IP address
[1] The ping number for this IP address
[2] The number of bytes for the ping packet
[3] The round-trip time
[4] The average round-trip time
[5] The percentage loss

For a line containing a timestamp, the array contains two elements:
 [0] The date
 [1] The time

For a line representing a timeout, the array contains a single element:
 [0] The IP address

 Finally, since MinMaxPing is a real-time RMF, the Glue receives as input how

old the data to be read should be and stops when the timestamp of the next (older)

probe is older than the desired time specified by the user.

6.5.4 PoD

 The PoD for this tool returns arrays of strings of size 8. Each one of these

arrays represents statistical values calculated from the pings to one interface in a

specific probe. For instance, if the Glue was working with the following log file,

127.0.0.1 : [0], 84 bytes, 62 ms (60 avg, 0% loss)
127.0.0.1 : [1], 84 bytes, 50 ms (50 avg, 0% loss)
144.82.194.58 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
144.82.194.58 : [1], 84 bytes, 57 ms (50 avg, 0% loss)
144.82.194.58 : [2], 84 bytes, 50 ms (50 avg, 0% loss)
2004-07-23 22:07:00
127.0.0.1 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
127.0.0.1 : [1], 84 bytes, 53 ms (50 avg, 0% loss)
144.82.194.58 : [0], 84 bytes, 60 ms (60 avg, 0% loss)
144.82.194.58 : [1], 84 bytes, 180 ms (50 avg, 0% loss)
144.82.194.58 : [2], 84 bytes, 70 ms (50 avg, 0% loss)
2004-07-23 22:07:30

the PoD would generate four arrays: one for address 127.0.0.1 for the probe time

stamped 2004-07-23 22:00:30; another one for address 144.82.194.58 for the same

probe; a third one for address 127.0.0.1 for the probe time stamped 2004-07-23

 39 LINX Network Monitoring

22:07:00; and a final one for address 144.82.194.58 for the same probe (provided that

the user has selected to view data that are older than the 30 seconds separating the two

probes).

 Each of these arrays contains the following 8 elements:
 [0] The IP address
 [1] The number of timeouts for all pings of this IP in this probe
 [2] The maximum outlier (if any, more on this later)
 [3] The maximum round-trip time
 [4] The minimum round-trip time
 [5] The average round-trip time
 [6] The standard deviation
 [7] The time stamp of the probe that this set of pings belongs to

The PoD begins its analysis by grouping all the round-trip times from the different

pings of an interface in an array of integers. It continues by calculating the percentile

in terms of milliseconds, the same units as the round-trip times. Currently the 70th

percentile is calculated (a constant) since this value was observed to be optimal in

terms of drawing the attention of whoever is watching the GUI’s graph to problematic

interfaces. Any round-trip time values that are higher than the percentile are

considered to be outliers. To explain how this percentile is calculated, the following

example is presented. Suppose that the array of integers (the set of round-trip values)

contains the elements 10, 20, 30, 40 and 50 (the elements in the array must be sorted).

The process begins by calculating

(N + 1) x percentile N = number of elements in array values
 5 + 1 x 0.7 = 6 x 0.7 = 4.2

Next, the result (4.2) is split into its whole part (w = 4) and its fractional part (f = 0.2).

The percentile (in terms of millisecond) can then be computed as follows:

(1 – f) x values[w - 1] + f x values[w]

 (1 – 0.2) x values[3] + 0.2 x values[4]
0.8 x 40 + 0.2 x 50 = 32 + 10 = 42

Thus, in the given example the last entry in the array, 50, is a maximum outlier since

it is higher than the calculated value of 42. Note that it is possible, given a different

set of data and percentile, for the index to the array (in the above example w) to be

higher than the last element; in this case the percentile (in terms of milliseconds) gets

set equal to the last element in the array and there are therefore no outliers.

 40 LINX Network Monitoring

Since outliers tend to skew statistical measures like the average, these are

filtered out of the array of integers, but not before making a note of the maximum

outlier, which is needed for display by the GUI. Note that it is possible that none of

the round-trip times are outliers, in which case clearly there will not be a maximum

outlier. Next the PoD proceeds to calculate the maximum, the minimum, the average

and the standard deviation of those round-trip values that were not outliers. This final

measure is useful since it alerts the user about fluctuations in round-trip times, giving

an indication of possible network problems such as congestion. In fact, this

measurement is so useful that Mandrake 10, a LINUX distribution, includes it in its

implementation of the ping program. Finally, the PoD makes a note of how many of

the pings for this interface resulted in timeouts.

6.5.5 GUI

 The GUI begins by calculating and storing all the unique IP addresses in the

data given by the PoD. The information for each IP address is displayed in its own

separate graph; thus, the GUI displays as many graphs as there are unique IP

addresses. The graphs are sorted by increasing IP number.

 For each graph, the GUI runs through the set of arrays given by the PoD and

retrieves only those arrays whose IP address match the address of the graph. Each of

these matching arrays comes from different probes with different time stamps and is

consequently graphed as a separate entry on the x-axis (the x-axis represents time).

The y-axis represents round-trip time, usually in milliseconds. For each array, then,

the GUI plots the minimum, the maximum, the average and the maximum outlier (if

any): the minimum value is a green dot, the maximum value is an orange dot, the

average is a black cross and the maximum outlier is a red dot. In addition, the GUI

displays the time stamp of the probe as the x-axis label along with the standard

deviation for the values in the probe (between parentheses) and the number of

timeouts (between brackets). Figure 6.11 shows a screen capture of the GUI

displaying a graph for this RMF. The graph, again, follows Tufte’s guidelines. It

presents many data in a small space and encourages the eye to compare different

pieces of data (maximums, minimums, averages and maximum outliers)

 41 LINX Network Monitoring

FIGURE 6.11: Screen capture of the MinMaxPing RMF

 42 LINX Network Monitoring

Chapter 7: Other Components

7.1 PoDRegistry

 The PoDRegistry offers a mechanism by which PoDs from any of the Remote

Monitoring Functions discussed in Chapter 6 can announce their presence; clients can

then contact the registry to obtain the PoDs’ location. In this way, the registry

provides bootstrapping between servers (PoDs) and clients (in this case the GUI).

The current implementation of the registry is in Java, but like the other components in

the system it could have been written in any other language, provided that the same

communication protocol is used (see Section 8.2 for a description of the protocol that

the registry uses to communicate).

An entry in the registry consists of a PoDInformation object (see Figure 6.3),

which contains the PoD’s IP address, its port number, its name, a brief description and

its type. This last attribute is used by the GUI to determine what type of graph to

display. In short, the registry keeps track of all the PoDs it knows about by storing

PoDInformation objects in a Vector.

The registry runs on well-known port 5555 and spawns a new thread to handle

each request from clients. It can perform four operations:

1. Add an entry: This is performed when a PoD starts up and wishes to

register itself with the registry. An entry is added to the list of

PoDInformation objects only if the list does not already contain a

PoD with the same name attribute.

2. Lookup an entry: Uses the PoD’s name as the searching key, returns

the PoDInformation object if a match occurs and null otherwise.

3. List all entries: Returns all PoDInformation objects currently

registered.

4. List IXP name: Since, as discussed in Chapter 5, each registry belongs

to a particular IXP, the registry has an IXP name associated with it

(given as a command line parameter). This operation returns this

name.

 43 LINX Network Monitoring

Finally, since PoDs do not explicitly deregister when they stop running, the

registry spawns a separate thread that takes care of cleaning up any entries of PoDs

that are no longer running. The reason for not having a PoD deregister when it stops

running is that if it were to crash it would fail to deregister, leaving a permanent and

invalid entry in the registry.

 The cleanup thread determines whether a PoD is still running by attempting to

connect to it: if the attempt fails, the PoD is no longer running and can be safely

removed from the registry. The thread repeats this process for all the entries in the

registry and then goes to sleep for a constant number of milliseconds, currently set at

5000. The cleanup thread performs this operation as long as the PoDRegistry is

running.

7.2 GUI

 The previous sections in Chapter 6 describing the GUI focused on the different

types of graph it can draw. This section will, instead, focus on all its other features.

While in terms of system architecture a GUI need only be able to display one type of

graph, the GUI that was actually implemented can handle data from PoDs belonging

to any of the RMFs previously discussed.

 When it begins running but before the user can begin interacting with it, the

GUI contacts all the registries it knows about and retrieves the information for all the

PoDs in them. The IP addresses of these registries are given as command line

parameters, but the GUI could find these out by an out-of-bounds means such as a

well-known DNS name like, for instance, registry.ixpname.com:5555. The GUI then

populates the tree that appears on its left hand side. The highest hierarchical level in

the tree has only one component labelled “IXP list”; the second level contains one

element for each registry that has been contacted and is labelled with the name of the

IXP that the registry belongs to; finally, the third level has all the PoDs currently

registered in a registry.

 The user is now free to select as many PoDs as desired, even if they are not

from the same IXP. This fulfils the client’s requirement that graphs from different

IXPs be displayed side by side for comparison purposes. When the user selects a

particular PoD, its attributes (name, IP address, port number and a brief description)

are displayed in the status bar at the bottom of the GUI, allowing the user to decide

whether the selected PoD is in fact the desired one. At this point, hitting the “Select”

 44 LINX Network Monitoring

button causes the selected PoDs to be displayed on the area at the right of the GUI. If

more than one PoD was selected the graphs are displayed top to bottom, with a

vertical scrollbar appearing at the right of the graphs. The “Refresh” button simply

clears any graphs that are currently being displayed, essentially reverting the GUI to

the state it was in when it first began running. The same function is available from

the menu bar under “View”.

 Another powerful feature of the GUI is that it allows the user to save the graph

currently on display to a file (this is accessible through the menu bar found at the top

of the GUI, though only one graph must be on display for this feature to work). The

addition of this feature arose directly from a client requirement. Once a file is saved it

can be loaded back into the GUI, causing the saved graph to reappear. If a network

administrator finds the data on display troubling, he or she can save it to a file to be

able to share it with others, perhaps via email. The person receiving the file can easily

restore it, provided that he or she has the same GUI or one that understands the format

that the file is in. The file is saved with extension .dat, but it is basically a text file.

Here is a sample saved file for the RMF MinMaxPing:

MIN_MAX_PING
IXPAmsterdam Min Max Ping for all
150
127.0.0.1 , 0 , -1 , 62 , 50 , 56.0 , 8.48528137423857 , 2004-07-23 22:07:00
144.82.194.58 , 0 , 60 , 57 , 50 , 53.5 , 4.949747468305833 , 2004-07-23 22:07:00
127.0.0.1 , 0 , 60 , 53 , 45 , 49.25 , 3.304037933599835 , 2004-07-23 22:07:30
144.82.194.58 , 0 , 180 , 70 , 53 , 61.0 , 8.54400374531753 , 2004-07-23 22:07:30
144.82.194.58 , 1 , -1 , 60 , 50 , 55.0 , 7.0710678118654755 , 2004-07-23 22:07:40
127.0.0.2 , 0 , -1 , 60 , 60 , 60.0 , -1.0 , 2004-07-23 22:07:40

The first line is the type of graph to be drawn. The following table describes the types

of graphs corresponding to the different RMFs:

RMF Name Graph Type Literal
RTTvsTime NORMAL
ThresholdRTT THRESHOLD_RTT
ThresholdRTTRealTime THRESHOLD_RTT_REAL
LinkStatus LINK_STATUS
MinMaxPing MIN_MAX_PING

TABLE 7.1: Graph type literals for PoDInformation’s podType member

The second line of the saved file contains the title of the graph. The third line is the

value entered by the user for how recent the data should be; for those RMFs to which

this does not apply the GUI outputs a 0. Following this third line come the lines for

 45 LINX Network Monitoring

the actual data. Each field in each line is comma-separated, and the number of fields

depends, naturally, on the type of RMF being dealt with. These fields are described in

Chapter 6 in the Figures appearing in the Introduction section of each RMF. The fact

that the data are saved as text in the standard format just described means that a

programmer could easily implement a different GUI that could read in the file.

 A final feature is the ability to pause the display of a real-time RMF by

clicking on the “Pause” button that appears under the “Refresh” button when a real-

time RMF is being displayed. This gives a network administrator the ability to

analyse the data currently on display in more detail and to save it in order to share it

with colleagues. The following screen capture shows the GUI displaying two graphs,

one for RMF RTTvsTime and another one for RMF ThresholdRTT:

FIGURE 7.1: Screen capture of the GUI

 46 LINX Network Monitoring

Chapter 8: Protocols

8.1 Introduction

 Two protocols were designed to provide communication over a network

between the different components defined in the system architecture: the PoDRegistry

protocol used by the PoDRegistry and the VP protocol used between the clients (the

GUI) and the PoDs.

 While communication could have taken place using an established language

such as XML (Extensible Markup Language), this presented some disadvantages. In

the case of the VP protocol which is used to transfer potentially large amounts of data,

the overhead incurred from the XML tags would have hindered the performance of

the transfer and, consequently, the effectiveness of the graphs displaying real-time

data. In addition, a simpler protocol like the VP protocol alleviates some of the

performance penalties suffered from the use of SSL-encrypted communications.

 In the case of the PoDRegistry protocol, it was felt that using XML would be

overkill and that all necessary functionality could be accomplished with a new,

simpler and more efficient protocol.

8.2 PoDRegistry Protocol (version 1)

 The PoDRegistry protocol is used for all communications between the PoDs

and the registry and again between clients and the registry. Note that all integers are

four bytes long and are encoded using NetByte to ensure that there are no problems

with little or big endian encodings and that the graph type is encoded as an integer

using the conversion in Table 8.2. The protocol supports the following eight

operations:

1. Request to add an entry to the registry, used by a PoD when it first starts up to

register itself with the registry. The encoding of the request should return an

array of bytes containing the protocol version id, the operation id and the

PoD’s information, as described in table 8.1.

 47 LINX Network Monitoring

Field Description Field Type and Size
Protocol version ID = 1 Integer (4 bytes)
Operation ID = 1 Integer (4 bytes)
Number of bytes for the port Integer (4 bytes)
Bytes for the port number Variable
Graph type Integer (4 bytes)
Number of bytes for the IP address Integer (4 bytes)
Bytes for the IP address Variable
Number of bytes for the name Integer (4 bytes)
Bytes for the name Variable
Number of bytes for the description Integer (4 bytes)
Bytes for the description Variable

TABLE 8.1: PoDRegistry protocol, byte encoding for operation id = 1

Encoding Graph Type
1 NORMAL
2 THRESHOLD_RTT
3 THRESHOLD_RTT_REAL
4 LINK_STATUS
5 MIN_MAX_PING

TABLE 8.2: PoDRegistry protocol, graph type literals

2. Request to look up an entry in the registry (the name of the PoD is used as the

key to search for). The encoding of the request should return an array of bytes

containing the protocol version id, the operation id and the name of the PoD to

search for, as described in table 8.3.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 2 Integer (4 bytes)
Number of bytes for the name Integer (4 bytes)
Bytes for the name Variable

TABLE 8.3: PoDRegistry protocol, byte encoding for operation id = 2

3. Request to retrieve all the entries currently in the registry. The encoding of

the request should return an array of bytes containing the protocol version id

and the operation id, as described in table 8.4.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 3 Integer (4 bytes)

TABLE 8.4: PoDRegistry protocol, byte encoding for operation id = 3

4. Reply to a look up entry request. If the searched failed, the encoding of the

reply should return an array of bytes containing the version id, the operation id

and the number of results (0). If it is successful, the encoding of the request

 48 LINX Network Monitoring

should return an array of bytes containing the protocol version id, the

operation id, the number of results (1) and the PoD’s information, as described

in table 8.5.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 4 Integer (4 bytes)
Number of results (0 or 1) Integer (4 bytes)
Number of bytes for the port Integer (4 bytes)
Bytes for the port number Variable
Graph type Integer (4 bytes)
Number of bytes for the IP address Integer (4 bytes)
Bytes for the IP address Variable
Number of bytes for the name Integer (4 bytes)
Bytes for the name Variable
Number of bytes for the description Integer (4 bytes)
Bytes for the description Variable

TABLE 8.5: PoDRegistry protocol, byte encoding for operation id = 4

5. Reply to a request to list all the entries currently in the registry. The encoding

is exactly the same as for the previous operation (Table 8.5), except that the

operation id is 5 and that if the registry contains more than one PoD, the array

of bytes given by the encoding will contain the information for each PoD one

after the other. In other words, rows 4 through 12 of Table 8.5 will appear

once for each PoD in the registry, so that the last byte of the description of the

first PoD (row 12) will be followed by the first byte of the number of bytes for

the port of the second PoD (row 4).

6. Request to obtain the IXP name that the registry belongs to. The encoding of

the request should return an array of bytes containing the protocol version id

and the operation id, as described in table 8.6.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 6 Integer (4 bytes)

TABLE 8.6: PoDRegistry protocol, byte encoding for operation id = 6

7. Reply to a request to obtain the IXP name that the registry belongs to. The

encoding of the request should return an array of bytes containing the protocol

version id, the operation id and the IXP’s name, as described in table 8.7.

 49 LINX Network Monitoring

Field Description Field Type and Size
Protocol version ID = 1 Integer (4 bytes)
Operation ID = 7 Integer (4 bytes)
Number of bytes for the IXP name Integer (4 bytes)
Bytes for the IXP name Variable

TABLE 8.7: PoDRegistry protocol, byte encoding for operation id = 7

8. Reply to an add entry to registry request, used by the registry to tell the PoD

whether it was successfully added to the registry or not. The encoding of the

request should return an array of bytes containing the protocol version id, the

operation id and whether the operation succeeded (1) or failed (0), as

described in table 8.8 (the operation could have failed because the PoD was

already registered).

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 8 Integer (4 bytes)
Entry added ID (1 if ok, 0 if failed) Integer (4 bytes)

TABLE 8.8: PoDRegistry protocol, byte encoding for operation id = 8

Note that for all operations an array of bytes is what actually gets transferred

over the network, ensuring that the different components that communicate can be

written in different programming languages. In addition, the use of NetByte ensures

that there will not be any conflicts with little or big endian encodings. These two

factors make this protocol entirely platform independent and supports the modularity

of the architecture discussed in Chapter 5 (note that while NetByte is written in Java a

similar package could be written for other programming languages).

The implementation of the protocol just specified was actually done in Java

using PoDInformation objects. This object has two key functions: podToBytes,

which encodes all the data members of the object into an array of bytes according to

the tables in this chapter; and bytesToPoDInformation, which receives an array of

bytes and converts it back into a PoDInformation object. The rest of the encodings,

such as the version id and the protocol id are done by the protocol itself, implemented

in the class PoDRegistryProtocol.

8.3 VP Protocol (version 1)

The visualization / PoD protocol is used by a client to request data from a PoD

and by the PoD to return the requested data to the client. All the fields of the actual

 50 LINX Network Monitoring

data are arrays of bytes converted from strings. Regardless of the actual

implementation of the protocol, all the data begins as a collection of arrays of strings.

In addition, the number of elements for each array of strings is the same for each type

of RMF (MinMaxPing, for instance, deals with arrays of size 8, as shown in Figure

6.10, while RTTvsTime has arrays of size 4, as shown in Figure 6.1). The VP

protocol accommodates these differences as well as the fact that the number of bytes

for each of the individual elements in one of these arrays varies. Like the

PoDRegistryProtocol, this protocol uses NetByte to encode integers and longs.

The protocol has four operations, three to request data and one to reply with

the data requested. This last one is by far the most involved and is discussed last.

The three operations for requesting data are as follows:

1. Request for data from a PoD belonging to the RMF ThresholdRTTRealTime.

The encoding of the request should return an array of bytes containing the

protocol version id, the operation id, the IP address of the interface to retrieve

data for and the age of the data (in seconds). If, for instance, 300 seconds is

given as the age, then the data will be at most 300 seconds old. This encoding

is described in table 8.9.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 2 Integer (4 bytes)
Number of bytes for the IP address Integer (4 bytes)
Bytes for the IP address Variable
Number of bytes for the age of the data Integer (4 bytes)
Bytes for the age of the data Long (8 bytes)

TABLE 8.9: VP protocol, byte encoding for operation id = 2

2. Request for non-real time data. The encoding of the request should return an

array of bytes containing the protocol version id, the operation id and the IP

address of the interface to retrieve data for, as shown in table 8.10.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 3 Integer (4 bytes)
Number of bytes for the IP address Integer (4 bytes)
Bytes for the IP address Variable

TABLE 8.10 VP protocol, byte encoding for operation id = 3

 51 LINX Network Monitoring

3. Request for data from a PoD belonging to the RMF MinMaxPing. The

encoding of the request should return an array of bytes containing the protocol

version id, the operation id, the IP address of the interface to retrieve data for

and the age of the data (in seconds). If, for instance, 300 seconds is given as

the age, then the data will be at most 300 seconds old. This encoding is

described in table 8.11.

Field Description Field Type and Size

Protocol version ID = 1 Integer (4 bytes)
Operation ID = 4 Integer (4 bytes)
Number of bytes for the IP address Integer (4 bytes)
Bytes for the IP address Variable
Number of bytes for the age of the data Integer (4 bytes)
Bytes for the age of the data Long (8 bytes)

TABLE 8.11: VP protocol, byte encoding for operation id = 4

 The operation that replies with the data (operation id 1) takes a set of arrays of

strings and converts it to an array of bytes. How this task is accomplished can be best

described by the example shown in Figure 8.1:

FIGURE 8.1: Example of VP protocol’s operation id 1

For the following discussion note that all integers and longs are encoded with

NetByte, each taking 4 and 8 bytes respectively. The array of bytes begins with the

encoding of integer 1 (the version id), which takes four bytes. The next four bytes

contain the encoding of integer 1, representing the operation id. The next four bytes

contain an integer indicating how many bytes the title of the data takes up. The next

field is of variable length, depending on what the title of the data is. Immediately

following the last byte for the data title are four bytes containing an integer that

indicates how many elements all the arrays of strings have (remember that all the

 52 LINX Network Monitoring

arrays for one RMF have the same number of elements, so this number needs to

appear only once in the array of bytes). In the example shown in Figure 8.1 each

array has four elements.

 Next comes the first fields of the data. The first four bytes indicate the

number of bytes taken up by the first element of the first array; these are followed by

the bytes of the element itself. This process is repeated for all the elements in the

array. The encoding for the second array begins right after the end of the encoding

for the first array, so that the bytes for the last element of the first array are followed

by the four bytes denoting the number of bytes of the first element of the second

array, as shown in Figure 8.1.

 All these fields give enough information to the decoding process to allow it to

properly transform the array of bytes back into the original set of strings. The process

knows that it has reached the last array of strings when it reaches the end of the array

of bytes. Like the PoDRegistryProtocol, since all communication takes place in the

form of array of bytes, the parties using the VP protocol can be written in different

programming languages and environments.

 Finally, note that all control fields, such as the number of elements in each

array and the length of each field, were chosen to be quite long (4 bytes), so that the

protocol will work even when presented with arrays with many elements and with

elements of great size.

 53 LINX Network Monitoring

Chapter 9: Security

9.1 Motivation

 One of the client’s requirements regarding the implementation of the system

architecture was that the transfer of data over public networks such as the Internet be

done using some sort of encryption. In addition, the client wanted to ensure that the

PoD could authenticate the GUI before yielding any data and vice versa. These

requirements led to the adoption of the Secure Sockets Layer since it is both secure

and available as a package in several programming languages. Note that SSL runs on

top of the VP protocol (see section 8.3) and encrypts all information exchanged

between PoDs and the GUI. SSL is not used, however, in conjunction with the

PoDRegistry protocol, since information about PoDs is not considered confidential:

adding encryption results in a decrease in performance, so it is used strictly when

necessary.

9.2 Implementation

 Since all the PoDs and the GUI are written in Java, the current implementation

makes use of Java’s SSL package. Also, Keytool (see Section 10.2.6) was used to

generate the necessary certificates and, consequently, some of the terminology found

in this section derives from it. The whole process, including creating, exporting and

importing certificates is depicted in Figure 9.1 (to view the precise Keytool

commands needed to perform these operations please refer to Appendix A):

FIGURE 9.1: Creating, exporting and importing certificates for SSL

 54 LINX Network Monitoring

 Each component interested in communicating via SSL with mutual

authentication must have a keystore and a truststore. The former is used to keep

public and private key pairs for the component and the latter contains certificates of

parties the component trusts. To begin the process, a component like the GUI must

generate its public and private key pair and store it in its keystore, named “guiKeys”

in Figure 9.1. Each entry in the store is identified by an alias, which in the case of this

example is “gui”. In addition, a keystore has a password as does each individual entry

in it (these are not shown on the Figure for simplicity’s sake). Once the GUI has

generated its keys, it must export its public key into a certificate and send it to all

PoDs; the certificate is basically a file called gui.cer. Note that the actual

transmission of this file is at present time done by some out-of-bounds means such as

FTP or Secure FTP.

Upon arrival of the certificate, the PoD must import it into its truststore,

essentially declaring that it trusts the GUI and will accept to share an SSL connection

with it. Once the certificate file has been imported it can be disposed of. This

completes client authentication, where the GUI (the client) authenticates itself with

the PoD (the server). The same process must now be carried out in the opposite

direction, to provide mutual authentication. Briefly, the PoD generates its keys,

creates a certificate for its public key and sends it to the GUI, who upon receiving it

imports it into its truststore. Verifying that the certificate or public key just received

actually belongs to its stated owner is usually done by a Certification Authority;

however, since this can be a costly operation, at present it is up to the user importing

the certificate to ensure (perhaps by calling the issuer of the certificate) that its

fingerprint is valid and has not been changed in transit.

 Once these exchanges are completed the parties interested in communicating

via SSL can be started. Using Java’s SSL package the PoD, for instance, loads the

keystore and the truststore into a KeyManagerFactory and a TrustManagerFactory,

respectively, which are then used to initialize the SSL context (and object of type

SSLContext). The final step is to obtain a ServerSocketFactory object that will

create the SSL server socket needed to listen for requests from clients on. Once this

socket is obtained it can be used as if it was a regular, non-SSL server socket. The

process is much the same for the GUI, except that instead of obtaining a

ServerSocketFactory from the SSLContext it retrieves an SSLSocketFactory.

 55 LINX Network Monitoring

Chapter 10: Development Tools & Technologies

10.1 Programming Languages

10.1.1 Java

Java was selected because it is platform independent, allowing easy

deployment into varied environments like those of different IXPs. Any computer

running the Java Virtual Machine is able to interpret Java’s byte code regardless of its

platform and therefore run any application written in Java; Java is therefore used to

overcome platform incompatibility.

In addition, Java was chosen for its strong capabilities for graphics and

networking, making it ideal for implementing the graphical user interface and the

protocols for communication across networks. The choice was further justified by the

fact that Java provides an API for SSL, easing the implementation of secure

communication of data.

A final motive for using Java was the familiarity of the individual group

members with this particular language. This meant that the implementation of the

prototype system and most of the individual components for the network monitoring

toolkit could progress in a fast-paced manner, clearly an advantage considering this

project’s rather short development time.

10.1.2 C++

During requirements capture meetings with LINX, it became clear that staff

presently working for our client did not have a strong programming background in the

Java language. Since the majority of components such as the graphical user interface,

the PoDs and the Glues were implemented using Java, the group wanted to

demonstrate that the system architecture is not dependent on any specific

programming language. The most appropriate component to demonstrate this concept

is the resource-specific part of the Glue (G-RS). The reason for this is that it is the

one component that has to be rewritten by each IXP to suit its particular hardware.

Consequently, the G-RS was implemented using C++ since in general network

administrators are somewhat familiar with this language; this implementation gave

proof of concept that the designed system architecture is language independent, and

 56 LINX Network Monitoring

that IXPs can write their specific Glues (indeed, any of the architecture’s components)

in any language they wish, while still being able to utilise standardised components

such as the graphical user interface and the PoDs, which are currently implemented in

Java.

10.2 Tools

10.2.1 Ujac

Ujac is the abbreviation for Useful Java Application Components. This project

made use of one of these components, a charting library for drawing simple graphs.

This charting component provides a variety of designed charting types which are

available through a simple but generic interface, supporting the generation of 2D pie,

3D pie, 2D line, 2D bar charts and many other types. This particular charting

component proved to be useful in visualising the display of data in a meaningful form

according to the requirements that LINX provided.

Another advantage of Ujac is that it is freely distributed. Most of the other

packages that were found online required its users to buy an expensive development

license. This was considered an unacceptable option, as this project did not have the

kind of funding needed to pay for these licenses. In addition, Ujac is quite easy to

learn and use, while other packages found were full blown graphics packages which

required a steep learning curve and were therefore not regarded as a sensible option

given the time constraints of the project.

The Ujac suite was primarily used for the implementation of the prototype

which is described in earlier sections of this report. When the requirements for the

graphical visualisation of processed data became clearer through requirements capture

meetings with LINX, it was found that Ujac was not flexible enough to display all the

graphs needed by the different tools in the kit. Instead, the implementation of the

graphical display for most of the tools relied on Java’s 2D package.

10.2.2 Fping

Fping is a network utility based on the original ping utility. The original

version of ping is limited in its functionality. For instance, it can only ping hosts once

a second, a limitation which Fping does not have. Further, Fping allows the user to

ping any number of hosts on the command line, or to specify a file containing a list of

 57 LINX Network Monitoring

these hosts. In addition, instead of trying one host until it times out or replies like it is

the case with ping, fping will send out a ping packet and move on to the next host in a

round-robin fashion. If a host replies, it is noted and removed from the list of hosts to

check; if a host does not respond within a certain specified time and/or retry limit it

will be considered unreachable. This a useful feature in terms of the project since

ping’s blocking mechanism could prove very inefficient when faced with many hosts

to ping.

One last advantage of Fping is that it has been designed for use in scripts and

its output is easy to parse.

10.2.3 IXP-watch

IXP-watch provides the functionality of polling hardware like switches and

routers to obtain raw data such as round trip times. Once the hardware has been

polled and the information processed, IXP-watch provides a log file named

alarms.log. The resource-specific part of the Glue (G-RS) for some of the RMFs in

this project make use of this file and have been implemented to understand the data

representation format that IXP-watch provides. The G-RS translates data in

alarms.log into a standard data format that can then be used by a PoD for further

processing, since the PoD understands this standard data format.

10.2.4 Javadoc

Any person that has programmed in Java will have come across the API

specification created by Javadoc. The Java API is a catalogue which provides a

description of the available classes, inner classes, interfaces, constructors, methods

and fields to the programmer. The Java API specification therefore eases the

development process.

Because an IXP interested in using the network monitoring toolkit is likely to

want to modify the Glue, PoD or GUI, it was imperative to provide clear

documentation to their APIs. For this purpose the Javadoc tool was used. Javadoc is

a tool for generating API documentation in HTML format from source files. API

documentation generation takes place by parsing the declarations and documentation

comments in a set of source files and producing a set of HTML pages describing the

classes. In order to create this documentation, comments which are specifically

understood by the Javadoc parser were added to all source files.

 58 LINX Network Monitoring

10.2.5 CppDoc

CppDoc is another tool which allows the generation of API documentation in

HTML format from source files. The only difference between Javadoc and CppDoc is

that CppDoc can generate documentation from source code written in the C++

programming language, whereas Javadoc generates documentation from source code

written in Java. CppDoc was chosen because its output is virtually identical to the

one provided by the Javadoc tool, providing documentation for the entire project that

is homogeneous and, consequently, easier to use.

10.2.6 Keytool

Keytool is a key and X.509 certificate management tool. Keytool was

employed in this project to create private and public key pairs and their associated

certificates in order to use SSL to provide secure communications. It was chosen

because it comes standard with the Java SDK.

10.2.7 Together ControlCenter 6.0.1

Together ControlCenter is an integrated development platform designed to

simplify and accelerate the analysis, design, development and deployment of complex

enterprise applications. It includes powerful utilities for the modelling of unified

modelling language (UML) diagrams, including class, use case, sequence,

collaboration, activity, state, component and deployment diagrams. Together was

used to generate class diagrams straight from source code, a much more efficient way

of creating this documentation than drawing it by hand.

10.2.8 Microsoft Visio

Visio is a software package developed for the creation of all types of diagrams

such as block, brainstorming business process, flowcharts, organisational charts,

project schedule and timeline charts diagrams, just to name a few. Visio was mainly

employed to create system architecture diagrams to aid with the implementation

process. Furthermore, Visio was also used to create project management diagrams

such as project schedules and organisational charts.

 59 LINX Network Monitoring

10.3 Operating Systems

10.3.1 Windows

Windows XP was chosen as the main development platform for the prototype

and for the implementation of the majority of the components for the network

monitoring toolkit. The reason for choosing windows was convenience: all group

members had windows XP already installed on their machines. Due to the variety of

powerful development packages available under windows, the group initially saw no

particular reason to use another operating system. Development packages such as

NetBeans, JEdit and editors such as Emacs for windows were used throughout the

project. The choice of platform was not dependent on the programming language

used, as the Java programming language itself provided platform independency and

C++ compilers are available for all major operating systems.

10.3.2 Solaris

The UNIX distribution Solaris was used to conduct testing in a larger network

than that created by the group members’ own machines. Solaris was used because it

is the operating system deployed at University College London Computer Science

labs where this testing took place.

10.3.3 Linux (Knoppix, Penguin Sleuth Kit)

Knoppix is a full distribution of the Debian operating system, which has the

advantage that it can be booted from a CD without the need for installation on any

host machine. The reason for using it was to progress with the implementation of two

RMFS, LinkStatus and MinMaxPing, which rely on fping to generate the data. Since

fping does not come with Windows nor is it easily installed on that platform and

since it was not at first installed in the computer labs at University College London,

the Penguin Sleuth Kit (which does come with fping) was used on the group

members’ machines.

 60 LINX Network Monitoring

Chapter 11: Project Management

11.1 Client Interaction

This project differs from most other DCNDS projects in that it has a real

client, the London Internet Exchange. As such, it involved additional phases,

including user acceptance testing, thorough system testing on the client’s hardware

infrastructure and the final deployment of the system.

Thorough analysis and planning are some of the core disciplines necessary

when implementing a project according to real business requirements. In addition, it

is necessary to stay in constant contact with the client in order to provide information

on the progress of the project and to be aware of any changing user requirements so

that they can be added to the next implementation release. Project management

techniques and development methodologies should be chosen in such a way that the

client is seen as part of the project and not just an external entity.

11.2 Scope

Prior to starting this project, the group had to agree on its scope and its

expected outcomes. This is good practice and is usually done for any professional

project prior to the implementation process. Defining the scope is necessary in order

to be able to estimate if the objectives can be successfully met within the given time

interval. If it turns out that more could be achieved within this time limit then the

scope of a project can be extended.

The scope for this particular project has roughly been defined in chapter 3 of

this report, which illustrates the objectives. A more detailed definition of the scope is

given below.

o Design a system architecture which is not dependent on any hardware or

programming language.

o Implement a prototype as proof of concept for the system architecture.

o Define a standard data format.

o Implement a network monitoring toolkit which is specifically built to suit

LINX’s existing hardware and software.

o Carry out user acceptance testing.

 61 LINX Network Monitoring

o Deploy the network monitoring toolkit at LINX.

o Provide relevant documentation for user training.

o Provide guidelines for other IXPs to implement the Glue module and make

changes to existing modules.

The scope of this project was limited to LINX. Therefore, any network

monitoring software was developed according to LINX’s requirements, their specific

hardware infrastructure and their existing data representation formats. Due to tight

time constraints, the group agreed that it would not be possible to analyse the data

representation format of other interested IXPs in order to build versions particularly

suited to their needs and hardware. However, one of the deliverables of this project

was a set of relevant documentation including user manuals and a Javadoc description

of the various APIs of the implementation, which would allow other interested IXPs

to write their own G-RS suited to their current data representation format. Finally, the

scope of the project included a testing and deployment stage to ensure that the final

product ran properly on the client’s infrastructure.

11.3 Assumptions and Constraints

An important project management aspect prior to starting this project was to

define some assumptions and constraints. These were discussed and specified during

the first meeting with LINX, and helped in mitigating some risks arising from the fact

that the project has a real client. The constraints discussed with LINX gave the group

some rough guidelines on what could and could not be done. The assumptions and

constraints are as follows:

Assumptions:

o LINX will provide the raw data files needed to develop their G-RS.

o LINX will provide a contact (a customer) to refine requirements and to

evaluate results (Rob Lister).

o LINX will allow access to their network and relevant hardware in order to

carry out a testing and deployment phase.

Constraints:

o IXPs want to use their own internal data format.

 62 LINX Network Monitoring

o IXPs will not be able to give extensive test time on their networks.

o Access to data from other IXPs may be restricted.

o Delivery Deadlines

 25th of May: Working prototype.

 28th of May: Project management presentation.

 27th of August: Final demonstration at LINX.

 6th of September: Submission of all deliverables.

11.4 Development Methodology

At the beginning of the project, the requirements LINX had were only poorly

defined and not very well understood. In addition, since LINX is a client working in a

real, fast-paced business setting where requirements are likely to change on a day-to-

day basis, it was necessary to adopt a methodology that allowed for the constant

refinement of requirements and their implementation. More standard development

methodologies such as the waterfall model require that the requirements are precisely

stated before any implementation takes place. This means that under these models it

is extremely difficult to go backwards and deal with new requirements that might

arise throughout the project. For these reasons it was decided to adopt an iterative an

incremental approach; in particular, the Extreme Programming (XP) methodology

was chosen.

XP is a lightweight methodology for small to medium-sized software

development teams. Having relatively short release cycles is one of XP’s most

common practices which empower developers to confidently respond to changing

customer requirements even late in the development cycle. The group members

decided to have iterations fixed to one week throughout the whole project. This

meant that necessary or additional required features could be included on a weekly

basis. In particular, each week the group dealt with the highest priority features first

and worked on secondary objectives only if time permitted, mitigating the risk of

wasting time on details while neglecting main objectives.

Extreme Programming heavily emphasises teamwork. The group, which

consists of developers, testers and managers, are all seen as part of a team dedicated

to delivering a software product. XP implements a simple yet effective way to enable

group development by utilising the pair programming practice, where all code is

written with two programmers at one machine. Pair programming allows for rapid

 63 LINX Network Monitoring

and effective communication and also minimises the risk of bugs. It has been found

to work very well throughout this whole project. Some other XP practices adopted

for this project are listed below:

o Small releases.

o Simple design.

o Testing.

o Refactoring.

o Pair programming.

o Collective ownership.

o Continuous integration.

o 40 hour week.

11.5 Team organisation

In general the group met and worked together on a daily basis. Part of the

planning phase of this project was to design and agree on a weekly work schedule

which roughly outlined the working hours as well as what general tasks needed to be

accomplished on that day. The group agreed to a schedule beginning at 10 am from

Monday till Friday. Prior to starting work, the group held a meeting as an overview

of the day and the tasks to be performed. In addition, the schedule called for a stop to

the work at 4 pm followed by a brief meeting on what had been achieved during that

day. This schedule was interrupted on Tuesdays for a meeting with the project’s

supervisor (more on this in the next section).

The work schedule provided some basic working guidelines for the team and

tried to ensure that no member had to work longer hours than others. Each individual

member was assigned a certain set of tasks which had to be accomplished. The

specific tasks each group member dealt with and how he organised his time is

discussed in that member’s individual report.

11.6 Team and Client Communication

Carrying out a group project of such magnitude requires efficient and reliable

communication between all five group members. Furthermore, it is seen to be of

equal importance to stay in constant contact with client and supervisor since they are a

significant source of detailed system requirements, problem resolution and feedback

on what has been achieved so far.

 64 LINX Network Monitoring

The group arranged several face to face meetings with LINX for the purpose

of defining and understanding the systems requirements of the network monitoring

toolkit. One of the top priorities of the first meeting was to set up a list of customer

contacts to use in case issues arose. Rob Lister agreed to be available for technical

issues, while it was decided that John Souter would be the general contact person for

any other matters. Communication primarily took place with Rob through email, as

he was the person that was put in charge of answering questions regarding the

structure of the provided log files and also setting up a machine for testing and

deployment purposes on their premises. Meetings with LINX were supposed to take

place on an approximately monthly basis, but because some of LINX’s staff was

particularly busy during certain time periods this was not always possible.

 The main communication method between members was in person, since for

the most part the group met on a daily basis, especially during development. If group

members were working away from each other due to certain circumstances, regular

weekly meetings were scheduled. These meetings were held for several purposes

including discussing the progress of the previous iteration, gaining feedback on what

individual group members had achieved, planning the next iteration, defining the

requirements for next iterations and prioritising tasks. When unexpected problems of

any nature arose, ad hoc meetings were arranged to solve them as quickly as possible.

 Group email was used extensively between all group members for several

purposes. In particular, it facilitated the exchange of messages regarding the

arrangements of meetings and also to receive feedback from members working on

individual tasks. In addition, email was also used for the distribution of documents

and for communicating with the group’s supervisor.

 It was also agreed to meet the supervisor on a weekly basis every Tuesday.

These meetings were held to keep the supervisor updated on the group’s progress. In

addition, they served as a forum for demonstrations of the current system

implementation and for discussing any further requirements and problems. Detailed

minutes of these meetings (as well as those held with LINX) were generated for later

consultation.

 The group set up a web site dedicated to the project containing all relevant

information and documentation. Among the documents found online were the logs

from the weekly meetings. In addition, presentations held during the project,

architecture diagrams, documentation on using Javadoc, references and other

 65 LINX Network Monitoring

important documents were placed online so the whole group had access to them when

needed. A description of the current source code releases and their current

functionality could also be found, but not the code itself since it was decided that it

should not be publicly available. Not only did the project web site prove useful in

supplying the group members with relevant documents, it was also seen as a source of

information to anyone outside the group interested in this particular project. Further,

it was possible for the supervisor and the client to track the progress of the project by

accessing the meeting minutes and other materials. The web site can be accessed at

http://www.cs.ucl.ac.uk/students/z15_5/.

MSN messenger was also utilised during this project, allowing remote

collaboration when members could not meet in person.

11.7 Project Schedule and Milestones

FIGURE 11.1: Project schedule

When this project was in its early planning phase it was difficult to define any

major project milestones as the key requirements had not been laid out yet. It was

difficult, as a result, to develop any schedules which would specifically outline what

each XP iteration would entail. Nonetheless, while a precise schedule was not

possible, Figure 11.1 shows the general schedule that was agreed upon. The schedule

shows the different stages of the project and how much time was to be spent on each

stage. Each square represents an iteration of one week.

 66 LINX Network Monitoring

 Research and reviewing of any relevant literature was scheduled to occupy

around two and a half weeks. At this point no user requirements were defined, so the

group had to wait until a meeting with LINX was finally possible. This meeting took

place on May 14th, 2004 and was used to shape the objectives and to define the client

requirements.

After this was accomplished the stages of system design and implementation

could be carried out. Notice that in Figure 11.1 these stages overlap: this is due to the

XP methodology, whereby both client requirements and the system’s design are

constantly refined, a process called refactoring. Once certain requirements were

agreed upon, the implementation process, which was scheduled for around eleven

weeks, began. Upon completion of this stage, a thorough testing and deployment

stage followed, lasting two and a half weeks. The following stage consisted of four

weeks of documentation, producing the group report, the individual reports, a user

manual and descriptions of the APIs generated.

Milestones were not defined until the client’s requirements themselves began

to materialize during the first meeting on May 14th, 2004. One such milestone was

the development of a prototype to test the feasibility of the system architecture. This

was a milestone set by the supervisor and the delivery deadline was set for May 25th,

2004. Another milestone was completed on May 28th, 2004, the deadline for the

project management presentation. The following bullet points summarize the

project’s milestones:

Milestones:

o 14th of May: Requirements meeting with LINX.

o 25th of May: Working prototype.

o 28th of May: Project management presentation.

o 31st of July: Finish coding, begin deployment at LINX.

o 1st of August: Begin documentation and report.

o 15th of August: Complete deployment at LINX.

o 27th of August: Final demonstration at LINX.

o 6th of September: Final submission of all deliverables.

 67 LINX Network Monitoring

11.8 Status Monitoring

Status monitoring ensures that the project is progressing efficiently and at a

steady rate; it identifies any backlogs and tries to resolve issues as rapidly as possible.

The project web site, mentioned earlier in Section 11.6, proved to be a useful tool for

status monitoring since important documents or other relevant information could be

accessed there. The description of system functionality for each release gave an

indication of the implementation’s progress. In addition, meeting minutes, also

available online, presented the reader with a review of what had been achieved in the

previous week and the tasks to be accomplished the following week, as well as a

measuring stick for gauging whether the weekly goals set out had been realistic. The

minutes acted as simplified task cards, which are usually utilised in an Extreme

Programming approach. The project schedule is another means for supervisor and

group members to track the progress of the project. If certain milestones indicated on

the project schedule on a certain date have not been achieved, then the project

supervisor can assume that the project is not progressing according to schedule.

11.9 Risk Management

Throughout the project several strategies were adopted to minimise risks.

Since this project was dealing with a real client, it was apparent that many risks would

be directly associated with the client. This chapter gives an explanation of the project

risks identified and the actions taken to address them.

 The Extreme Programming methodology adopted for this project proved to be

very useful, as it mitigated many of these risks. Pair Programming, for example,

ensured that an individual did not have to deal with difficult tasks on his own, but was

assisted by a second member of the team. Working in pairs reduced the risk of not

being able to accomplish tasks and also reduced the likelihood of bugs in the code.

The weekly feedback meetings which have been discussed in section 11.5

were particularly useful in addressing any new issues that were identified and to

assess existing ones to see if they had been overcome or not. Risks and issues were

noted on a log sheet accessible to everyone. Risks were identified in terms of

seriousness and the likelihood of them occurring. Each risk was classified to have

either low, medium or high seriousness and likelihood. A few of these risks follow:

 68 LINX Network Monitoring

Users don’t want the system:

This is a risk which has been classified to be of medium seriousness. As this

project is being undertaken for LINX, the likelihood that the client rejecting a

working system built according to their requirements is low. In order to minimise the

risk of the client rejecting the finished implementation, it was decided to give

demonstrations of the system at regular intervals. This allowed LINX to examine the

current release and state whether it met their requirements or not. If it was the case

that the implemented functionality did not meet LINX’s expectations, then thanks to

employing the Extreme Programming methodology, system requirements could be

redefined and the required functionality implemented in the next iteration.

Limited knowledge of user requirements:

 Building a system which does not match the user’s defined requirements

because these were poorly understood could render it completely useless. In order to

minimise this risk, meetings were arranged with LINX to capture its requirements. If

it turned out that these were not very clear or poorly understood, it was good practice

to contact LINX again to rule out any mistakes. Additionally, since the group’s

supervisor was present in these meetings, the group could also approach him for

clarification purposes, which was often the case.

LINX denies access to data:

LINX denying access to data such as log files, which are necessary to build

the various G-RSs, posed a threat of high seriousness. The objectives stated that a

functional network monitoring tool would be implemented according to the specific

requirements LINX provided. Without access to these particular log files, the

outcome of the project could have been jeopardised as the G-RS could not be adjusted

to the data representation formats found in these files and the system could not,

therefore, gather any data for processing, rendering it useless. One of the top

priorities during the first meeting with the client was to agree on access to raw data.

Another threat consisted of LINX denying the necessary access to its hardware for

deployment of the monitoring toolkit. As these issues had been discussed with LINX

during the meeting the likelihood that this would happen was very low. However,

were this to happen, it was agreed that the group would approach the supervisor who

 69 LINX Network Monitoring

could then renegotiate with the client the availability of the data and any other issues

preventing the group’s progress.

Unfamiliar technology:

Developing a network monitoring toolkit was a project that none of the group

members were initially very familiar with. Adopting new technologies always poses

a threat, especially in software development, since the developed software utilising

this technology might not perform as required or the user might have had higher

expectations regarding the final product’s reliability and functionality. The right

choice of development methodology, in this case Extreme Programming with its

incremental release approach, meant that risks could be mitigated by expanding

system functionality incrementally.

 70 LINX Network Monitoring

Chapter 12: Testing and Deployment

12.1 Testing

 Standard development methodologies such as the waterfall model reach the

testing phase only after the implementation phase has finished. The Extreme

Programming methodology used in this project, on the other hand, called for constant

and continuous testing. Whenever a particular part of a component was implemented,

no matter how small or trivial, tests were performed to ensure the correctness of this

fragment of code. Sometimes testing was done by simply outputting intermediate and

final results to the screen, then changing the inputs, recompiling, and observing the

output once again. Other times testing was done by visually checking the display of a

graph of an RMF. In yet some other cases, separate classes, usually containing a main

method, were constructed in order to test the fragment of code or function just

implemented. Some of these classes can be found in the testfiles subdirectory in

the CD included with this report.

 After having finished the implementation of the PoDRegistry and the

PoDRegistryProtocol, for instance, a text-based client, PoDRegistryClient.java, was

used to test them. This class relied on a text-based menu for user input, as follows:

Pod registry client menu:

 1) List all pods
 2) Look up a pod
 3) Add a pod
 4) Get IXP name
 5) Quit

Please make your choice:

Several other files and classes were created to test various parts of the

implementation. A listing of them, along with a brief description for each, follows.

Naturally, many more tests than these were conducted during the course of

development, so this list should not be considered exhaustive.

o TestAscendingThresholds.java: Tests the function setThresholds of

class FpingConfigEntry to make sure that it does not accept thresholds that

are not in ascending order.

 71 LINX Network Monitoring

o TestFlipVector.java: Tests the class VectorFlipper to ensure that it

correctly flips the elements of a Vector by printing the elements of the

original and those of the flipped Vector to the console.

o TestGetSystemTime.java: A simple class testing the retrieval of the current

system time.

o TestGlueRealTimeRefresh.java: Tests that the Glue of RMF

ThresholdRTTRealTime properly reads data that is at most as old as the

number of seconds given to it as input.

o TestIPAddressSort.java: Tests that the sort method of Arrays works

properly on an array of objects of type IPAddress.

o TestPoDInformationBytes.java: Tests the PoDInformation function

poDToBytes which converts a PoDInformation object to an array of bytes

according to the PoDRegistryProtocol for transmission over a network.

Likewise, this class tests the function bytesToPoDInformation which

receives an array of bytes and transforms it back into a PoDInformation

object.

o TestPoDRT4Analysis.java: RMF LinkStatus was previously known as RT4.

This class tests the correctness of the algorithm used to determine the status of

a particular ping result.

o TestRandomAccessFile.java: Used for testing of the class TailFileReader

during its development.

o TestTimeStamp.cpp: Tests that the time stamp created by the function

getTimeStamp in GlueMinMaxPingBackEnd.cpp is in the desired format.

o TestVPprotocol.java: Tests the encoding and decoding of data for a very

early version of the VP protocol.

 The testing of real-time RMFs requires a special mention. Since during

development access to real-time LINX log files was not available, two programs,

AlarmsUpdater.java and FpingUpdater.java, were implemented to generate data

for RMF ThresholdRTTRealTime and RMF LinkStatus, respectively. In this way it

was possible to view a working, real-time version of these RMFs despite the lack of

real data. An updater program was not built for RMF MinMaxPing due to time

constraints.

 72 LINX Network Monitoring

 Finally, another form of rudimentary but extremely effective form of testing

was Extreme Programming’s pair programming practice. Many minor bugs were

eliminated by simply having a person verify the code as it was being typed by the

programmer.

12.2 Deployment

 Deployment took place remotely on one of LINX’s lab machines. Only minor

glitches were encountered, mostly having to do with wrong IP addresses used as

command line parameters, ports already being in use or the use of stale certificates.

After a few minutes of solving these problems, the PoDs of all the RMFs as well as

the PoDRegistry were started on LINX’s machine. In addition, two clients (two

instantiations of the GUI) were ran, one from a Solaris machine at the University

College London Computer Science labs and a second one from a Windows XP

machine plugged into UCL’s network. All RMFs ran without flaws; the screen

capture provided in Figure 12.1 shows the RMF LinkStatus running. Note that the

status bar at the bottom of the GUI displays 195.66.241.35, the address of LINX’s lab

machine.

FIGURE 12.1: Screen capture of data being obtained remotely from LINX

 73 LINX Network Monitoring

The final deployment test consisted of having a client running Windows XP connect

to two IXPs, LINX’s lab machine and UCL’s aldgate.cs.ucl.ac.uk. In this way,

the group was able to test that the GUI could display two real-time RMFs from two

separate IXPs side by side, as shown the screen capture of Figure 12.2. At this point

LINX gave a list of real interfaces that could be queried and the same was obtained

for UCL’s network: these were utilized during the final demonstration given at LINX

in which three clients, two Windows XP machines and a MacOS machine, where used

to simultaneously retrieve data from both sites. It is important to note the significance

of having installed the system on a MacOS machine, demonstrating, in actual fact,

that it is platform-independent (the source code used for this installation was exactly

the one used for the Windows XP machines).

FIGURE 12.2: Screen capture of real-time data obtained remotely from LINX and UCL

 74 LINX Network Monitoring

Chapter 13: Future Work

 Given the time constraints of this project, especially in terms of development

and deployment, several possible extensions to the work accomplished exist. First,

even though the RMFs RTTvsTime, ThresholdRTT and ThresholdRTTRealTime

were successfully run on LINX’s machine, the alarms.log file that they used to

obtain the data from was an old copy used for testing purposes. In the future, the

Glues and PoDs for these RMFs would have to be deployed on the same machine

running IXPwatch, so that they may obtain up-to-date data.

In addition, while the deployment phase was highly successful, it only

involved one real IXP, LINX (the UCL machine was not a real IXP). Further work

needs to be conducted to deploy the system on other IXPs of Euro-IX, to see whether

the system implemented will, in fact, encourage a greater degree of collaboration and

sharing of data between IXPs. While the architecture certainly allows the GUI to

obtain data from different IXPs and it is flexible enough that an RMF implemented by

one IXP may be used without too many changes by another IXP, these features should

be put to the test by conducting further deployments. Also, while the graphs of the

RMFs were designed according to accepted guidelines, it would be useful to conduct

testing to see if they are in practice useful to network administrators or not.

 Another extension to the project would be to physically separate the location

of the Glue and the PoD of an RMF, making them communicate over a network. To

accomplish this a new communication protocol would have to be designed, though the

VP protocol could probably be used. In this way, the machine generating the data

would not have to suffer the reduction in performance suffered by having to

permanently be running the PoDs that analyse potentially large amounts of data;

instead, the machine would only have to run the Glues, which, as a result of

conducting no analysis, are much more lightweight. The physical separation of Glue

and PoD does mean that the data would have to be transferred over a network, but

considering that the internal network of an IXP has very fast links this should not

present any real problems.

 Perhaps the most obvious extension to the project is the construction of

additional RMFs in order to provide a more complete toolkit. One tool that was not

implemented because of time constraints is RMF BGPMonitor. BGPMonitor is based

on a looking glass, which is a tool that network operators use to see routing views of

 75 LINX Network Monitoring

other networks. Most IXPs, including LINX, provide a looking glass that is accessible

from their web pages. BGPMonitor would send a query to the web sites of other

IXPs, retrieving information regarding the presence of LINX AS routes. If there is

information about LINX AS routes then this would be marked with a green rectangle

in the graph displayed (see Figure 13.1 for an example of what the graph would look

like); conversely, the lack of a route would be shown as a red rectangle. If there is a

case where LINX AS routes start to disappear from other IXPs’ collector routers then

the tool would raise an alarm to grab the user’s attention. In short, this RMF is very

useful since it saves a network administrator the trouble of having to periodically visit

the web pages of many IXPs, retrieving data from them and then having to analyze

the data to see if a problem is in fact taking place.

FIGURE 13.1: Display of RMF BGPMonitor (a future tool)

Regarding the VP protocol, it would be useful to develop a compiler that,

given a set of types to transmit, would generate the actual functions that would

convert these into the array of bytes to send. Currently this has to be done by hand,

but having such a compiler would certainly speed up the development of new tools.

In addition, a more formal specification of types would need to be provided.

Another small shortcoming of the protocol is that it transmits numbers as

strings. Clearly this is inefficient, so it would be useful as future work to have the

communication protocols convert these strings that have been read from log files into

numbers for transmission over the network. A final minor inefficiency is that since

some of the round-trip times returned by the fping program have fractional parts, a

few values are transmitted as longs. In order to make the communication more

efficient, the system could use units of microseconds instead of milliseconds, thus

eliminating the fractional part of the value and the need for longs. It may even be the

case that IXPs do not need so much accuracy in the first place, in which case it would

suffice to simply round the round-trip time values.

 76 LINX Network Monitoring

Finally, during the final demonstration for LINX the client suggested two

possible extensions to the current state of the project. First, it would be useful to

create a SuperPoD that would gather data from many PoDs and page the administrator

should a particular problem with the network exist. Second, the client suggested that

it would be possible for an IXP to use the system developed for this project to give

access to data from a particular piece of hardware to that hardware’s vendor; this

would provide the vendor with a powerful debugging tool that does not currently

exist.

 77 LINX Network Monitoring

Chapter 14: Conclusion

The two primary objectives of this project were the design of an entire new

system architecture and the implementation of a network monitoring toolkit based on

it. One of the biggest achievements of the project was the design of a system

architecture that allows a tool developed by one IXP to be used by another IXP

without this second IXP having to change its data representation formats; in other

words, the architecture is IXP and hardware-independent. In addition, it is extensible

and customizable since it can use an IXP’s existing backend tools and scripts and it

can do multi-site monitoring. Further, the architecture is scalable through

encapsulation: a PoD can gather data from many other PoDs, essentially acting as a

“SuperPoD”. An administrator in charge of several IXPs could, in principle, create a

SuperPoD that would query all other PoDs and display only problematic data, giving

him or her a powerful and efficient mechanism for monitoring many networks at

once. It is also worth noting that the architecture is entirely modular, given complete

independence between the client (in the case of this project’s implementation the

GUI) and the PoDs. This means that the client is not only platform-independent but

can also be developed independent of the PoD, giving the programmer a great deal of

freedom. A client need not even be graphical: sometimes a simple text-based client

may suffice. Yet another advantage of the architecture is that it allows an

administrator to specify which parts of the network or interfaces to monitor through

the use of simple configuration files. A very simple Remote Monitoring Function

(RMF), RTTvsTime, was built based on this architecture, thus proving its feasibility.

Another achievement was the specification and implementation of

standardized ways to graphically display the data for each different RMF or tool. In

addition, the display for RMFs ThresholdRTT (both versions) and LinkStatus are

unlike anything provided by current monitoring tools: these displays were designed

and built in such a way that a system administrator can easily spot problems such as a

certain machine being down or round-trip times exceeding fixed threshold values.

Since in general the network data is confidential and is, in the current

implementation, sent over a public network, another achievement of the project that

arose straight from a client requirement was the use of encryption and mutual

 78 LINX Network Monitoring

authentication by means of SSL. In this way the IXP can be sure that its data is only

being accessed by authorized parties.

Another advantage of the system is that the client is approximately 512KB and

takes a few minutes to install, making it effortless for a network administrator to

install it on any machine to perform remote monitoring; indeed, the system could be

made available from a web page for download.

One of the major challenges of the project was meeting the requirements of a

real client. To ensure that the product being developed was exactly what the client

desired, the group regularly gave the client updates on the current status of the project.

Even if the project went off-track, these regular updates guaranteed that the client

could quickly state that the current development did not seem to fit his or her

requirements and allow the group to implement minor refactoring in order to get the

project back on track; in a similar manner, the client could specify additional

requirements that arose during the course of the development. The involvement of the

client was also crucial during deployment, aiding the group to set up the necessary

components on the client’s machines.

Perhaps the culmination of all these achievements was the successful

deployment of the system at LINX, using it to monitor real interfaces from Europe’s

largest and most successful IXP. As a result of this deployment the project received

the customer’s acceptance in the form of a letter from the Chief Execute Officer, John

Souter, stating that LINX were more than satisfied with the product delivered.

Despite the many challenges along the way, the project has been vastly

rewarding and a great success: all team members contributed to developing a product

that is technically sound and that meets the requirements given by the client. It is the

sincere hope of the group that additional work will be undertaken to further the

achievements that this project has already accomplished.

 79 LINX Network Monitoring

Appendix A: User’s Manual

A.1 System Requirements

 The system requirements are as follows:

o The Java compiler, preferably the latest one.

o A C++ compiler such as g++.

o The Java Virtual Machine, preferably the latest one.

o Keytool, a command line tool for creation of keys and certificates.

o Fping

o A decompressing utility, for instance Winzip (Windows) or tar (UNIX /

Linux)

o Port 5555 (for the registry) and five other ports (one for each PoD) must be

available.

o The Ujac charting library.

A.2 Installation

A.2.1 Compiling the Source Files

Once all the items in section A.1 have been installed the first step is to

uncompress the source files; the procedure to do this will vary depending on the

operating system being used. Next, all files in the main directory and in the

subdirectories auxiliary, auxiliaryGUI and rmfs must be compiled using the Java

compiler. A sample script for doing just this in Windows follows:
javac *.java
cd auxiliary
javac -classpath .. *.java
cd ..\auxiliaryGUI
javac -classpath .. *.java
cd ..\rmfs\RMFLinkStatus
javac -classpath ..\.. *.java
cd ..\RMFRTTvsTime
javac -classpath ..\.. *.java
cd ..\RMFThresholdRTT
javac -classpath ..\.. *.java
cd ..\RMFMinMaxPing
javac -classpath ..\.. *.java
cd ..\RMFThresholdRTTRealTime
javac -classpath ..\.. *.java
cd ..\..

 80 LINX Network Monitoring

Note that the rmfs directory contains five directories, one for each RMF discussed in

Chapter 6. After this the C++ file GlueLinkStatusBackEnd.cpp found in the

RMFLinkStatus subdirectory and the C++ file GlueMinMaxPingBackEnd.cpp found

in the RMFMinMaxPing subdirectory must be compiled using the following commands

from their respective directories:

 g++ GlueLinkStatusBackEnd.cpp –o GlueLinkStatusBackEnd.out
 g++ GlueMinMaxPingBackEnd.cpp –o GlueMinMaxPingBackEnd.out

The files GlueLinkStatusBackEnd.out and GlueMinMaxPingBackEnd.out must

then be copied to the application’s main directory (the directory where GUI.java, for

instance, is located).

A.2.2 Creating Key Pairs and Certificates

Once all files have been compiled Keytool must be used to create the

necessary keys and certificates so that the SSL handshake will succeed. Since the

system requires mutual authentication, all components must identify themselves and,

consequently, must each create its public and private key pair as well as a certificate

from its public key. This will results in six certificates: five for the PoDs in each of

the five RMFs and one for the GUI. The following two commands create the keys

and certificate for the GUI:

keytool -genkey -alias gui -keystore guiKeys -storetype jks -storepass 123456 -

keypass 123456 -keyalg "RSA" -keysize "512" -dname "CN=gui, OU=gui unit, O=gui inc,
L=london, S=london, C=UK"

keytool -export -alias gui -keystore guiKeys -storetype jks -file gui.cer -

storepass 123456

The first command tells Keytool to create a keystore with name “guiKeys” and

password “123456” and to create a key pair under the alias “gui” and password

“123456” using RSA with strength 512. The details of the owner of the key pair are

also given. If any of these details are missing from the command Keytool will prompt

the user for them. Note that it is possible to assign a different password to the alias

“gui” than that of the keystore; in the case of this project’s implementation they are

the same. The second command creates the certificate file gui.cer from the public

key of the alias “gui” in the keystore “guiKeys”.

The next step is to exchange all six certificates. The GUI must be able to

authenticate all five PoDs and needs, therefore, a certificate from each of them.

 81 LINX Network Monitoring

Conversely, each PoD must be able to authenticate the GUI, so each needs the GUI’s

certificate. The actual transferring of the files could be done using FTP or perhaps

Secure FTP.

Once all the certificates have been transferred, each party must import those it

has received into its truststore. The following command imports the certificate for the

PoD belonging to RMF RTTvsTime into the GUI’s truststore:
keytool -import -alias podRTTvsTime -keystore guiTrust -storetype jks -file

podRTTvsTime.cer -storepass 654321

Since no certification authority is being used to verify that the certificate actually

belongs to whom it claims to belong to, upon entering the command Keytool will

print the certificate’s details along with its fingerprint and ask the user to confirm the

import operation. To ensure that the certificate is valid the user could telephone its

issuer and verify that its fingerprint is correct. In all, ten import operations must be

carried out: five for the GUI importing the PoDs’ certificates into its truststore and

another five for each of the PoDs importing the GUI’s certificate into its truststore.

Tables A.1, A.2 and A.3 show the names of the keystores, truststores and aliases,

respectively. The password for all keystores is “123456” and the password for all

truststores is “654321”.

Component Keystore
GUI guiKeys
PoDRTTvsTime podRTTvsTimeKeys
PoDThresholdRTT podThresholdRTTKeys
PoDThresholdRTTRealTime podThresholdRTTRealTimeKeys
PoDLinkStatus podLinkStatusKeys
PoDMinMaxPing podMinMaxPingKeys

 TABLE A.1: Keystore names

Component Truststore
GUI guiTrust
PoDRTTvsTime podRTTvsTimeTrust
PoDThresholdRTT podThresholdRTTTrust
PoDThresholdRTTRealTime podThresholdRTTRealTimeTrust
PoDLinkStatus podLinkStatusTrust
PoDMinMaxPing podMinMaxPingTrust

TABLE A.2: Truststore names

Component Alias
GUI gui
PoDRTTvsTime podRTTvsTime
PoDThresholdRTT podThresholdRTT
PoDThresholdRTTRealTime podThresholdRTTRealTime
PoDLinkStatus podLinkStatus
PoDMinMaxPing podMinMaxPing

 82 LINX Network Monitoring

TABLE A.3: Aliases

A.2.3 Configuration Files

 Before running the application, if the user is interested in running RMFs

LinkStatus and/or MinMaxPing he or she must configure the files LS-RM.config and

maxmin.config, respectively, to specify which interfaces to query. The format for

these files was discussed in Sections 6.4.2 and 6.5.2, respectively.

A.3 Running the Application

A.3.1 Server Side (PoDs and PoDRegistry)

First, the two C++ back ends must be run so that they’ll begin populating the

necessary log files with data. To do so, make sure that the executables for them are in

the main directory of the application and run them from the command line. In UNIX,

for instance, this would be done with the commands:
./GlueLinkStatusBackEnd.out
./GlueMinMaxPingBackEnd.out

Next, the PoDRegistry must be started with the following command (execute this

from the main directory):
start java PoDRegistry IXPLondon (Windows)
java PoDRegistry IXPLondon & (UNIX / Linux)

Finally, the desired PoDs must be started. The following five commands show all

PoDs being started on ports 5678, 5679, 5680, 5681 and 5682 under Windows. For

UNIX / Linux just remove the word “start” and add an & at the end of the command.
start java rmfs/RMFThresholdRTT/PoDThresholdRTT 128.64.111.10 5678
start java rmfs/RMFRTTvsTime/PoDRTTvsTime 128.64.111.10 5679
start java rmfs/RMFThresholdRTTRealTime/PoDThresholdRTTRealTime 128.64.111.10 5680
start java rmfs/RMFLinkStatus/PoDLinkStatus 128.64.111.10 5681
start java rmfs/RMFMinMaxPing/PoDMinMaxPing 128.64.111.10 5682

Note that the IP address given must not be “localhost” nor the loopback interface, as

this address will be used by clients to connect to the PoDs.

A.3.2 Client Side (GUI)

 The GUI requires that the addresses of the registries it needs to contact are

supplied as command line parameters. Thus, to run the GUI and have it contact

registries at addresses 144.168.12.14 and 68.111.45.34 the user needs to type the

command:
java GUI 144.168.12.14 68.111.45.34

 83 LINX Network Monitoring

For information on how to use the GUI please refer to Sections 6.1.4, 6.2.4, 6.3.4,

6.4.5, 6.5.5 and 7.2.

 84 LINX Network Monitoring

Appendix B: Class Diagrams
The diagrams beginning here until page 90 show the detailed structure of the

classes. Those following show the relationships between them.

 85 LINX Network Monitoring

Auxiliary

 86 LINX Network Monitoring

AuxiliaryGUI

 87 LINX Network Monitoring

RMFLinkStatus

RMFMinMaxPing

 88 LINX Network Monitoring

RMFRTTvsTime

RMFThresholdRTT

 89 LINX Network Monitoring

RMFThresholdRTTRealTime

 90 LINX Network Monitoring

 91 LINX Network Monitoring

 92 LINX Network Monitoring

 93 LINX Network Monitoring

Appendix C: Sequence Diagrams

 Non-real Time Interaction

 94 LINX Network Monitoring

 Real-time Interaction

 95 LINX Network Monitoring

Appendix D: Bibliography

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley

Pub Co, 1999.

“Case Studies: Active Measurements Data Analysis Techniques”. Retrieved 10/07/04
 http://moat.nlanr.net/Papers/AMP_case_studies/case_studies.pdf

Cohoon, James P., Davidson, Jack W. C++ Program Design: An Introduction to

Programming and Object-Oriented Design. New York: Irwin/McGraw-Hill,
1997.

CppDoc Home Page . Retrieved 02/08/04.

http://www.cppdoc.com/

Deitel, H. M. and Deitel, P. J. Java, How to program, 3rd Edition. Prentice-Hall Inc.,

1999.

Dennis, Alan and Wixom, Barbara H. Systems Analysis and Design. John Wiley &

Sons Inc, 2000.

Euro-IX Current Projects – IXP Network Monitoring. Retrieved 22/07/04

http://www.euro-ix.net/projects/approved/ixpnetwork.shtml

Euro-IX What is an IXP? Retrieved 22/07/04

http://www.euro-ix.net/about/whatis.shtml

Extreme Programming Homepage. Retrieved 08/08/04

http://www.extremeprogramming.org

Fping - A program to ping hosts in parallel. Retrieved 04/08/04.

http://www.fping.com/

Harold, Elliotte Rusty. Java Network Programming Second Edition. Sebastopol:

O’Reilly & Associates, Inc., 2000.

Horstmann, Cay S., Cornell, Gary. Core Java Volume II: Advanced Features. Palo

Alto: Sun Microsystems Press, 2002.

IXP Network Monitoring Tool Portability Presentation by LINX. Retrieved 02/08/04

http://www.cs.ucl.ac.uk/teaching/dcnds/seminars/2003-11-25-linx.pdf

Jain, Raj. The Art Of Computer Systems Performance Analysis. Wiley, 1991.

Javadoc Tool Home Page. Retrieved 04/08/04.

http://java.sun.com/j2se/javadoc/

Keytool - Key and Certificate Management Tool. Retrieved 05/08/04.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

 96 LINX Network Monitoring

Labanti, M., Rossi, V. from Milano Internet exchange; E. Glerean, N.Zingirian from
 University of Padova (IT); “Inter Provider Network Analyzer” Source: The
 London Internet Exchange.

SearchNetworking.com – Peering. Retrieved 27/07/04.

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212768,00.html

Stallings W. Cryptography and Network Security – Principles and Practices (Third

Edition). New Jersey (USA): Pearson Education Inc, 2003.

Taha, A. Hamdy. Operations Research, Seventh Edition. Prentice Hall, 2003.

Thomas, Stephen. SSL and TLS Essentials. New York: John Wiley & Sons, Inc.,

2000.

Tufte, R. E. The Visual Display of Quantitative Information, 16th printing. Graphics

Press, 1983.

Ujac – Useful Java Application Components. Retrieved 02/08/04.

http://ujac.sourceforge.net/chart.html

 97 LINX Network Monitoring

 98 LINX Network Monitoring

