

NIRS

Network Intrusion Detection &
Response System

Group Repor t

MSc DCNDS Group 4

Department of Computer Science, University College London
Gower Street, London

Adedayo Adetoye
Andy Choi

Marina Md. Arshad
Olufemi Soretire

Supervisor: Steve Hailes

September 2003

MSc DCNDS Group 4 - NAIRS

 ii

TABLE OF CONTENTS

TABLE OF CONTENTS... ii

LIST OF TABLES... v

LIST OF FIGURES.. vi

ABSTRACT ...vii

1 Introduction ... 1

2 Background .. 3

2.1 Denial-of-Service Attack ..3

2.2 Intrusion Detection...3

2.2.1 IDS Components...4

2.2.2 Detection Techniques..4

2.2.3 False Positive and False Negative...5

2.3 Active Response..6

2.3.1 Session Sniping ...6

2.3.2 Firewall Update ..7

2.3.3 Pushback mechanism ...7

2.4 State-of-the-Ar t ..7

2.4.1 Probability Based Approaches...8

2.4.2 State Based Approach ..9

2.4.3 Data Mining Approach...9

3 Objectives and Scope... 10

3.1 Motivations... 10

3.2 Project Goal .. 12

3.3 Project Scope.. 12

4 Methodology... 13

4.1 Rate-Based Traffic Profiling.. 13

4.1.1 Network Profiling ... 14

4.1.2 Intrusion Detection Model.. 14

4.2 Token Bucket Approach .. 18

4.2.1 Token Bucket Policer .. 19

MSc DCNDS Group 4 - NAIRS

 iii

4.2.2 Traffic Character ization and Policing ... 20

4.3 The Response System ... 20

4.4 Traffic Generator ... 22

4.4.1 Choice of user traffic .. 22

4.4.2 Simulated User Network Traffic.. 22

4.4.3 Simulated Attack Traffic.. 24

5 Tools and Technologies.. 26

5.1 User Mode L inux.. 26

5.2 OpenVPN.. 27

5.3 Xnest ... 27

5.4 Snor t ... 28

5.4.1 Snor t Rules.. 28

5.5 tc and Linux DIFFSERV.. 29

5.6 Iptables ... 29

5.6.1 Packet Filter ing... 29

5.6.2 IPTables Rules.. 31

5.7 Videolan .. 31

6 Detailed Implementation ... 33

6.1 Rate-based Approach ... 33

6.1.1 Overview ... 33

6.1.2 Network Profiling ... 34

6.1.3 Intrusion Detection ... 37

6.2 Token Bucket Based Approach ... 40

6.2.1 Detection System... 40

6.3 Active Response System ... 46

6.4 Packet Generator .. 50

6.4.1 Steady Traffic Generator ... 51

6.4.2 Bursty Traffic Generator ... 51

6.4.3 As-Fast-as-Possible Generator ... 52

6.4.4 Packet Receiver ... 53

7 Test Environment... 54

7.1 Design Overview... 54

MSc DCNDS Group 4 - NAIRS

 iv

7.2 Implementation .. 56

7.2.1 Network Configurations... 56

7.2.2 UML Configurations.. 60

7.2.3 UML Environment ... 61

7.2.4 ‘Physical’ L inux Host Environment... 62

7.3 System Evaluation .. 64

8 Measurement and Analysis.. 66

8.1 Background .. 66

8.2 Receiver Operating Character istic.. 67

8.3 Per formance Objectives... 68

8.4 Measurement Techniques.. 69

8.4.1 Measurement Conditions ... 69

8.4.2 Network Profiling ... 69

8.4.3 Confidence Level Plot ... 70

8.5 Measurement Technique for Active Response...................................... 74

8.5.1 Active Response Mechanism .. 74

8.5.2 Measurement Technique.. 75

9 Evaluation .. 77

9.1 Project Management .. 78

10 Future Work .. 80

10.1 Rate-based Detection.. 80

10.2 Response ... 81

10.3 Token Bucket .. 82

11 Conclusion.. 83

References.. 84

AAPPPPEENNDDII XX AA:: CCoommppii ll iinngg tthhee UUsseerr MM ooddee LL iinnuuxx kkeerr nneell aanndd mmoodduulleess................ 87

AAPPPPEENNDDII XX BB:: UUMM LL NNeettwwoorr kkiinngg... 91

AAPPPPEENNDDII XX CC:: UUMM LL UUtt ii ll ii tt iieess... 103

AAPPPPEENNDDII XX DD:: VVii rr ttuuaall NNeettwwoorr kk SShheell ll SSccrr iippttss... 104

APPENDIX E: Gantt Char t 121

MSc DCNDS Group 4 - NAIRS

 v

LIST OF TABLES

Table Pages

Table 5.1: Default Table for IPTables.. 30

Table 5.2: Built-in Chains For Filter Table... 30

Table 7.1: Important UML Kernel Options For The Network................................... 60

Table 9.1: Group Structure... 79

MSc DCNDS Group 4 - NAIRS

 vi

LIST OF FIGURES

Figures Pages

Figure 3.1: Growth In Number Of Incidents Handled By The CERT/CC 10

Figure 4.1: Network Profile Parameters Used in Intrusion Detection................. 15

Figure 4.2: The Sigmoid Function Showing the Effect of a on the Slope.................. 17

Figure 5.1: Global VideoLan Solution ... 32

Figure 6.1: Network Profiling, Intrusion Detection and Active Response Agent....... 33

Figure 6.2: Operation of the Profiling Agent .. 37

Figure 6.3: Normal and Attack Traffic Showing Region of Intersection................... 38

Figure 6.4: Schematic Of The Intrusion Detection System....................................... 39

Figure 6.5: Token Bucket Policer... 40

Figure 6.6: Inter-packet Arrival Time .. 43

Figure 6.7: Packet Capture Time And Packet Arrival Time...................................... 44

Figure 6.8: Pushback Message Propagation ... 48

Figure 6.9: Logical Structure of Class-base Queue... 49

Figure 7.1: Design Of Our Test Network ... 55

Figure 7.2: Topology Of The Virtual UML Network.. 58

Figure 7.3: Observed Throughput Of The Network Against Offered Load By One

Data Source ... 64

Figure 7.4: Observed Throughput Of The Network Against Offered Load With

Constant Background Traffic ... 65

Figure 8.1: Confidence Level Plot For Good Traffic .. 71

Figure 8.2: Confidence Level Plot With Attack Traffic.. 72

Figure 8.3: Confidence Level Plot Of Good And Attack Traffic Showing Overlaps.72

Figure 8.4: ROC Curve Showing Detection Probability With The Associated Level Of

False Positives... 73

Figure 8.5: Data Rate Variation Of Good And Attack Traffic 75

Figure 8.6: Percentage Of Good Traffic On The Network .. 76

ABSTRACT

As computer networks become increasingly complex and network denial-of-service

(DoS) attacks become more common place, automated network intrusion detection

and response will be critical in providing reliable network services. In this report, we

review the state-of-the-art in network intrusion detection systems and then propose a

strategy of using network traffic profiles as the foundation for detecting and

responding to network denial-of-service attack. We also present our implementation

of the strategy and evaluate it under a controlled environment. The results show that

our approach is effective in mitigating such attacks.

MSc DCNDS Group 4 - NAIRS

 1

1 Introduction

Valuable properties need to be protected against theft, damage or destruction. People

spend a lot of time, money and effort to ensure that their valuables and treasures are

safe. Modern homes are installed with expensive alarm systems that can detect

burglars, notify authorities when a break-in has occurred. Some alarms are even able

to alert the owner when the house is on fire. Cars too are equipped with expensive

alarm systems to safeguards against break-ins.

The same considerations should also be given to computer systems and data. Today’s

information systems in many organizations are highly interconnected via local area

and wide area computer networks. These networks are potential targets of attack such

as network bandwidth attack. One of the attacks, Denial of Service (DoS) has always

been a critical threat to networks because of how easy it is to launch the attack from

the many readily available attack tools. Malicious users look for vulnerable targets

such as un-patched systems and networks running insecure services to launch the

attacks. This method of attack has been known for some time but defending against it

is a different matter.

Let’s consider a scenario to paint a picture of the dangerous nature of this attack. An

attacker sends forged ICMP echo packets to the broadcast address of a vulnerable

network. All the systems on this network reply to the victim with ICMP echo replies.

This rapidly exhausts the bandwidth available on the target network thus effectively

denying service to legitimate users.

When a network is attacked, the ideal response would be to stop the attack before it

can cause any further damage and deny users the services provided by the network

Currently, the defence against DoS attacks relies heavily on intensive manual work by

the network administrator. The first activity involves the use of network traffic

probes and statistics. The second activity involves inserting packet filtering or rate

limiting rules into the associated router. After which, the network administrators will

MSc DCNDS Group 4 - NAIRS

 2

contact his counterpart in the upstream organization(s) from which the offending

traffic is being forwarded to try and stop the attack. Obviously, this procedure has a

major drawback in that it is time consuming and requires the administrator to be

available immediately and always-on alert.

In this paper, we propose the framework and implement the design for a Network

Intrusion Detection and Response System (NIRS) that automates this procedure. It

employs a rate based learning agent approach to detect DoS attacks and applies a rate

limiting pushback mechanism [1] to provide an active response in which the firewall,

intrusion detection system (IDS), routers and other network components interact

together to throttle the attack as close to the source as possible.

This report provides in the first part: the background, objectives, scope, tools and

technologies used for the project. The second part describes the methodology and

detailed implementation of the system and the testing environment. The third part

contains the test result and the analysis of the result. The last part contains an

evaluation of the project, discusses related work and highlights areas for future work

MSc DCNDS Group 4 - NAIRS

 3

2 Background

2.1 Denial-of-Service Attack

A Denial-of-Service (DoS) attack is an incident in which a user or organization is

deprived of the services of a resource they would normally expect to have. Typically,

the loss of service is the inability of a particular network service to be available or the

temporary loss of all network connectivity and services. Many attackers use other

unsuspected third party computers, known as zombies or slaves, to flood the victim

with millions of incoming traffic. A DoS attack is a type of security breach to a

computer system that does not usually result in the theft of information. However,

these attacks can cost the target organization a great deal of time and money.

2.2 Intrusion Detection

Intrusion detection has been an active field of research for about two decades. This is

exemplified by an influential paper, published in 1980, Computer Security Threat

Monitoring and Surveillance by James Anderson [2]. It was followed some years

later in 1987 by the seminal paper An Intrusion Detection Model by Dorothy Denning

[3] that provides a methodological framework for an intrusion detection system.

An intrusion detection system (IDS) inspects all inbound and outbound network

activity and identifies suspicious patterns that may indicate a network or system attack

from someone attempting to break into or compromise a system. Network Intrusion

Detection Systems (NIDS) monitors packets on the network wire and attempts to

discover if an attacker is attempting to break into a system or cause a denial-of-service

attack.

MSc DCNDS Group 4 - NAIRS

 4

2.2.1 IDS Components

In [4] the components that make up an Intrusion Detection system were identified as

follows:

• Information Source – Data utilised by the IDS

• Analysis Engine – Process by which the intrusion decision is made

• Response – action taken when an intrusion is detected [4].

2.2.2 Detection Techniques

IDS falls into three different categories:

Host-based vs. network-based systems

In a host-based system, the IDS examines the activity of each individual host in the

system while, network-based intrusion detection systems are dedicated software

systems that sit on a network wire and analyse the individual packets flowing through

a network. They can detect malicious packets that are designed to be overlooked by a

firewall’s filtering rules.

Anomaly detection vs. misuse detection

Denning [3] described the classical model for anomaly detection:

• A model is built which contains metrics that are derived from system

operation.

• A metric is defined as a random variable representing a quantitative measure

accumulated over a period. Example: average CPU load, number of network

connections per minute.

• Security violations could be detected from abnormal patterns of system usage.

MSc DCNDS Group 4 - NAIRS

 5

In anomaly detection, the network administrator defines the normal behaviour of the

network’s traffic, protocol and typical packet size. The anomaly detector works by

monitoring network segments to look for anomalies by comparing their state to the

normal behaviour that has been defined.

In misuse detection, the IDS analyzes the information it gathers and compares it to

large databases of attack signatures. It looks for signatures of specific attack type that

has already been documented. This system relies heavily on a good attack signatures

database as the base to compare the packets against.

Reactive system vs. passive system

The IDS in a reactive system responds to suspicious activity by logging off a user or

by reprogramming the firewall to block network traffic from the suspected malicious

source while the IDS in a passive system detects a potential security breach by

logging the information and signalling an alert.

NIRS is a hybrid of three techniques – anomaly, reactive and network based system

which detects intrusions by observing deviations from normal behaviour and re-

programmes a firewall to block the malicious traffic.

2.2.3 False Positive and False Negative

The main goal of an effective IDS as observed in [5] is to provide high rates of attack

detection with very small rates of false alarms. There are two types of false alarms

associated with Intrusion detection systems i.e. False positive and False negative.

As highlighted in [6], false positives occurs when the IDS sensor misinterprets normal

packets or activities as an attack. Such errors can degrade the productivity of the

systems because they can invoke unnecessary countermeasures. On the other hand,

MSc DCNDS Group 4 - NAIRS

 6

false negative errors occur when an attacker is misclassified as a normal user. A fatal

problem may arise from a false negative error as unauthorized or abnormal activities

generate unexpected or undesirable operations of the systems. This can cause great

losses for an organization.

2.3 Active Response

For accurate intrusion detection, the system must have reliable and complete data

about the target system’s activities and this is a complex issue in itself. Most systems

have logs generated by either the operating system routers or firewalls that provide

information on network operation and activities. However, logging too much

information can put a serious overhead on the system. Therefore, the amount of

system activity information collected is a trade-off between overhead and

effectiveness.

The concept of active response in an IDS is based on the idea of having an IDS

capable of automatic reaction once an attack is detected. The goal is to prevent the

attack from spreading to other parts of the network and using up all of the network

bandwidth and hindering other network services.

A paper in SecurityFocus group [7] identified two types of response mechanism:

1. Session Sniping

2. Firewall Update

2.3.1 Session Sniping

Session sniping or knockdown is a direct intervention between an attacker and the

victim in order to disrupt the communication. To do this, the IDS sends packets to

break down the connection that triggered the response. The most effective way to

MSc DCNDS Group 4 - NAIRS

 7

knockdown a TCP connection is to forge packets to reset the connection. This is done

by sending forged packets with the TCP Reset bit set to one on both systems.

2.3.2 Firewall Update

A second method mentioned in [7] is firewall rules manipulation. An IDS uses this

method to actively respond to attackers by instructing the firewall to drop or block all

traffic coming from the source IP of the attacker. The reasoning behind this method

of response is to stop the attacker from further doing damage to the network.

2.3.3 Pushback mechanism

Another mechanism used for response in intrusion detection system is pushback [1].

Pushback mechanism is based on aggregate congestion control (ACC) and its

particularly used in defending against Distributed DoS. It allows a router to request

adjacent upstream routers to rate-limit traffic corresponding to the specified

aggregates. Pushback can prevent upstream bandwidth from being wasted on packets

that are eventually going to be dropped downstream. In the case of DoS attack, if the

attack traffic is concentrated at a few upstream links, pushback can protect other

traffic within the aggregate from the attack traffic.

2.4 State-of-the-Art

This section briefly describes some of the recent and current intrusion detection

research effort. A lot of the current research has been focusing on anomaly based

detection. There are many different approaches to anomaly based intrusion detections

that can be found.

MSc DCNDS Group 4 - NAIRS

 8

Some of them are:

• Probability based

• State based

• Data Mining

2.4.1 Probability Based Approaches

Anomaly detection systems such as SPADE [8], ADAM [9], and NIDES [10] adopted

an approach in which the system will learn a statistical model of normal traffic, and

flag deviations from this model. These statistical models were usually based on the

distribution of elements such as source and destination addresses and ports per

transaction (TCP connections, and sometimes UDP and ICMP packets). The lower

the probabilities, the higher the anomaly scores were, since these are presumably

more likely to be hostile.

ADAM used a classifier which could be trained on both known attacks and on

(presumably) attack-free traffic. Patterns which did not match any learned category

were flagged as anomalous. ADAM also modeled address subnets (prefixes) in

addition to ports and individual addresses. NIDES, like SPADE and ADAM,

modeled ports and addresses, flagging differences between short and long term

behaviour.

SPADE, ADAM, and NIDES all used frequency-based models, in which the

probability of an event was estimated by its average frequency during training. While

PHAD [11], ALAD [12], and LERAD [13] used time-based models, in which the

probability of an event depended instead on the time since it last occurred. For each

attribute, they collected a set of allowed values (anything observed at least once in

training), and flagged novel values as anomalous.

MSc DCNDS Group 4 - NAIRS

 9

2.4.2 State Based Approach

Another slightly different approach to pure anomaly is the state based approach to

network intrusion detection. A recent paper by Sekar et al. titled Specification-based

Anomaly Detection: A New Approach for Detecting Network Intrusions [14] described

the approach in which it tried to detect intrusion through anomalous state transition

and at the same time incorporate state machines of network protocols. The main

advantage of this approach is that it can detect high rate of known and also unknown

attacks. At the same time, it has a rather reasonable false alarm rate that is

comparable to the misuse methods. However it comes at a heavy price of having to

build complex state based models of network protocols in the network.

2.4.3 Data Mining Approach

In their paper Mining in a Data-flow Environment: Experience in Network Intrusion

Detection [15], Lee, Stolfo and Mok described the Data Mining approach. Data

Mining looks at connection sessions and this is different from the normal anomaly

approach which looks at individual packets. This approach works by using data

mining tools and methods to differentiate anomalous sessions from normal sessions in

an iterative manner using training data it gathers as a reference.

MSc DCNDS Group 4 - NAIRS

 10

3 Objectives and Scope

3.1 Motivations

In the past few years, network based computer systems have been playing an

increasingly vital role in modern society [16] and we have witnessed a tremendous

growth in the inter-networking arena with the Internet and the Web infiltrating all

segments of the economy faster than any previous technology. Though the

possibilities and opportunities seem limitless; unfortunately however, the risks and

incidences of security breaches are also on the increase. In [17], it was noted that

during the past twelve years, the growth of incidents reported to the Computer

Emergency Response Team/Coordination Center (CERT/CC) has reflected the growth

of the Internet itself. Figure 3.1 below from [17] which shows the number of

incidents reported to CERT/CC between 1988 and 1999 illustrates this growth..

Figure 3.1: Growth In Number Of Incidents Handled By The CERT/CC

MSc DCNDS Group 4 - NAIRS

 11

As indicated in [18], while a computer system should provide protection, integrity and

assurance against denial of service, however, due to increased connectivity

(especially on the Internet), and the vast spectrum of financial possibilities that are

opening up, more and more systems and networks are subject to attack by intruders.

Highlights of the year 2002 annual Computer Crime and Security Survey" [17]

conducted by the Computer Security Institute (CSI) with the participation of the San

Francisco Federal Bureau of Investigation's (FBI) Computer Intrusion Squad

indicated that; ninety percent of respondents (primarily large corporations and

government agencies) detected computer security breaches within the last twelve

calendar months, Eighty percent acknowledged financial losses due to computer

breaches and forty percent detected denial of service attacks. This confirms that the

threat from computer crime and other information security breaches continues

unabated and that the financial toll is mounting.

While it is very important that the security mechanisms of a system are designed so as

to prevent unauthorized access to system resources and data, completely preventing

breaches of security appear, at present, unrealistic [18]. Thus, a response to these

growing threats is for organizations to put in place a layered security architecture to

achieve optimum [17]. As noted by Kumar Das [18], Intrusion detection has become

an essential component of computer security in recent years with Security

Administrators complementing existing security measures with intrusion detection

systems (IDSs) to achieve defence in-depth [17].

The Intrusion Detection research field effort is focused on detecting intrusion attempts

so that action may be taken to throttle them. There are currently, a good number of

commercial and research intrusion detection systems that detect intrusions using

either the misuse or anomaly detection paradigm. However, most of these systems

employ a passive approach to responding to detected intrusions. This normally

involves sending an alert to an administrator to notify him of the detected intrusion or

logging to a file. It is obvious that this approach of relying on a Systems

Administrator to respond to detected intrusion does not scale, and in most cases could

MSc DCNDS Group 4 - NAIRS

 12

not tackle problems as soon as they occur or are about to. A more effective approach

is required. Automatic active response to intrusion has thus recently become an active

research area.

Therefore, the motivation for this work is two fold:

1. to contribute to the evolving field of implementing an active response to

intrusion detection

2. to explore the use of traffic profiling approach to intrusion detection

3.2 Project Goal

The goal of this research effort is to design and implement an Intrusion detection and

response system which provides end-to-end network security from intrusion detection

to active response.

3.3 Project Scope

The project will define a framework for detecting and responding to network based

Denial of Service type attack. It will also implement a network traffic profile-based

Intrusion Detection System for detecting DoS attacks. Finally, it will implement an

active response system using the pushback mechanism for rate limiting. Due to time

constraints the security requirements of the system like authentication of agents, or

inter-agent communication protocols and system policy description or specification

will not be considered.

MSc DCNDS Group 4 - NAIRS

 13

4 Methodology

Denial of Service (DoS) Intrusion detection mechanisms fall into two broad

categories in their mode of implementation, i.e. Misuse detection and Anomaly

detection. In misuse detection, the IDS looks for recognised attack patterns

(signatures) that has already been documented in its database. Anomaly detection

systems on the other hand look for deviations in normal usage behaviour patterns. It

basically monitors network segments to compare their state to the normal baseline and

look for deviations. While misuse patterns are often simpler to process and locate,

they tends to fail when new attack methods are discovered and implemented.

Anomaly detection on the other hand though able to detect new attacks, is often

highly difficult to implement, as what is “normal” usage has to be established and it

must be tailored to the environment it is being deployed in as behaviour patterns and

system usage often vary widely in different environments.

The approach adopted in this work falls in the Anomaly detection domain. We

employed a based Rate based premise to characterise normal network traffic and

detect intrusion from deviations from the characterised traffic profile.

Furthermore, we also investigated the possibility of using a Token Bucket

implementation to detect intrusions given a traffic characterisation derived from a

linear bound arrival process algorithm. A detailed description of both follows.

4.1 Rate-Based Traffic Profiling

The traffic profile of the network (with the network isolated from external traffic) was

first generated via a learning process. This information was then used to set the

threshold of the detection engine. The detection engine then monitors and compares

network traffic (when the network is not isolated) with the set threshold values and

MSc DCNDS Group 4 - NAIRS

 14

sends an alert when the values are exceeded. The alert serves as a trigger to activate

the response system which then employs the pushback paradigm [1] to throttle the

attack by rate limiting along the identified attack path. A more detailed description of

the different component follows later.

4.1.1 Network Profiling

The first step in our approach was the learning process in which a learning agent

gathered statistics of the usage of the network in an isolated network environment.

The data gathered were the average data rate per protocol, average packet rate per

protocol, average packet size per protocol and the standard deviation of these

measurements from their respective means. While theses data can be gathered for

different protocols, we gathered them for the three main protocols used in DoS attack

i.e. TCP, UDP and ICMP protocols. These parameters which indicated the

contribution per protocol were used to build the network profile and were inputs for

the detection and the response agent.

4.1.2 Intrusion Detection Model

Given that the learning agent has gathered a normal usage profile for the network, the

next step was to use that information in helping to detect when the network is under a

DoS attack. Using Figure 4.1 we want to describe the steps that form the foundation

for the detection framework developed in the NIRS project.

Assuming for a protocol, the average data rate is given by � , which was measured

over the network profiling period, and ymax is the maximum data rate available for

that protocol constrained by the actual network data rate, and � is the standard

deviation of the population used for the profile. We want to find a function P(x) that

MSc DCNDS Group 4 - NAIRS

 15

gives the probability that an observed measurement during the network runtime

constitutes a DoS attack traffic.

Figure 4.1: Network Profile Parameters Used in Intrusion Detection

By definition, DoS attacks render a service unusable by consuming all the resources

available to the service. In this context we are interested in network DoS, that is, a

complete consumption of network bandwidth that renders the network unusable to

other legitimate traffic. We want to associate a probability P(x) =1 with a condition

when all the available bandwidth is consumed, i.e. data rate at that instance is equal to

ymax. We want to start looking for suspicious traffic profiles when values exceed the

mean � , as such we associate a probability P(x = �) =0 where the measured value

equals the population mean for the profile sample.

ym

ax

�

�

�

Time

Data
Rate

Intrusion
Detection

MSc DCNDS Group 4 - NAIRS

 16

The level of confidence on the mean is a function of the population size used during

the network profiling period; the larger the size the more accurate the mean tends to

be, furthermore, the nature of the traffic over the sample period also affects the

interpretation of the level of confidence we have over samples whose values are close

to the mean. For traffic profiles that are bursty over the sample period, there would

tend to be larger variations about the mean, which is reflected by the variance � of the

population about the mean. Steady rate traffic would tend to have lower variances in

comparison with bursty traffic. As a result the variance of the population affects the

value of P(x) close to � . For two three-tuple profiles {P1, � , � 1} and {P2, � , � 2},

generally

() ()xPxP
xx ++ →→

> µµ :2:1

Where

�
1 < � 2

If we represent the probability function with a sigmoid, we have:

()
axe

xP −+
=

1

1

This is shown in Figure 4.2

MSc DCNDS Group 4 - NAIRS

 17

The Sigmoid function

0

0.2

0.4

0.6

0.8

1

1.2

X

a=1/3

a=1/2

a=1

a=2

∞− ∞+

Figure 4.2: The Sigmoid Function Showing the Effect of a on the Slope

As shown in the figure, curves with a larger values of a have steeper slopes than those

that do not. It can be shown that a is proportional to � . By normalizing � over ymax we

set a = � /ymax which gives:

()
x

y
f

e

xP
)

max1

1

��
�

�
��
�

�
−

+

=
σ

The probability P(x) indicates the level of confidence that a network traffic sample at

an instance constitutes an attack or not. However, to account for possible transients

spikes that may lead to false positives; a parameter is introduced to relax P(x)

measurements over a number of steps. This parameter leads to the confidence

threshold beyond which a signal is sent to the response system of the probability of

intrusion. The confidence measurement is thus given by

()�
=

=
n

i
in xP

n
c

1

1

MSc DCNDS Group 4 - NAIRS

 18

where n is the number of steps before a trigger signal is sent to the response system.

Given a confidence threshold of C, a trigger signal is sent if and only if xi > � for

every i ∈ { 1, 2, …, n } and cn ≥ C. The trigger signal S consists of a level of

confidence and network information parameters. That is

Iff

µ>ix { }ni ,...,2,1∈∀

and

()
�

=
=

n

i
in xP

n
c

1

1
 ≥ C

then

S={ cn, NET_INFO}

Where NET_INFO contains network specific information like the offending protocol,

IP addresses, interface etc required by the response system.

4.2 Token Bucket Approach

Token Bucket descriptor belongs the class of Linear bounded arrival process, or

LBAP, which is a class of data source descriptor. As pointed out in [19], the LBAP

descriptor correctly model the fact that even a “smooth” source may have periods in

which it is bursty [19]. Even though it may not accurately represent sources that have

occasionally very large burst, it does gives a better characterisation of the source then

the aggregated rate in most cases.

Hence, we investigate the use of token bucket parameters, instead of aggregated rate,

to profile normal traffic destined to a particular host. Given this profile, we can then

use a token bucket policer to identify if the incoming traffic, at any point in time, has

MSc DCNDS Group 4 - NAIRS

 19

deviated from the normal. A decision of DoS attack can then be made by how much

deviation from normal is accepted as noise.

4.2.1 Token Bucket Policer

Linear bounded arrival process, or LBAP, is a class of data source descriptor. A

LBAP descriptor for an arbitrary data source describes the number of bit the source

transmits in any given interval of length t by a linear function of t. This linear function

can be characterised by two parameters � and � , so that:

 Number of bits transmitted in any given time interval t � � t + �

� corresponds to the observed long-term average rate of data generated in the network

by the source, and � is the longest burst a source would send given a choice of � while

still obeying the above definition.

A token bucket/leaky bucket regulator regulates a data source to a LBAP descriptor

[20] Formally, it accumulates fixed-size tokens in a token bucket and transmits a

packet only if the sum of the token sizes in the bucket adds up to the packet’s size. On

departure of each packet, the regulator removes tokens corresponding to the packet

size from the token bucket. Token are refilled periodically to the bucket at rate � and

the size of the bucket is limited by � . The regulator would delay a packet by queuing

it in a data buffer if it does not have sufficient token for transmission.

If a token bucket regulator does not have a data, it is called a token bucket policer

[19]. Consider if we attach such a policer to a data source, we can then verify the

conformance of the traffic generated by that source to a particular token bucket

descriptor, which is a form of LBAP descriptor.

Token bucket regulators and policers are widely used in both academic and industrial

settings. For example, token bucket forms the foundation of Quality-of-service(QoS)

MSc DCNDS Group 4 - NAIRS

 20

guarantee for both Asynchronous Transfer Mode (ATM) networks and INTSERV and

the QoS framework for the internet put forward by the IETF. In both cases token

bucket policers are adopted to “police” if data generated by a particular source does

not conform to the LBAP descriptor negotiated during the “call setup” process.

4.2.2 Traffic Character ization and Policing

For a given data source, we would like to come up with a LBAP descriptor for that

source such that there exists no other descriptor which has a smaller � and � . We call

such a descriptor the minimal descriptor, but it is not unique for any data source. In

fact, the set of minimal descriptor can be described as the burstiness curve for the data

source [21]. Each combination would require a different data buffer size for token

bucket regulator. However, it does not matter for traffic policer because a policer

does not have any data buffer by definition. Thus, for the purpose of traffic policing, it

is indifferent to use any point on the burstiness curve.

As a result, in order to characterise a data source for our purpose, we will only need to

find a point on the corresponding burstiness curve. In fact, two algorithms have been

suggested in [22] to compute the burstiness curve of video sources. It has been further

claimed that such algorithm is suitable for any bursty ON-OFF traffic, including voice

and data. With the normal traffic characterised by picking a point, (� ’ , � ’), on the

curve generated by the algorithms, we can then use the pair as a basis to configure the

token bucket traffic policer.

4.3 The Response System

The agent-based response system uses the information supplied by the intrusion

detection framework to carry out a response using the pushback mechanism. The

pushback mechanism is a method for isolating offensive traffic by iteratively reducing

MSc DCNDS Group 4 - NAIRS

 21

traffic destined for a resource, walking from the destination resource back towards the

traffic source; hence the name pushback [1]. Given the two-tuple, S={ cn,

NET_INFO} , the response agent may use this information as a basis for further

forensic examination at the current site to further refine the quality of isolation of the

offending traffic from normal traffic. Within the constraints of the available

information, the response agent sends a pushback message to upstream agents along

the path of the attack traffic to rate-limit on the attack traffic given the description

gathered from the detection engine and, if available, results gathered from further

forensic analysis extracted after the intrusion was detected.

To limit the performance overhead associated with intrusion detection, the vital

statistics that the detection system looks at are minimized, however in the event of the

statistics being gathered indicating a high probability of intrusion, the response system

may ask for further forensic analysis which involves looking at non-spoofable

attributes of the traffic like the network interface from which the traffic is originating,

destination IP address, protocol header options etc.

In a rate-limiting scenario, the NET_INFO specification could involve the protocol,

protocol header options, destination IP address, network interface, data rate and

source IP. The problem with specifying source IP as a classification parameter arises

when the system is responding to streams from unauthenticated sources. In such

instances, the source IP might be spoofed and the rate limit would be applied to

innocent sources, this might translate to a very important customer IP address. There

is also the issue of intrusion detection and automatic response system themselves

being used as an attack tool against the system they are protecting. For example, an

automatic response system that blocks all offending source IP addresses permanently

or semi-permanently may be used by runaway hackers to cripple legitimate services

by spoofing customer IP addresses during attack. This issue is beyond the scope of

this project. Also but source IP addresses were not used as a classification parameter

during response.

MSc DCNDS Group 4 - NAIRS

 22

4.4 Traffic Generator

4.4.1 Choice of user traffic

We have decided to validate our DoS attack detection and response approaches under

two types of user data source. The first type is a bursty one. In particular, we

considered a data source which transmits a sequence of packets for a particular period,

also known as “busy” period, and then becomes “silent” , a period which the source

generate no network activity, for a relatively longer period. Typical example of a data

source which exhibits such a traffic pattern is HTTP request generated by a user.

Given web traffic remains the dominant traffic in the internet today, it is very

important to include such profile into our study. The second type of data source is one

which generates fix-sized packets at a fairly constant rate. Example of this type of

data source includes, multi-media streaming and conferencing session (without any

host-based conditioning techniques such as compression). Since there is a high

interest in deploying voice and multi-media traffic over internet, we felt that it is

useful to include this type of data source in our studies.

4.4.2 Simulated User Network Traffic

We have attempted to generate user network traffic using VideoLAN to stream a

small video clip over our experimental overlay network. Indeed we have tried this

setup for several times and each trail was haunted by three major technical problems.

First, our network was build by connecting UML instances hosted on four separate

physical Linux machines. Unfortunately, these Linux machines were powered by only

a single Pentium II – 233 MHz CPU. Running four instances of UML while

forwarding packets at the rate VideoLan generated proved to be much for the

machines to handle. Large number of packets were dropped by the intermediate

routers. We have tried to use video clips with fairly low resolution and size, but this

MSc DCNDS Group 4 - NAIRS

 23

problem persisted. We have considered using audio streaming applications, which use

much lower bandwidth and generate packets at a relatively lower rate. However, such

applications required access to the physical device (usually /dev/dsp in Linux) and

virtualization of such device is not possible under the current UML implementation.

Secondly, even if we managed to find a streaming application which generates

packets at a rate acceptable to the experimental setup, we still face the problem of

playing out the streamed packets. As mentioned before, audio has already been ruled

out. In order to play out any video from inside an UML environment, we need to

establish a connection between the X server on the physical host, which has exclusive

access to the frame buffer device, and the X client application which tries to display

the received packets. The only possible connection for such a purpose is to connect

dummy X server (XNest, as described in Chapter 5) inside UML to the physical host

via UDP. The side-effect of such a setup is that the X protocol would generate a

significant amount of traffic at the ethernet interface of the UML hosts and this would

affect our experiment which is based on measuring UDP traffic.

Thirdly, while VideoLAN is extremely useful as a demonstration tools to show the

effectiveness of the detection and response systems through the change in visual

quality, it does not produce any measurable numeric values. Without such numeric

values, it is very difficult to analyse qualitatively the Receiver Operating

Characteristics (ROC) of the detection system as well as the effectiveness of the

response system.

We realised that these two requirements can be easily satisfied by using a packet

generator and a corresponding receiver. Using a packet generator, we were able to

specify the size and the inter-transmission time of each packet. Hence, we can

engineer the source such that the limit imposed by the physical machines is not

exceeded. Furthermore, between the packet generator and receiver, it is possible to

work out how many packets have been dropped in a particular session. This number

would be helpful in evaluating the response system.

MSc DCNDS Group 4 - NAIRS

 24

4.4.3 Simulated Attack Traffic

We have studied three ways to perform an actual DoS attack, either via simulation or

otherwise. First, we have tested two commonly used attack tools, tfn2k and

stacheldraht. While we failed to compile the version of stacheldraht we obtained, we

were able to compile tfn2k after making some modifications to the source. With that,

we had successfully launched a DoS attack against one of our test machines using

tfn2k. The effect was indeed devastating: the network segment became totally

unusable.

However, tfn2k requires direct interaction with the device driver, and we were not

sure of how much interaction would affect our test environment. Since Linux does

not have process QoS by default, we were concerned that tfn2k may take up too much

processing power of the physical and thus degrade the “performance” of the test

network.

As an alternative, we explored the possibility of using the simple UNIX programme,

ping, to simulate attack traffic. With the –f flag, ping would output packets as fast as

they came back, via ICMP ECHO_REPLY, or one hundred times per second,

whichever is more [23].

Consider the case of one hundred ICMP ECHO_REQUEST packets per second. Each

packet was less then 80 bytes and thus the minimum traffic generated would be 8000

bytes per second. This rate was too low to be useful to act as an attack source. For any

rate above this, the actual ICMP packet generation rate would be directly related to

how soon it received a reply. While this was good behaviour for normal usage, so that

ping, even with –f supplied, would scale its rate according to the network condition, it

was inconsistent with how a “good” bandwidth-abuse DoS attack source should

behave. The objective of such a source is to flood the network by sending packets as

fast as possible. Hence, we decided against using ping.

MSc DCNDS Group 4 - NAIRS

 25

Finally, we also had the option to use our own packet generator to simulate an attack

source. Even though it did not generate packet as fast as attack tools like tfn2k, but

the rate it could generate already surpassed the rate that the experimental network can

handle. Since we attempted to look at generic DoS attack which introduce abnormal

level of network activity, we were indifferent on how the packets are generated.

At the end, we decided to use our own packet generator because it gave us more

control in defining what packet generation rate constituted a DoS attack.

MSc DCNDS Group 4 - NAIRS

 26

5 Tools and Technologies

This chapter describes the major tools and technologies used in the project.

5.1 User Mode L inux

User Mode Linux (UML) was originally developed by Jeff Dike on i386 architecture

as an implementation of a user space virtual machine. UML consists of a Linux

kernel that runs on a host Linux system, in a set of Linux processes.

UML is a port of the Linux kernel to itself. That is, it considers the Linux system call

interface to be a platform just as Intel x86 architecture and it is a port of Linux to that

platform. UML is just a Linux kernel that has been tweaked so that instead of talking

to the bare metal, it talks to the services provided by a lower-level kernel. UML

kernel runs as a process under a parent Linux session: it uses a separate partition (a

loopback-mounted filesystem, stored in a file) as its root file system, and it doesn't

share any processes, memory or files with the parent Linux session.

UML directly runs the host's unmodified user space. If processes run exactly the same

way in a virtual machine as in the host, then their system calls need to be intercepted

and executed in the virtual kernel. Each process within a virtual machine gets its

own process in the host kernel. The host process is used solely as an execution

context. It will have completely different attributes from the UML process, including

different name, different uid, and different pid. Even threads sharing an address space

in the user-mode kernel, get different address spaces in the host.

UML can run essentially anything that will run on the host (the exceptions mainly

being things that deal directly with hardware). This means that a UML can do

anything that a physical Linux machine can, with the advantage that UMLs can be

MSc DCNDS Group 4 - NAIRS

 27

created and destroyed as needed. The fact that a UML instance is virtual gives it

capabilities that make even more applications possible.

This project decided on using UML instead of a physical Linux machine because of

limited number of machines available for the project and the flexibility it provides to

configure a network tested with networking device functionalities e.g. a router

without using the physical device. UML provided a solution as many instances of

UML host could run on a physical machine.

5.2 OpenVPN

OpenVPN is a robust and highly configurable IP tunnelling program. It takes the

approach of being a user-space daemon. Its primary use is for linking networks

together by constructing multiple tunnels to or from the same peer.

UML supports no less than six different methods to provide networking to the virtual

Linux system. The most used network transport is through the TUN/TAP interface on

the host, which is used by OpenVPN. With a tap device, a virtual ethernet device can

be created within UML, and all the traffic sent to UML instances will appear on the

tap device on the host.

5.3 Xnest

UML does not have an X Windows and only runs on command line. To transform the

virtual machine into a full blown Linux box, it need to run an X server. X windows is

needed to display video streams from the VideoLan application. Xnest is the UML X

server, it does not use a video card for its display but instead uses another X server.

MSc DCNDS Group 4 - NAIRS

 28

5.4 Snort

Snort, an open source network intrusion detection system, it is a packet sniffer that

monitors network traffic in real time by scrutinizing each packet closely to detect a

dangerous payload or suspicious anomalies. It is based on libpcap (for library packet

capture), a tool that is widely used in TCP/IP traffic sniffers and analyzers. Snort

detects attack methods such as DoS or buffer overflow through protocol analysis and

payload searching/ matching. When it detects a suspicious packet, it sends a real-time

alert to either syslog, a separate alert file, or to a pop-up window. In this project,

Snort is used in the token bucket based detection mechanism.

5.4.1 Snor t Rules

Snort uses a simple, lightweight rules description language that is very flexible. The

rules are divided into two logical sections, the rule header and the rule options. The

rule header contains the rule's action, protocol, source and destination IP addresses

and netmasks, and the source and destination ports information. The rule option

section contains alert messages and an arbitrary-sized list of information on which

parts of the packet should be inspected to determine if the rule action should be taken.

This list of information was made up of either built-in snort directives or plugins. One

simple rule is illustrated here:

al er t i cmp any any - > 192. 168. 1. 17/ 32 any (msg: ” ECHO

r equest ” ; i t ype=8; dsi ze: “ 400<>500” ;)

The text up to the first parenthesis is the rule header and the section enclosed in

parenthesis is the rule options. In this case, it described “an alert would be raise if

there is any ICMP packet destining to a host with IP address 192.168.1.17 which

matches every criteria described in the option section”. The options, in this case, were

that the ICMP packet header indicates the packet is type 8 (i.e. ICMP echo request);

and the payload of the datagram is between 400 and 500 bytes. While each rule

MSc DCNDS Group 4 - NAIRS

 29

contains elements which had a logical and relationship, snort can perform inspection

on any number of such rules for each packet.

5.5 tc and L inux DIFFSERV

A tool used in the token bucket based response mechanism is tc. As part of Linux

DIFFSERV [24] implementation, it is a utility used to interacte with the Linux kernel

to configure different network quality-of-service (QoS) settings in the running kernel.

It provided features such as traffic policing, shaping and DIFFSERV marking.

5.6 Iptables

UML comes with advanced tools for packet filtering which is the process of

controlling network packets as they enter, move through, and exit the network stack

within the kernel. The firewall program, called iptables, can restrict access by IP

address, port number, interfaces or by the properties of the packets.

5.6.1 Packet Filter ing

Traffic moves through a network in packets. A network packet, which is a collection

of data in a specific size and format, contains information that helps it navigate the

network and move towards the destination. The information includes the source

address, the destination machine, the interface it should be going through or the

packet type.

The UML kernel has the built-in ability to filter packets. Its IPTables consists of a

series of tables. A default IPTables setup comes with three tables as shown in Table

5.1.

MSc DCNDS Group 4 - NAIRS

 30

Table 5.1: Default Table for IPTables

Table Usage

Filter The default table that filters out packets, preventing them

from coming in or going out. This is the most used table.

Nat This table is used to alter packets that create a new

connection

Mangle This table has the capability of actually modifying packets

according to various criteria.

Each of these tables has a group of built-in chains that correspond to the actions

performed on the packet by IPTables. We will focus on the filter table because it is

the table used to write rules for firewall reprogramming in the IDS and also counting

packets for the learning engine. The built-in chains for the filter table are shown in

Table 5.1 below.

Table 5.2: Built-in Chains For Filter Table

Chain Usage

INPUT This chain applies to packets received via a network

interface.

OUTPUT This chain applies to packets send out via the same network

interface that received the packets.

FORWARD This chain applies to packets received on one network

interface and sent out on another.

MSc DCNDS Group 4 - NAIRS

 31

5.6.2 IPTables Rules

Each chain consists of a sequence of rules. Each rule consists of a condition that may

or may not be met, and a target to which the packet is sent if the condition is matched.

If the condition is not matched, the packet is passed to the next rule in the chain.

Regardless of the destination, when packets match a particular rule on one of the

tables, they are designated for a particular target or action to be applied to them.

Every chain has a default policy to ACCEPT, DROP, REJECT, or QUEUE the packet

to be passed to user-space.

The common iptables commands have the following structure:

Iptables [-t <table-name>] <command> <chain-name> <parameter-1>

<option-1> <parameter-n> <option-n>

The <command> option is the centre of the command. It dictates a specific action to

perform, such as appending or deleting a rule from a particular chain, which is

specified by the <chain-name> option. <parameter> define the way the rule will work

and <option> will tell what will happen when a packet matches the rule.

5.7 Videolan

VideoLAN is designed to stream MPEG videos on high bandwidth networks. It has

two parts:

• VLS (VideoLAN Server), which can stream MPEG-1, MPEG-2 and MPEG-4

files and live videos on the network in unicast or multicast.

• VLC (VideoLAN Client), which can be used as a server to stream MPEG-1,

MPEG-2 and MPEG-4 files and live videos on the network in unicast or

MSc DCNDS Group 4 - NAIRS

 32

multicast; or used as a client to receive, decode and display MPEG streams

under multiple operating systems.

In the project demonstration, video will be streamed from the server to the intended

client. Another machine will flood the network with packets to reduce the available

bandwidth for the video stream.

An illustration of the complete VideoLAN solution is shown in Figure 5.1.

Figure 5.1: Global VideoLan Solution

MSc DCNDS Group 4 - NAIRS

 33

6 Detailed Implementation

6.1 Rate-based Approach

6.1.1 Overview

This section describes the specifics of the implementation details for the components

of the NIRS system. As shown in figure 6.1, the NIRS system is made up of a

network profiling agent, an intrusion detection agent, and an active response agent

using the pushback semantics for message propagation. The stages in the system

operation are therefore divided to the network profiling stage, the intrusion detection

stage and the active response stages.

Figure 6.1: Network Profiling, Intrusion Detection and Active Response Agent

Detected
Intrusion
specification

Forensic
Analysis
request

Network
Profiling
Agent

Intrusion
Detection
Agent

Active
Response
Agent

Network
Profile

Network
Profile

MSc DCNDS Group 4 - NAIRS

 34

6.1.2 Network Profiling

In chapter four, the mathematical basis for intrusion detection was shown. This

involved gathering network statistics against TCP, UDP and ICMP protocols by the

profiling agent. These protocols are the most often used during network DoS attacks.

This was done by setting up IP-accounting rules for the target or victim network and

periodically reading the account data using the Linux iptables infrastructure described

earlier in the report. For our tests in the project, the target network had address

192.168.1.0/24. In order to be able to capture all traffic information for this target

network, the accounting function was placed at the ingress router serving this network

segment. To set up the accounting tables for the target network against the TCP, UDP,

and ICMP protocols, the following sequence of iptables rules were specified:

i pt abl es - N ALLTCP

i pt abl es - N ALLUDP

i pt abl es - N ALLI CMP

The iptables statements above would create new iptables chains required to store

accounting information against the specified protocols.

Given that all packets destined for the target network and passing through the ingress

router are passed through the netfilter OUTPUT or FORWARD chain of the ingress

router, accounting information had to be gathered on these chains:

i pt abl es - A FORWARD - p t cp - j ALLTCP

i pt abl es - A OUTPUT - p t cp - j ALLTCP

i pt abl es - A ALLTCP - d 192. 168. 1. 0/ 24 - p t cp

The statements above tells the netfilter code to jump to the ALLTCP chain whenever

a tcp protocol packet traverses the FORWARD or the OUTPUT chain of the router.

The last statement isolates packets matching the separation criteria of either of the two

statements above and with a destination 192.168.1.0/24 (the target network).

MSc DCNDS Group 4 - NAIRS

 35

Similarly for the UDP and the ICMP protocols the following rules were used:

i pt abl es - A FORWARD - p udp - j ALLUDP

i pt abl es - A OUTPUT - p udp - j ALLUDP

i pt abl es - A ALLUDP - d 192. 168. 1. 0/ 24 - p udp

i pt abl es - A FORWARD - p i cmp - j ALLI CMP

i pt abl es - A OUTPUT - p i cmp - j ALLI CMP

i pt abl es - A ALLI CMP - d 192. 168. 1. 0/ 24 - p i cmp

To extract the accounting information from the netfilter system, the iptables list (-L

option) command in the verbose (-v) will generate the packet and byte count that

matches a rule specified to the netfilter kernel code. For example the command below

shows accounting information for the ALLICMP chain specified above.

i pt abl es –L ALLI CMP–vnx

Output:

Chai n ALLI CMP (2 r ef er ences)

 pkt s byt es t ar get pr ot opt i n out sour ce dest i nat i on

 1634 137256 i cmp - - * * 0. 0. 0. 0/ 0 192. 168. 1. 0/ 24

The output shows 1634 packets matching the rules have traversed the chain with a

total size of 137256 bytes. To extract just this information, the command could be

piped through grep, tr (translate character) and cut as follows:

D_I P=“ 192. 168. 1. 0/ 24”

st at I CMP=` i pt abl es - L ALLI CMP - vnx - Z | gr ep " $D_I P" | t r - s '

' ' : ' | cut - d: - f 2- 3`

MSc DCNDS Group 4 - NAIRS

 36

The result in the statICMP variable is packet count in field one and byte count in the

second filed.

The –Z option in the iptables command zeroes the table for the next reading, such that

accounting information of new packets that match all the rules specification only are

read at the next sample.

This is done for all the protocols as shown below:

st at TCP=` i pt abl es - L ALLTCP - vnx - Z | gr ep " $D_I P" | t r - s ' '

' : ' | cut - d: - f 2- 3`

st at UDP=` i pt abl es - L ALLUDP - vnx - Z | gr ep " $D_I P" | t r - s ' '

' : ' | cut - d: - f 2- 3`

st at I CMP=` i pt abl es - L ALLI CMP - vnx - Z | gr ep " $D_I P" | t r - s '

' ' : ' | cut - d: - f 2- 3`

TCP_PKT_COUNT=` echo $st at TCP | cut - d: - f 1`

UDP_PKT_COUNT=` echo $st at UDP | cut - d: - f 1`

I CMP_PKT_COUNT=` echo $st at I CMP | cut - d: - f 1`

TCP_BYTE_COUNT=` echo $st at TCP | cut - d: - f 2`

UDP_BYTE_COUNT=` echo $st at UDP | cut - d: - f 2`

I CMP_BYTE_COUNT=` echo $st at I CMP | cut - d: - f 2`

These statements were put in a script, which executes continuously and prints out the

results with a sequence number and the timestamp as shown below:

echo " t cp: $T $TCP_BYTE_COUNT $DATE $TCP_PKT_COUNT" | t r - s '

' " \ t "

echo " udp: $T $UDP_BYTE_COUNT $DATE $UDP_PKT_COUNT" | t r - s '

' " \ t "

 echo " i cmp: $T $I CMP_BYTE_COUNT $DATE $I CMP_PKT_COUNT" | t r -

s ' ' " \ t "

MSc DCNDS Group 4 - NAIRS

 37

The output stream of this script was captured by the profiling agent, parsed and sent to

its statistical analysis engine for processing. This is shown in Figure 6.2 below:

Figure 6.2: Operation of the Profiling Agent

The agent simply computes the mean and the standard deviation of the result over the

profiling period. Given that the tests carried out in the in the project are to provide

proof of concept for network profile based intrusion detection and response systems,

the information fed to the profiling system has been greatly simplified. The

categorization has been done at the protocol level, and the statistical analysis has been

limited to the mean and the standard deviation of the training set. In a production

system, it remains to be shown that further categorisation up to the protocol options

level, isolation by source network, application layer information, and further

statistical properties examination would greatly improve the quality of the intrusion

detection system.

6.1.3 Intrusion Detection

Within the constraints of the standard deviation of the profiling data set from the

mean, the intrusion detection agent is able to classify a network sample as an attack

traffic or not. Several factors may make a legitimate traffic look suspicious, but

IPTABLES script

Profiling Agent

Statistical
Analysis

Output Stream

MSc DCNDS Group 4 - NAIRS

 38

within the limits of information available, i.e. the mean and standard deviation, the

level of confidence associated with a classification is affected by its value and the

standard deviation of the training set. In set notation, this is shown diagrammatically

below:

Figure 6.3: Normal and Attack Traffic Showing Region of Intersection

The area of intersection of the two sets shows the region of uncertainty for the

intrusion detection system. We want to minimise this region as much as possible. The

size D of the intersection region in the figure above is a factor of the variance of the

data set. Further narrowing down the classification criteria of the training set could

reduce this. However, within this constraint, the detection agent has to classify a

network sample with an associated confidence level expressed as a probability P(X)

given by the sigmoid function as described in Chapter four:

()
axe

xP −+
=

1

1

Intuitively, a = f (D) = f (σ) as previously shown in Chapter four. It remains to be

shown the exact relationship between these variables. For the purpose of our tests, a

was chosen to be 0.2.

�Legitimate
Traffic

Attack
Traffic

MSc DCNDS Group 4 - NAIRS

 39

Scaling our data sample to the region [-10,10] with our [ymin,ymax] = [0,480000], then

10
24000

−= y
x

Given that our maximum inbound link capacity is 60 kBps = 480 kbps.

With a = 0.2 and x = [-10,10] then P(x) = [0.1192,0.8808]

The intrusion detection system accepts the current sample, if it is less than the mean

value from the profiling agent, it returns a P(x)=0 otherwise it passes the value

through the sigmoid function and returns the associated probability. The detection

engine also uses a parameter called confidence threshold C; whenever P(x) > C it

sends an alert to the response system described shortly. A figure of the detection agent

is shown below.

Figure 6.4: Schematic Of The Intrusion Detection System

x > µ
?

P >C
?

Yes

No

P(x) x

No

Yes
Network
Sample

To
Response
System

Log File

Intrusion Detection System

MSc DCNDS Group 4 - NAIRS

 40

6.2 Token Bucket Based Approach

The focus of this approach is not to develop a system different from that outlined in

the previous chapter. Rather, we aimed to use a token bucket descriptor instead of

aggregated rate as the basis for profiling, detection and response. We have

implemented the detection system and experimented with the response system.

6.2.1 Detection System

6.2.1.1 System Design

Figure 6.5: Token Bucket Policer

To detect if the incoming traffic conforms to the normal we had characterised, we

implemented a token bucket policer with some modification. The design was

depicted in Figure 6.5. The maximum number of tokens that the token bucket could

hold was defined via the bucket size argument but no lower limit was defined. In fact,

TEST
Incoming
monitored
traffic

TOKEN
BUCKET

� ,
LONGEST BURST
ACCEPTED

� ,
TOKEN REFILL
RATE

Output

MSc DCNDS Group 4 - NAIRS

 41

we allowed the number of tokens in the bucket to be negative. The bucket is

initialised to full and the token refill rates determined how many token would be

refilled to the bucket per second. Packets from the traffic flow we would like to

monitor entered our policer sequentially.

For each entering packet, it would need to ‘consume’ some number of tokens from the

bucket. This ‘consumption’ was reflected by reducing the number of tokens in the

token bucket by the number of tokens to be consumed by that packet. After this

‘consumption’ , if the number of tokens in the bucket was non-negative, no alert

would be raised as the flow conforms to the normal we had characterised. Otherwise,

an alert would be raised with the number (negative) of tokens in the bucket also

reported. If each packet “consumes” exactly one token regardless of its size, this

conformance engine then checked for packet arrival rate conformance. On the other

hand, if each packet “consumes” the same amount of token as its size, the engine then

polices bandwidth usage.

6.2.1.2 Implementation

From our design, it seems the refill mechanism requires accurate asynchronous

notifications such that tokens are refilled at the interval specified. One naïve

approach could possibly be using SIGALRM to generate alarms at regular intervals to

fill the bucket. However, such approach may not achieve very high accuracy given

that Linux did not provide Real-Time guarantee. Even worse, the code would become

unnecessarily complex to deal with potential problems of concurrency control.

In our implementation, we used inter-packet arrival time to determine the state of the

token bucket. The advantage of such approach is that it does not require any external

asynchronous notification. The insight of our implementation is that we only needed

to know the state of the token bucket when a packet had arrived. Hence, we could use

the event of packet arrival as a trigger. Here we present our argument.

MSc DCNDS Group 4 - NAIRS

 42

Consider the token refill interval to be, i, and three consecutive packets to arrive at t0,

t1, and t2 respectively. If we assume that a refill has occurred at same moment as the

first packet arrived. It is obvious that

 t1 – t0 = n1 * i + x1 (6.1)

where n1 (n1 > 0) is the number of refilled should have happened between t1, and t0,

and x1 (x1 < i) is the amount of time to next refill at t1. As observed from Figure 6.5,

we have,

(t2 – t1) = (n2 + n1) * i + x2 – (n1 * i+ x1)

(t2 – t1) = n2 * i+ x2 – x1

n2 * i+ x2 = (t2 – t1) + x1

where n2 (n1 > 0) is the number of refilled should have happened between t2, and t1,

and x2 (x2 < i) is the amount of time to next refill at t2.

Therefore, the general form is:

nj * i+ xj = (tj – tj-1) + xj-1 (6.2)

where nj (n1 > 0) is the number of refilled should have happened between tj, and tj-1,

and xj (xj < i) is the amount of time to next refill at tj. From our assumption, it was

obvious that xo = 0 by definition.

Assume that the number of tokens in the bucket immediately after consumption by the

(j+1)th packet is Nj+1, which could be given by

 Nj+1 = Nj + nj+1 – (number of token consumed by the (j+1)th packet)(6.3)

where No = maximum token bucket size.

MSc DCNDS Group 4 - NAIRS

 43

From section 6.2, n1 and x1 are the quotient and the remainder of { (t1 – t0) / i }

respectively. Since (tj – tj-1) was in fact the inter-packet arrival time, and i is a known

constant. The state of the token bucket after each packet has arrived solely depends on

the inter-packet arrival time.

Since iptables does not provide any timing information on a per packet basis. We

turned to packet capturing utility for such data. Libpcap is the de facto library for

packet capturing under UNIX and Linux environment. For each packet captured, it

provided information about the packets such as headers, length, etc. More

importantly, each packet is time-stamped and thus allows us to compute the inter-

packet arrival time. However, this timestamp reflected the time the kernel first saw

the packet and it made no attempt to account for the time lag between when the

ethernet interface removed the packet from the wire and when the kernel serviced

the `new packet' interrupt [25].

Figure 6.6: Inter-packet Arrival Time

Consider the Figure 6.6. The timestamp for packet #2 would be t0+ �1 and the

timestamp for packet #2 would be t1+ �2. If we assumed that there was no large

T= t2
Packet 3 arrived

T= t1
Packet 2 arrived

time

T= t0
Packet 1 arrived

T= t0,
first refill

T= n1 * i,
n1

th refill since T=
t0

x1

T= (n1 + n2) * i,
(n1+n2)

th refill since T= to

x2

MSc DCNDS Group 4 - NAIRS

 44

variation in delay, when compared to td1, during the capturing process, �1 � �2. We

now had,

td2 = (t1+ �2) – (t0+ �1) = (t1 – t0) + (�2 - �1) � t1 – t0 = td1

As a result, the inter-packet capturing time would be a good approximation to the

inter-packet arrival time and we established the rational to use libpcap in this

detection system.

Figure 6.7: Packet Capture Time And Packet Arrival Time

We implemented, in C, our real-time token bucket-based detection as an extension

module to Snort, the open-source intrusion detection system (IDS) built on top of

libpcap library. There were several advantages in working within the framework of

snort then using libpcap library directly.

�1

time

Time= t0 : packet #1 arrived at
the network interface card at

Packet #1 first
seen by the kernel

Time= t1 : packet #2 arrived at
the network interface card

Packet #2 first
seen by the kernel

�2

td2

td1

MSc DCNDS Group 4 - NAIRS

 45

First, libpcap is a powerful library, but to use it directly would require substantial

expertise in UNIX/Linux system with regards to signals, low level devices, etc. The

snort extension framework, called “plugin” in their documentation, hid all these

complexity. Thus, we could concentrate in developing our detection module without

having to spend weeks, if not months, to beef-up our UNIX system skills.

Secondly, the flexibility of snort was very helpful. Since we would like to build a set

of network profile based on different header settings (indeed, protocol type could be

considered as one form of header setting), we could leverage on the extensive header,

and even payload, signature matching plugins to perform the task of protocol

classification. In fact, by taking advantage of such capability, we needed to implement

only a token bucket verifier plugin.

Third, snort is widely deployed thus it is a credible platform of choice.

6.2.1.3 Snort Plugin

The plugin we developed has three arguments: token-refill rate, bucket size, and

packet rate flag. Token-refill rate configured the rate at which the token bucket

would be refilled. It was expressed as token per second. Bucket size configured the

maximum number of tokens that the token bucket could hold. Packet rate flag

specified if the plugin should check for bandwidth or arrival rate attack. If this plugin

was to check for bandwidth usage, it was assumed that each byte in a packet would

consume one token. A sample snort rule that uses this plugin is as follow:

Udp any any - > 192. 168. 1. 17/ 32 any (t oken_bucket : ” 20000,

50000, 1” ;)

This rule instructed snort to check if all UDP traffic destining for 192.168.1.17 would

conform to the bandwidth usage of an average rate of 20000 bytes per second and the

largest burst allowed is 50000 bytes.

MSc DCNDS Group 4 - NAIRS

 46

Side notes

It was also important to point out that this plugin we developed can be used

‘standalone’ outside of the system we proposed. Currently, snort offered only

signature-based intrusion detection. As pointed out in Chapter 3, such an approach

was insufficient to counter the increasingly sophisticated and quickly evolving DOS

attack. At the meantime, people started to demand to be able to describe attack, in

snort, using signature in conjunction with rate in several newsgroup postings.

Consider TCP sync-flooding. Currently snort was entirely ineffective such attack. It

was because snort can only detect if such packets are matched on a packet-by-packet

basis only. But the presence of any single TCP-sync packet did not constitute such an

attack. It was the fact that such packets arrived at an abnormally high rate that

constitute an attack. Using the token bucket plugin, system administrator could

configure snort to raise an alert when a type of traffic was arriving at a token bucket

rate higher then their historical value. Thus, they can then have a sound way to detect

flooding-based attack without having to know the signature of the attack packet

before hand.

6.3 Active Response System

The active response system is made up of a collaborating community of software

agents. The master agent is the one closest to the resource being monitored. On

detection of a DoS attack at the victim network, the intrusion detection system sends

an alert to the response agent with information about the level of confidence it has on

the attack and the information about the attack based on the two-tuple S={ c,

NET_INFO} described in chapter four.

Where NET_INFO contains network specific information like the offending protocol,

IP addresses, interface etc required by the response system. The response system uses

this information to react to the DoS attack. The response agent may still ask the

MSc DCNDS Group 4 - NAIRS

 47

intrusion system to carry out further forensic analysis on the offending traffic to

further isolate it from other legitimate traffic.

For our tests we used the netfilter rate-limiting functionality to throttle the data rate of

the offending traffic. A limit is applied to the data rate of the offending protocol, and

using the pushback messaging mechanism, the master agent sends signals to the

upstream pushback messenger, which applies the rate-limiting function to traffic

matching the profile specified by the master agent.

For the purpose of our test, the pushback message include the three-tuple

{ PROTOCOL, DESTINATION_IP, RATE} which the upstream agent interprets as:

apply rate limiting to a maximum of RATE for all traffic destined for the downstream

network with IP address DESTINATION_IP whose protocol is PROTOCOL. For

example a message received by any pushback messenger { icmp,192.168.1.0/24,5}

would mean rate-limit all icmp packets with destination IP in the range

192.168.1.0/24 to a maximum of 5 packets per second. In iptables parlance, this

would be implemented as:

create a new iptable chain to enforce maximum rate

CHAI N_NAME= I CMPLI MI T

DEST_I P=” 192. 168. 1. 0/ 24”

RATE=” 5”

i pt abl es - N $CHAI N_NAME 2>/ dev/ nul l

#flush the chain in case there was an existing rate

#specification

i pt abl es - F $CHAI N_NAME

i pt abl es - A $CHAI N_NAME - p i cmp - d $DEST_I P - m l i mi t - - l i mi t

$RATE/ s - j ACCEPT

MSc DCNDS Group 4 - NAIRS

 48

Legend:

Figure 6.8: Pushback Message Propagation

����������������������������

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

�� � � ��� � � ��� � � ��� � � �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

� ��� �� �� ��� �� �� ��� �� �� ��� �� �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

� � � � �� � � � �� � � � �� � � � �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

Pushback
Messanger

MSc DCNDS Group 4 - NAIRS

 49

This will apply the rate-limiting function to all ICMP traffic destined for the victim

network. A further isolation parameter could be to use the source IP addresses of the

offending traffic, but knowing that the source address may be spoofed, it is not a

reliable method. Pushback message propagation is shown in Figure 6.5. The

pushback messengers use lightweight UDP communication protocol.

We also experimented with the Linux traffic control utility, tc. It was developed as

the control utility for Linux DIFFSERV (differentiated-service [26]) implementation

and it interacted with the Linux kernel to setup network quality-of-service (QoS),

such as traffic shaping (both ingress and egress) and traffic policing among others. In

our setting, we used the traffic shaping feature.

In our experiment, we used tc to setup one “class-based” queue for each Ethernet

interface. Queue here referred to queuing disciplines which were algorithms which

control how packets are queued to the network interface card were treated. The

concept of “class-based” queues would be demonstrated in Figure 6.8. Here we had a

“class-based” queue which contains two “classes” and each “class” was associated

with its own queuing discipline. “Filters” were used to match different packet

property, such as header information”, and classified each of them into different

“class” .

Figure 6.9: Logical Structure of Class-base Queue

MSc DCNDS Group 4 - NAIRS

 50

We defined different “ filters” to separate the traffic from the different traffic classes,

as defined during the profiling phrase, into different classes in this “class-based”

queue.

For each “class” , we then linked to each class a separate “ token bucket filter” (TBF)

queuing discipline to limit the bandwidth consumption to the level described by the

token bucket parameters.

While tc performed excellently in bandwidth limiting, one disadvantage was that it

did not support rate limiting. At least, we have not found out how it could be done

with tc. Furthermore, the documentation and usage of the programme was rather poor

and we had to rely on third-party documentation to understand the syntax and

semantics of its “class-based” queues [27].

6.4 Packet Generator

We have three major requirements for the packet generator to be used. First, it must

be simple to use. Secondly, we would like to be able to control the size of the packet it

generates and the rate at which the packets are injected into the network at rate well

below that is accepted by the virtual network infrastructure. Thirdly, it must be able to

work with the Linux traffic control mechanism in order to constrain the traffic to be

injected into the experimental network at rate configured.

There are many packet generators available on the internet, but we found most of

them to be unsuitable for our purpose. While some of them, such as [28], have very

complex configuration parameters due to their powerful nature, others, such as [29,

30] are designed to stress test network equipment such that they intend to send

packets as fast as possible by interacting directly with the low level Ethernet device

driver. It is not clear if packets generated this way would work with the queues

MSc DCNDS Group 4 - NAIRS

 51

defined via the Linux traffic control mechanism and more importantly inside the

UML environment.

Hence, we have developed our packet generator. It is a simple user-space C

programme that sends fix-sized packet UDP to a given host at roughly a given time

interval. There are three variants of the packet generators: one to generate “steady”

traffic, one to generate “bursty” traffic, and one to generate packet as fast as possible.

6.4.1 Steady Traffic Generator

This generator takes the following arguments: destination host IP address and port

number, UDP packet payload size (in bytes), inter-packet generation time (in seconds

and microsecond). The minimum payload size accepted is four bytes (the rational will

be clear) and the generation interval must be greater than zero. Upon start-up, it setups

the UDP socket and then generates a buffer with size at least as big as that specified

as the payload size and then. The first four bytes of the payload is used to

accommodate a 32-bit integer. This integer, which is initialized as 0 and incremented

by one for each packet sent, is used as a sequence number, in conjunction the packet

receiver, to detect the number of packets dropped. It uses sendto system calls to inject

packet into the network and then uses the select system to put the process into “sleep”

for the duration specific before the next call to sendto. Since the system call actually

takes time to complete, an inter-packet generation time of zero would certainly not be

able to archive through this mechanism. In fact, we have developed another generator

simply for this purpose.

6.4.2 Bursty Traffic Generator

One type of bursty traffic can be generated by a data source which transmits a

sequence of packets for a particular period, also known as “busy” period, and then

MSc DCNDS Group 4 - NAIRS

 52

becomes “silent” , a period which the source generate no network activity, for a

relatively longer period. Typical example of a data source which exhibits such a

traffic pattern is HTTP request generated by a user.

Our bursty generator attempts to emulate such data source and takes in the following

argument: destination host IP address and port number, UDP packet payload size (in

bytes), number of packets generated during the “busy” period, inter-packet generation

time during “busy” period (in microsecond only), and the length of the “silent” period

(in second and microsecond). While the length of the “silent” period is explicitly

specified, the length of the “busy” is determined by the number of packet to be

generated and the inter-packet generation time.

Similar to the steady one, payload size must be greater four bytes, and the time

duration must be greater zero. Upon start-up, the generator setups the UDP socket and

payload buffer similar to that of the steady generator. It then starts to generate packets

with the inter-packet interval set to that specified for the “busy” period using select

similar to the way described above. Indeed, the major difference is that after sending

the number of packets during “busy” period as specified from the command line, the

generator then enters a “silent” period. This is archived by using select to put the

process into “sleep” for the duration of the “silent” period. Afterwards, it re-enters the

“busy” period.

6.4.3 As-Fast-as-Possible Generator

We have attempted to develop a user-spec programme that generates UDP packets as

fast as possible. The naïve implementation we have is to skimpily put sendto in a

while loop which does not do much otherwise. However, we decided to abandon such

approach because the UML environment cannot even keep up with packets generated

through this approach.

MSc DCNDS Group 4 - NAIRS

 53

6.4.4 Packet Receiver

This is a simple UDP daemon that accepts the packet sent to it by the generator. It

checks the sequence number, inserted by the generator, of each packet against what it

has received so far. Assuming no packet re-ordering has occurred, it then decides if

any, and by roughly how many, packets have been lost during the transmission. This

is particularly helpful when we engineered the link capacity of the experimental

environment. This will be further discussed in the next chapter.

MSc DCNDS Group 4 - NAIRS

 54

7 Test Environment

It is essential to have a testing environment to analyse and validate the proposition put

forth in the previous chapters. The chapter is structured as follows: first is a

description of the high-level design of the test environment, followed by details of

how it was implemented and finally a discussion of the problems faced and their

solution.

7.1 Design Overview

Figure 7.1 shows a detached section of the test environment to illustrate the network’s

multi-hop design consisting of routers and end-host. All end hosts are regular UML

host but for 7the purpose of identification, we refer to host on the Victim subnet as

Victim host, those on the attacking subnet are Attack host while others are called User

host. The victim and user hosts were configured to be in different subnets.

The test scenario is laid out as follows: Under normal network operating conditions,

good network traffic originates from the user subnet destined for a host in the Victim

subnet as shown in the figure. Under attack condition, attack traffic is generated from

a host in the attack subnet and also destined for the Victim subnet. This produces a

situation where both the good and attack traffic compete for the same network

resources. Thus emulating a Denial of Service (DoS) situation.

A tree like topology with a minimum tree depth of two was used for the core network

with the victim located at the root of the tree and user /attack host are at the leaf nodes

This tree-like topology was inspired by the one in [1] paper

There are several reasons for the choice of such a topology. First, in the view of the

victim host or more specifically the server running on that host, the internet has a tree-

MSc DCNDS Group 4 - NAIRS

 55

like topology with itself being the root. This is because it sees requests coming from

different hosts flowing towards it. Such requests which may originates in different

internet segment are all eventually aggregated into the one link connecting the victim

host to the gateway router of that host (assuming the victim itself is not multi-homed).

Second, such network allows us to study the effect of our response mechanism on

different legitimate traffic on various level of aggregation with DoS attack traffic.

Figure 7.1: Design Of Our Test Network

victim

Router
s

Attack hosts User hosts

MSc DCNDS Group 4 - NAIRS

 56

7.2 Implementation

We would have loved to use real routers to implement our design. However, we had

resource constrains. Indeed, we had only five Intel Pentium II – 233 Mhz PCs, one

shared medium Ethernet hub and five straight ethernet cables to carry out our project.

More importantly, the machines were only equipped with one network interface card

and an extra card could not be added to any of the machines. This completely ruled

out the possibility of changing how these machines were to be inter-connected to

implement our design. Thus, the only solution available was to build an overlay

network so that we could implement the topology designed.

The use of UML came as a natural choice to build such a network. Firstly, it allowed

us to implement the network we had designed because each UML instance could be

configured to have as many network interfaces as we desired. Secondly, since UML

provided a full Linux environment, tools we developed for intrusion detection and

response could be easily deployed in a real Linux environment without any significant

changes. Thirdly, similar projects had been done with UML, e.g. the honeynet project

[31]. So this technology was indeed a proven one.

7.2.1 Network Configurations

Fig. 7.2 shows the virtual network built using four ‘ real’ Linux machines. This

network consists of UML hosts configured as routers or end systems. These hosts

were organized into three separate subnets (or networks) and a transit network such

that each of these “components” resided in one “ real” Linux machine. Each subnet

was connected to the transit network via a virtual link with no direct connectivity

between them. Inside each subnet, there was a gateway router which connected that

subnet to the transit network and there were also a number of end systems. The

gateway router and end systems were connected using uml_switch, a networking

daemon that run inside “ real” Linux machines to acts as an Ethernet switch to provide

MSc DCNDS Group 4 - NAIRS

 57

connectivity among the UML instances running inside that machine. Similar to a real

Ethernet switch, it can be configured to work in switch or hub mode.

For the subnets, we configured uml_switch to work as a hub. We named the transit

network the “ core” network. It consisted of only routers. These routers were

connected using uml_switch, configured in switch mode, to emulate the nature of

dedicated links among the routers. Finally, we connected the gateway router of each

subnet and the “core” network through the physical LAN. We would like to point out

that the choice of deploying this test network over more then one Linux machines was

absolutely essential. From our live usage experience, the machines available for the

project could not handle more than five UML instances running concurrently. As a

result, we had no choice but to deploy the network over several physical machines.

The topology is shown in figure 7.2 below

We named the three subnets: attack network, user network, and victim network

respectively. The victim network was where the victim host, as described in section

7.1, resided. The user network is the network segment in the test environment where

the legitimate user traffic is generated. The nomenclature used is indicative of the

functionality in the test environment and is not related to its operational semantics.

The operational semantics of the attack network is similar to that of the user network.

But as its name indicates, DoS-type attack traffic originates from this network

segment.

The IP addresses used for each node in this overlay network were selected from the

non-routable address space (192.168.0.0/16) to prevent external traffic from

interfering with our test environment and vice-versa. The victim, user and attack

network segment in the test environment used classless inter-domain routing (CIDR)

with a 28-bit network mask (255.255.255.240). This sets a theoretical limit of 14

hosts per subnet in each segment. The segments could have a theoretical limit of 14

subnets per router.

MSc DCNDS Group 4 - NAIRS

 58

Legend:

Figure 7.2: Topology Of The Vir tual UML Network

UML Host
UML Switch UML Router

����������������������������

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

�� � � ��� � � ��� � � ��� � � �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

� ��� �� �� ��� �� �� ��� �� �� ��� �� �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

� � � � �� � � � �� � � � �� � � � �

� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � ����

Physical Host 1

Physical Host 2

Physical Host 3 Physical Host 4

IP Tunnel

IP Tunnel on Ethernet 1

3

4 5

6

7 8

9 10
11 12

MSc DCNDS Group 4 - NAIRS

 59

The victim network had one router, the user network had two routers, and the attack

network also had two routers. All outbound traffic from the subnets traversed the

router through the core network to the destination and vice versa. The configuration

was such that inter-subnet communication never traversed the physical host boundary

to the physical network.

Given that the subnets and the “core” networks were connected using IP tunnelling

over a shared-medium ethernet segment, which used CSMA-CD as the under-lying

multiple-access scheme, care was needed in planning the data rate the virtual links

would carry. As pointed out in [19], while load on an Ethernet increased, collisions

became more common and thus increased the mean delay for each sender. In the

extreme case if load tends to infinity, the actual throughput of the network drops to

nearly zero.

Another rational for limiting the bandwidth of each cross-machine links was that these

links were designed to be dedicated, such that traffic level on one link should not

affect another. Since Ethernet, the underlying Layer-2 medium, does not support such

notion, we had to “protect” each link from one another so that each of these links

“behaved” similarly to a dedicated one.

To mitigate both problems, a maximum of 60% utilization was agreed on for the

LAN. We limited the bandwidth of each cross-machine link to 1/n of the desired

maximum offered load on the Ethernet, where n is the total number of cross-machine

links (In this implementation, n = 6). Since Ethernet had a theoretical maximum of 10

Mbps data rate, this would amount to a total of 6 Mbps as the maximum desired

offered load. Each of such links was capable of asymmetric data rate on the outbound

and inbound links, but for the purpose of the experimental setup a symmetric data rate

was assumed. Altogether, there were six cross-machine links each with symmetric

data rate on the links; this left 6/12 Mbps for each link. This is equivalent to 62.5

Kbytes per second, and we further rounded it down to 60 Kbytes per second.

MSc DCNDS Group 4 - NAIRS

 60

7.2.2 UML Configurations

UML being an implementation of the Linux kernel has similar networking semantics

as a physical Linux box. During kernel compilation, networking options for routing,

packet filtering, traffic control, IP tunnelling etc were enabled to facilitate the

operation of different layers and components in the experimental setup that required

the functionalities. For example, IP forwarding was required for UML hosts operating

as router, and IP tunnelling was required for traffic isolation and proper routing of

packets in the overlay network. These options were either compiled into the kernel or

loaded on demand as modules during network setup. The following table shows the

most important options and their contribution to satisfying the requirements for the

overlay network specifications.

Table 7.1: Impor tant UML Kernel Options For The Network

Networking Option Kernel Option(s) Descr iption

UML Networking CONFIG_UML_NET=y Enable UML Networking

TUN/TAP Driver CONFIG_UML_NET_TUNTAP=

y

CONFIG_TUN=y

TUN/TAP transport allows

communication between

UML host and the physical

host

TCP/IP Networking CONFIG_INET=y Enable IP Networking

IP Forwarding CONFIG_IP_ADVANCED_ROU

TER=y

Enable UML host to

operate as a router

IP Tunnelling CONFIG_NET_IPIP=y Support for IP in IP

tunnelling

Packet Filtering CONFIG_IP_NF_FILTER=y

CONFIG_IP_NF_IPTABLES=y

Packet filtering and

iptables support

MSc DCNDS Group 4 - NAIRS

 61

All the traffic generated from the UML network were routed through an IP tunnel on

the Ethernet LAN.

7.2.3 UML Environment

Since UML, by itself, is merely a Linux kernel running as a user-process in Linux, we

needed to provide the filesystem in which the kernel will boot with and, in our case,

the networking configurations of each instance.

We evaluated with several filesystem for UML available on the internet [32] and

decided to use the one based on Debian woody distribution. The rational was that,

even though RedHat based Linux distribution and its variants were widely used, those

RedHat-derived file systems available from [32] did not suite our need. They were

either too big in size, or lacked the tools we desperately needed, such as make, perl,

etc. In fact, with the exception of the largest one, which is more then 600 MB in size,

none of them came with rpm, the RedHat package management programme. This

meant additional software could not be installed easily. On the contrary, the Debian-

based filesystem was much very much smaller in size (25MB) and it had the Debian

package management system installed. Hence, we were able to install all the

additional software we required without much problem using apt-get, a Debian-

specific utility to download and install software.

As laid out in section 7.2.1, we configured the UML instances as either end-hosts or

routers. While they shared some common configuration, it was apparent that their

networking configuration would be vastly different. In order to facilitate the

deployment of this test network, we developed a set of scripts, which resides inside

the UML filesystem. These scripts, during UML boot-up time via System V init

process, would detect if it should be configured as a router or end-host and configure

the Ethernet drivers, bring up the network interfaces, create the appropriate routing

MSc DCNDS Group 4 - NAIRS

 62

table according to our topology, and, in the case of “border” router, setting up virtual

IP tunnels appropriately.

While it was obvious to understand why we need to configure ethernet drivers,

network interfaces, etc., it is less so with the need to setup virtual IP tunnels. Indeed,

the need of such tunnels would be clear after we described the setup of the physical

Linux boxes we had adopted.

7.2.4 ‘Physical’ L inux Host Environment

Even though a simple command was sufficient to start the booting of a single UML

instance under Linux, it was no simple task to start a group of UMLs which were

inter-connected in the way we devised. In our bid to make the UML environment as

generic and flexible as possible, we put the intelligence of the topology in the physical

Linux box environment instead. However, in doing so, we needed to “ tell” each UML

instance how to configure themselves when they are started. This was achieved by

passing appropriate command line options to the UML instance such that it knows

how it should configure itself and what values to use for the init scripts during boot-

up as described in the previous section.

The requirement of the overlay network for the physical Linux host is that it must

perform IP forwarding for the ‘private’ address space and address-resolution-protocol

(ARP) request-reply on behalf of the UML instances running inside that particular

host. Thus, it was necessary to configure the routing table of the physical host, as well

as enable ARP proxy for those UML instance running that host.

However, this setting introduced a problem with the networking configuration

between the gateway routers of the UML subnet and the core UML network. Consider

the case of sending an IP packet from an end-host in the user subnet via the core

network to another end-host, v1, in the victim subnet. The packet first got routed to the

gateway router of the user subnet. Then, this gateway router would attempt to forward

MSc DCNDS Group 4 - NAIRS

 63

this packet over the Ethernet to the corresponding router in the core network. In order

to do so, the gateway router first forwarded this packet to the physical Linux box via

the TUN/TAP device. At this point, the routing daemon of the physical Linux box

would examine the header of the packet which would have the IP address of v1 in this

case. The routing table of the physical box would essentially contain a route to route

this packet to the Ethernet device (eth0 in this case). As the physical box prepared to

transmit this IP packet over eth0 device, it would have to discover the MAC address

of v1 through ARP. At this point, the physical host on which the victim subnet is

running would certainly reply due to the ARP proxy configured as stated earlier.

Thus, this packet would be delivered directly from the user subnet to the victim subnet

without passing though the core network.

We solved this problem by using IP-in-IP (IP-n-IP) tunnel to connect gateway routers

in each subnet to their peer router in the core network. Consider the above scenario

again. When the IP packets arrived at the gateway router of the user network, the

packet would be encapsulated into another IP packet destined for the peer router, c1,

in the core network and this new IP-in-IP packet would then be forwarded to the

physical host. When the routing daemon on the physical host examines this IP-in-IP

packet, it would try to forward this packet to the address in the header of outer packet

which is c1. This IP-in-IP packet would then be delivered to c1 using the mechanism

described in the last paragraph. On arrival at c1, this packet would be de-encapsulated

and the original IP packet sent would now emerge. This packet would then be routed

through the core network to the final destination v1.

We wrote a number of bash scripts to automate these tasks. These scripts, together

with those residing inside the UML filesystem, were further brought together by a

superset script that starts the whole network environment given a set of parameters

that specify the topology of the desired network test environment. To make things

simple, these scripts were written with the topology we described in mind, however,

they were made fairly generic so that they could form a basis for creating a generic

UML-based network test-bed for scientific experiments which require an emulated

network environment.

MSc DCNDS Group 4 - NAIRS

 64

7.3 System Evaluation

We have tested the setup with ping, our own packet generator and video streaming

using VideoLAN. The result were satisfactory. We found no connectivity problem.

However, we did observe several short-comings. For example, when an UML

instance was transmitting too much traffic, the uml_switch seemed to be unable to

keep up with the rate. This was mentioned in section 7.2.1. Another problem was

observed with VideoLAN. The packet loss rate when streaming some selected video

clip over this virtual network was very high. We attributed this problem to the fact

that our equipment was not powerful enough for this particular task. As a control

experiment, we repeated this experiment across the Linux machines themselves. Still,

we observed a very large packet loss rate.

Figure 7.3: Observed Throughput Of The Network Against Offered Load By

One Data Source

MSc DCNDS Group 4 - NAIRS

 65

As laid out in section 7.2.1, we made provision to prevent a throughput collapse of the

underlying Ethernet under high load offered by the UML end-hosts. Under stress test

using our own packet generator to send packets from one host in the user network to

another host in the victim network, we observed that the peak data rate remained

constant even when the generator was generating packets at a much higher rate. This

result, as shown in Fig 7.3, verified that the ethernet did not collapse even though

under high offered load by an UML end-host.

We also verified all the cross-machine links were “protected” by running an instance

of the packet generator in a host in both the user network and the attack network to

send packets towards one host in the victim network.

Figure 7.4: Observed Throughput Of The Network Against Offered Load With

Constant Background Traffic

MSc DCNDS Group 4 - NAIRS

 66

8 Measurement and Analysis

8.1 Background

In her paper Testing Intrusion Detection Systems [33] , Elizabeth B. Lennon identified

a list of quantitative measures that relate to the performance accuracy of an intrusion

detection system. An extract from her paper indicates the following measures:

Coverage

This measurement determines which attacks an IDS can detect under ideal conditions.

For signature-based systems, this would simply consist of counting the number of

signatures and mapping them to a standard naming scheme. For non-signature-based

systems, one would need to determine which attacks out of the set of all known

attacks could be detected by a particular methodology. The number of dimensions that

make up each attack makes this measurement difficult.

Probability of False Alarms

This measurement determines the rate of false positives produced by an IDS in a

given environment during a particular time frame. A false positive or false alarm is an

alert caused by normal non-malicious background traffic. It is difficult to measure

false alarms because an IDS may have a different false positive rate in each network

environment, and there is no such thing as a standard network. Also important to IDS

testing is the receiver operating characteristic (ROC) curve, which is an aggregate of

the probability of false alarms and the probability of detection measurements. This

curve summarizes the relationship between two of the most important IDS

characteristics: false positive and detection probability.

MSc DCNDS Group 4 - NAIRS

 67

Probability of Detection

This measurement determines the rate of attacks detected correctly by an IDS in a

given environment during a particular time frame. The difficulty in measuring the

detection rate is that the success of an IDS is largely dependent upon the set of attacks

used during the test. Also, the probability of detection varies with the false positive

rate, and an IDS can be configured or tuned to favour either the ability to detect

attacks or to minimize false positives. One must be careful to use the same

configuration during testing for false positives and hit rates.

Resistance to Attacks Directed at the IDS

Directed at the IDS. This measurement demonstrates how resistant an IDS is to an

attacker's attempt to disrupt the correct operation of the IDS. One example is sending

a large amount of non-attack traffic with volume exceeding the processing capability

of the IDS. With too much traffic to process, an IDS may drop packets and be unable

to detect attacks.

Ability to Handle High Bandwidth Traffic

This measurement demonstrates how well an IDS will function when presented with a

large volume of traffic. Most network-based IDSs will begin to drop packets as the

traffic volume increases, thereby causing the IDS to miss a percentage of the attacks.

At a certain threshold, most IDSs will stop detecting any attacks.

8.2 Receiver Operating Character istic

For an intrusion detection system, there is a relationship between the level of security

that can be provided by the system and the attendant false alarm generated in

MSc DCNDS Group 4 - NAIRS

 68

providing that level of security: i.e. the level of false alarm generated varies with the

level of detection.

The trade-off between these two factors is governed by the alert threshold set for the

intrusion detection system. By lowering the threshold, an administrator can discover

more attacks, but will very likely have to content with more false alarms. Likewise, an

administrator can raise the threshold to reduce false alarms, but this will also very

likely cause the detection system to miss some attacks. Thus in evaluating an intrusion

detection system, it is pertinent to know both the probability of detecting an attack

and the probability of generating a false alarm. By knowing these two values and

how they are affected by changes in the detection threshold, a Receiver Operating

Characteristic (ROC) curve can be plotted. The ROC curve provides an administrator

with requisite information that will enable him set a detection threshold that matches

the level of security cum available effort required in his operating environment.

The ROC curve is an important characterisation used in the IDS testing community.

The ROC curve for the NIRS system was generated to show the best operating point

for the detection system. This led to the choice of the confidence threshold used

during the full detection and response mode. The steps used in characterising the

NIRS using ROC technique is outlined in the next sections.

8.3 Performance Objectives

While the parameters enumerated above could be used to provide quantitative

measures that relate to the performance accuracy of an intrusion detection system, the

focus of this work is to develop an active response system to DoS attacks. However,

the effectiveness of the response system depends on the quality of the intrusion

detection system. Therefore, the best operating condition for the detection system had

to be determined using the ROC characterization technique.

MSc DCNDS Group 4 - NAIRS

 69

8.4 Measurement Techniques

8.4.1 Measurement Conditions

In order to be able to take unbiased measurements of network data samples in the test

environment, the physical network segment on which the virtual network was

deployed was separated from the departmental network. This eliminated the

possibilities of traffic from other sources interfering with our measurements.

Furthermore, our test traffic could not stray outside our network segment or affect

what other users are doing in other parts of the network

.

All network traffic used in the experiments were either generated using our custom

made traffic generators or the ping utility. A “Good Traffic” source was defined, this

was the traffic used to create the network profile. The “Attack Traffic” was defined

also as an unruly traffic source, usually characterised by a high data rate.

8.4.2 Network Profiling

In order to characterise what is “good traffic” in the test environment, a traffic source

of known behaviour was instantiated. The traffic source was either the packet

generator we developed which is capable of sending steady rate or bursty UDP traffic

to a specified destination, or the common ping utility. These accounted for two of the

protocols we were investigating in the NIRS system. A stream of good traffic was

deployed on the isolated network test bed from the user subnet to the victim subnet.

The profile of this traffic stream was generated by the profiling agent on the ingress

router of the victim network and serialized as a Java object to be used by the detection

system during the detection mode. The following parameters constituted the traffic

profile: average data rate and its standard deviation, average packet size and the

average packet rate. The average data rate and its standard deviation were used as

MSc DCNDS Group 4 - NAIRS

 70

inputs to the detection engine to be used in its decision logic during intrusion

detection.

8.4.3 Confidence Level Plot

The data rates of packet streams on the overlay network are subject to variations due

to the effect of network jitter, non-deterministic packet processing time in the overlay

UML network and other sources, it was important to take care of these variations in

our measurement and factor them into the selection of the appropriate confidence

threshold of the detection engine. Given a network traffic sample, the intrusion

detection system generates an output which is a confidence level that specifies the

probability of that sample being an attack or not. The approach we adopted was to use

the intrusion detection engine to sample the traffic at fixed time intervals. The

observed sample values resulted in a range of probability values which is a map of

confidence levels the detection system generated.

The result of a sampling session is shown in Figure 8.1 below. The information

provided by this plot indicates the allowance to be given to the confidence threshold

value due to the non-deterministic variation in good user traffic. This implies that

good network traffic could occupy this range of values, and thus should not be

signalled as an attack during the real network monitoring and intrusion response.

MSc DCNDS Group 4 - NAIRS

 71

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sample

C
o

n
fi

d
en

ce
 L

ev
el

Figure 8.1: Confidence Level Plot For Good Traffic

Figure 8.2 is the confidence level plot of the intrusion detection engine when the

traffic consisted of the good user traffic and attack traffic. With the overlap in the

range of values in the good and the attack traffic plot, shown in Figure 8.3, care is

required in the choice of the operating confidence threshold that would minimize the

percentage of false positive while maximizing the detection rate. Figure 8.4 shows the

ROC curve that determines the optimum operating point for the system.

MSc DCNDS Group 4 - NAIRS

 72

0.125

0.13

0.135

0.14

0.145

0.15

0.155

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sample

C
o

n
fi

d
en

ce
 le

ve
l

Figure 8.2: Confidence Level Plot With Attack Traffic

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sample

C
o

n
fi

d
en

ce
 L

ev
el

Attack

No attack

Figure 8.3: Confidence Level Plot Of Good And Attack Traffic Showing

Over laps

MSc DCNDS Group 4 - NAIRS

 73

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

False Positive Probability

D
et

ec
ti

o
n

 P
ro

b
ab

ili
ty

Figure 8.4: ROC Curve Showing Detection Probability With The Associated

Level Of False Positives

Figure 8.1 shows the variation in confidence level generated by the intrusion detection

system. Given that the parameters on which the IDS based its decision was the

average rate and the associated standard deviation, it is difficult to be absolutely

certain if a sample at any given period constitutes an attack or not. As a result, there

is an associated confidence level the IDS generates with its output. The confidence

level is zero if the sample is less than or equal to the average rate measured over the

profiling period, otherwise it would be a value between zero and one. Obviously,

samples with greater values than the average would generate a confidence level

greater than zero, but should be small enough not to trigger the response system.

In our tests, the normal traffic confidence level were between [0.0000, 0.1586], while

the attack traffic confidence plot shows confidence levels between [0.1343, 0.1510].

MSc DCNDS Group 4 - NAIRS

 74

The overlap between the confidence ranges of the good and attack traffic makes the

selection of the operating confidence level interesting.

As could be seen in Figure 8.3, the choice would affect the detection rate and an

associated rate of false positives generated by the IDS. This is reflected by the ROC

curve. The ROC curve shows that at 100% detection ratio, the minimum achievable

probability of false positive is 0.28. That is, for 100% detection there would be a

minimum of 28% false alarm rate. It could also be seen from the graph that there

corresponds three different detection rate that correspond to the 28% false alarm rate.

The meaning of this is that there are different confidence threshold levels that will

result in the same false alarm rate, but one of them has the maximum detection

probability.

For a system implementer expecting a 100% detection rate, the logical choice would

be the confidence threshold that minimises the false positives. This ROC chart will

generally help system implementers to select the best operating confidence threshold

that suits their system.

8.5 Measurement Technique for Active Response

8.5.1 Active Response Mechanism

The effectiveness of the active response system depends on the quality and the

accuracy of the detection system. An Analysis of the effectiveness of the detection

system has been presented. This section describes the result of the active response

system with the throughput variation of the good traffic before, during, and after the

attack on the network. The response agent listens for alerts from the detection agent

and responds using the pushback messengers that are located at strategic points within

the network.

MSc DCNDS Group 4 - NAIRS

 75

8.5.2 Measurement Technique

In order to observe the effect of the active response system on good and attack traffic,

we set up a measurement script that monitors data rate of the good and the attack

traffic at the attack target. To differentiate the two traffic types for the purpose of

measurement, the attack was generated from a source different from the good traffic.

As such, we could look at the source IP address to differentiate packets from the two

streams. The amount of bytes of data measured from the different sources were

logged for each network sample and plotted. This is shown in Figure 8.5. The good

traffic source consisted of ICMP echo request packets, while the attack traffic was a

ping flood. Another way to represent the effect of the ping flood on the good ping

request traffic is to find the percentage of good traffic that arrives at the target over

the sequence of network samples. This is shown in Figure 8.6.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sample

D
at

a
R

at
e

Attack traffic

Good traffic

Figure 8.5: Data Rate Var iation Of Good And Attack Traffic

MSc DCNDS Group 4 - NAIRS

 76

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Sample

G
o

o
d

 t
ra

ff
ic

(%
)

Figure 8.6: Percentage Of Good Traffic On The Network

Figure 8.5 showed the attack traffic flooding the network after the fourth sample. This

had the effect of degrading the data rate of the normal ping request on the network.

After the sixth sample the response system kicked in and applied rate-limiting

function on the network against icmp traffic destined for the target network. The

graph shows the attack could not get through as a result of the restriction on the traffic

profile placed on in-coming icmp traffic which was on average of one packet per

second with a maximum burst of 5 packets. This effect could also be seen on the good

ping traffic in its burstiness that was constrained.

Figure 8.6 showed a plot of the percentage of good traffic arriving at the destination

network. The percentage declined during the ping flood attack starting at sample four

but came back up again after the active response.

MSc DCNDS Group 4 - NAIRS

 77

9 Evaluation

This project started with the project title “mobile agent intrusion response system”.

With many IDS developed focusing on the detection of DoS attack on a network, our

group wanted to enhance the IDS by focusing on the development of a response

system as critical add-ons for current IDS. The idea was to use mobile agent for

intrusion detection and response in active networks. However as the project

progressed and more materials were gathered on previous and current research on

IDS, coupled with lack of certain functionalities in Snort, our IDS of choice, the

group shifted its direction towards developing its own IDS together with a new

response mechanism using the pushback mechanism.

There are several kinds of network attacks and it is impossible for one system to be

able to detect everything. One of the popular attacks, DoS attack is a very critical

threat and has been a big thorn to the flesh of many network administrators. The

attacker uses DoS to abuse network bandwidth resulting in denial of users to network

services. With the time constraints that the group had, and its security importance we

decided to concentrate on DoS attack.

Many of the limitation in many current IDS is because they are misuse-based systems.

This is true with Snort which detects intrusion by matching signature attacks that have

been programmed into it. Also, we found out that Snort does not do rate detection or

rate limiting on network traffic. This made it unsuitable for the purpose of rate

detection which was a key feature in our approach to using rate detection and limiting

as our response mechanism.

We have been able to develop two IDS using anomaly detection approach. One was a

rate-based IDS that detected intrusion by analysing deviations from the normal traffic

profile. Another IDS used Token Bucket implementation to detect intrusion. The

project tackled the DoS attack by treating them as traffic violation problem.

MSc DCNDS Group 4 - NAIRS

 78

We started with the Token Bucket implementation as our IDS. Token Bucket worked

together with Snort to create an IDS that detected intrusions given a traffic

characterisation derived from a linear bound arrival process algorithm. Token Bucket

operated with a burst rate and traffic arrival rate. In the duration of our project,

significant time was spent in getting the leaky bucket parameters. However, given the

time constraint that we had, the group decided to continue the project with a different

approach. Hence, the work on rate-based IDS.

After the two IDS works were finished, the group started working on the response

aspect of the NIRS and decided to use the pushback mechanism. We found many

benefits to using this mechanism. One of them was that pushback would be most

effective when there are routers at a position near to the target from where most of the

offending traffic will be arriving from. This suited our small test environment very

well.

Out of the four months allocated for this project, the group spent a month to figure out

the UML Networking and having it stabilized in our environment. UML is a new

subject to all four of the group members and we spent a great deal of our time trying

to understand the workings of it. We relished the opportunity to work on a new area

and in the end managed to overcome the challenges presented to us.

In the end, we believe that the Network Intrusion Detection and Response System that

we have developed is a very useful project. When used together with a pattern

matching IDS, it can become a more powerful tool to combat DoS attack.

9.1 Project Management

Group 4 was formed by four DCNDS students whose interests lie in the computer

security area. We are all from different cultural and education backgrounds which

ensures a good diversity of technical perspectives and approaches to problem-solving.

MSc DCNDS Group 4 - NAIRS

 79

From the very beginning, all four of us understood the aim of this project and decided

to divide the tasks equally among all four of us depending of the strengths and the

weaknesses of the individuals. We would take advantage of the strengths we had and

assists others with their weaknesses. At the start, the group agreed to adopt a flat

team structure in which one person will champion an area of responsibility in the

project but have others involve in every aspect of the project.

Table 9.1: Group Structure

Adedayo Adetoye Technical

Andy Choi Organization

Marina Md. Arshad Documentation

Olufemi Soretire External Liaisons

The group worked in the department’s lab everyday. The day started with daily

meetings at 11:00 am. Also, we met weekly with our supervisor Dr. Steve Hailes to

inform him of our progress and get input from him. It is given that with four persons

in a group with their own ideas and way of doing things, there would be small

conflicts and disagreement. During our lengthy discussions, each and everyone had

the right to voice out their ideas and concern but in the end, everyone will agree upon

one idea.

Because we work together all the time and everyday in the lab, we managed to resolve

all setbacks quickly without major glitches. Integration and final testing was

organised and done together and the group managed to finish the work satisfactorily.

MSc DCNDS Group 4 - NAIRS

 80

10 Future Work

To build on the success we had so far, we had already identified several directions

that would warrant further investigation.

10.1 Rate-based Detection

First, we believe that we would improve the granularity during the profiling phrase.

Our current implementation polled for information roughly every 10 seconds.

Consider a 10 Mbps link. At peak capacity, about 12.5 Mbytes could have passed

through the network during that time interval. The aggregation here is quite large.

Also, timing in Linux/Unix was not very accurate.

To improve this aspect, we could look into using some form of asynchronous

notification of packet arrival. Perhaps, we could take advantage of the iptables

extension framework to do so. Furthermore, any burst occurred during that interval

would not be characterised towards to traffic profile because it had been aggregated

into the aggregated rate. Already, we had started to study the possibility of replacing

aggregated rate with a LBAP/token bucket descriptor.

However, we could look even further for other more advanced, and probably

experimental, form of traffic descriptor. Another dimension of granularity we would

improve would be that of different traffic classes. Currently, we profile network

traffic at protocol level. It might be useful, for some protocol, to further classify

traffic within that protocol. For example, it would be useful to isolate TCP-SYN, from

other TCP traffic to better detect TCP-SYN flood.

Secondly, it is not unusual for network traffic to fluctuate with time of day or week

due to human habits and procedures. We could improve our detection system by

MSc DCNDS Group 4 - NAIRS

 81

using time-variant parameters to reflect such fluctuation. Using principles of artificial

intelligence, the profiling agent could learn about such time dependent variables and

factor it in to the detection system for better resolution of its detection mechanism.

10.2 Response

As we improve the granularity of the detection system, the response components must

also keep up to the improvements made. Given our response mechanism was based on

message between routers, there would be security implications. For example, how

would routers authenticate with one another? How would the routers check the

integrity of the messages it received? IP Security (IPSec) might provide some

solution, but it also introduced the problem of implementing a secure domain for

every router. Furthermore, how should the certificates be configured? Should that be

on a host-by-host basis or interface-by-interface basis? If security issues fully

addressed, this automatic response mechanism, we proposed, would in fact be a big

security liability. Quite the opposite we would like to see.

The automated response system involved changes the way traffic flowed in the

network through automated provisioning. While this would be helpful in defence

against DOS attack in our experimental environment, we need to further study if such

scheme could be scaled up. Equally importantly is how the traffic dynamics would be

affected by such changes. Would the routers attempt the re-route the traffic along

another path so that our “defence” for network was, in fact, circumcised by the

network itself?

Another issue would should this automated response be managed. In order to be

deployed in a live system, administrator would like to be able to have some control

over this scheme. For example, he may decide that some routers not to be part of the

automatic response infrastructure. A management plane was lacking.

MSc DCNDS Group 4 - NAIRS

 82

10.3 Token Bucket

First, we need to implement the profiler and linked it with the components we have

developed. Then, we need to test it under the same environment to observe if it would

offer any advantage to the aggregated rate approach. We could consider implementing

the profiler within the snort framework again. Furthermore, as we pointed out in

chapter 4, token bucket descriptor was not capable to describe very bursty traffic.

Similar to our proposal for rate-based profiler, we could adopt some AI techniques

here to characterise network traffic as several profiles where the burst within each

profile was relatively small.

Since the token bucket verifier, implemented as a snort plugin, involved floating

pointing mathematics, we would study the effect of such rather complicated logics on

performance. We would like to measure the number of CPU cycles required to

process each packet. It would also be our interest to benchmark what the maximum

incoming packet this implementation could cope with.

As we pointed in chapter 6, tc currently does not provide rate limiting functionality,

we should explore how rate limiting, based on token bucket descriptor, could be

archived.

MSc DCNDS Group 4 - NAIRS

 83

11 Conclusion

Traffic profile-based approach could be used as a defensive measure against DoS-type

network attack. In this report, we have proposed two different candidates traffic

characterisation techniques: aggregate rate, and token bucket descriptor. We

successfully implemented an IDS based on the aggregated rate, and made some

progress towards supporting token bucket descriptor. This system was tested and

validated in an overlay network which we built using UML. While a lot of remains to

be investigated, the results from our analysis pointed us towards a very promising

direction.

The project result aside, we gained enormous experience in the internal work of the

networking subsystem on Linux systems, as well as different aspects of network

intrusions detection. Finally, we were able to applied we have learned from the

different course modules in the course of the project.

MSc DCNDS Group 4 - NAIRS

 84

References

[1] S. M. Bellovin J. Ioannidis. Implementing pushback: Router-based defense

DDoS attacks. in Network and Distributed System Security Symposium.

February 2002. Catamaran Resort Hotel San Diego, California.

[2] J.P. Anderson, Computer Security Threat Monitoring and Surveillance. April

1980, James P. Anderson Co.

[3] D.E. Denning, An Intrusion-detection Model. IEEE Transaction on Software

Engineering, February 1987. SE-13(2): p. 222-232.

[4] D. Duggan T. Draelos, M. Collins and D. Wunsch. Adaptive Critic Design for

Host-Based Intrusion Detection. in 2002 International Joint Conference on

Neural Networks. May 2002.

[5] F. Roli G. Giacinto, and L. Didaci, Fusion of Multiple Classifiers for Intrusion

Detection in Computer Networks.

[6] T. Hong D. Joo, I. Han, The neural network models for IDS based on the

asymmetric costs of false negative errors and false positive errors. Expert

Systems with Applications, 2003: p. 69-75.

[7] J. Haile J. Larsen, Understanding IDS Active Response Mechanisms,

SecurityFocus, January 29, 2002, http://www.securityfocus.com/infocus/1540

[8] SPADE, Silicon Defense, http://www.silicondefense.com/software/spice

[9] M. Bendre R. Sekar, D. Dhurjati, P. Bollineni. A Fast Automaton-based

Method for Detecting Anomalous Program Behaviors. in 2001 IEEE

Symposium on Security and Privacy.

[10] T.F. Lunt D. Anderson, H.S. Javitz, A.Tamaru, and A.Valdes, Detecting

unusual program behavior using the statistical component of the Next-

generation Intrusion Detection Expert System (NIDES), in Technical Report

SRI-CSL-95-06. May 1995.

[11] P.K. Chan M. Mahoney, PHAD: Packet-Header Anomaly Detection for

Identifying Hostile Network Traffic. 2001-04, Florida Tech. p. 376-385.

MSc DCNDS Group 4 - NAIRS

 85

[12] P.K. Chan M. Mahoney. Learning Nonstationary Models of Normal Network

Traffic for Detecting Novel Attacks. in Proceeding SIGKDD. 2002. Edmonton,

Alberta, Canada.

[13] P.K. Chan M. Mahoney, Learning Models of Network Traffic for Detecting

Novel Attacks. 2002, Florida Tech.

[14] A. Gupta R. Sekar, J. Frullo, T. Shanbhad, A. Tiwari, H. Yang, and S. Zhou.

Specification-based Anomaly Detection: A New Approach for Detecting

Network Intrusions. in Proceedings of the ACM Conference on Computer and

Communications Security 2002. November 2002.

[15] S. J. Stolfo W. Lee, and K. W. Mok. Mining in a data-flow environment:

Experience in network intrusion detection. in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining

(KDD-99). 1999.

[16] S. J. Stolfo W. Lee, A framework for constructing features and models for

Intrusion Detection System.

[17] A. Christie J. Allen, W. Fithen, et. al., State of the Practice of Intrusion

Detection Technologies, in CMU/SEI-99-TR-028. 1999.

[18] K. Das, Protocol Anomaly Detection for Network-based Intrusion Detection,

in GSEC Practical Assignment Version 1.2f.

[19] Keshav, Engineering Computer Networks. 1999.

[20] Turner, New Direction in Communications. IEEE Communication Magazine,

October 1986. 25(10): p. 8015.

[21] P. Varaiya S. Low, A simple theory of traffic and resource allocation in ATM.

In the proceedings of GLOBECOM '91, December 1991. volume 3: p. 1633-

1637.

[22] A. Varma C. Tryfonas, S. Varma. Efficient Algorithms for Exact Computation

of the Loss Curve of Video Source. in Proceedings of Packet Video'99. 1999.

[23] ping(8) - Linux man page, http://www.die.net/doc/linux/man/man8/ping8.html

[24] Differentiatied Service on Linux, http://diffserv.sourceforge.net/

[25] tcpdump - dump traffic on a network man page,

http://www.tcpdump.org/tcpdump_man.html

MSc DCNDS Group 4 - NAIRS

 86

[26] R. Sahita K. Chan, S. Hahn, K. McCloghrie, Differentiatied Services Quality

of Service Policy Information Base. March 2003.

[27] Leonardo Balliache, Practical QoS, http://opalsoft.net/qos/

[28] Roelof Jonkman, NetSpec, http://ittc.ku.edu/netspec/

[29] NetPIPE, A Network Protocol Independent Performance Evaluator,

http://www.scl.ameslab.gov/netpipe/

[30] R. Jones, Netperf, http://www.netperf.org/netperf/NetperfPage.html

[31] Honeynet Project, http://project.honeynet.org/

[32] UML, The User-mode Linux Kernel Home Page, http://user-mode-

linux.sourceforge.net/

[33] Testing Intrusion Dectection Systems, E.B. Lennon, Editor. July 24th 2003,

Information Technology Laboratory, National Institute of Standards and

Technology.

MSc DCNDS Group 4 - NAIRS

 87

AAPPPPEENNDDII XX AA:: CCoommppii ll iinngg tthhee UUsseerr MM ooddee LL iinnuuxx
kkeerr nneell aanndd mmoodduulleess

Compiling the Kernel

Compiling the user mode kernel is just like compiling any other kernel. Let's go
through the steps, using 2.4.0-prerelease (current as of this writing) as an example:

1. Download the latest UML patch from the download page (http://user-
mode-linux.sourceforge.net/dl-sf.html). In this example, the file is uml-
patch-2.4.0-prerelease.bz2.

2. Download the matching kernel from your favourite kernel mirror, such
as: http://ftp.ca.kernel.org/linux/kernel/
http://ftp.ca.kernel.org/linux/kernel/ .

3. Make a directory and unpack the kernel into it.

host% mkdir ~/uml

host% cd ~/uml

host% tar -xjvf linux-2.4.0-prerelease.tar.bz2

4. Apply the patch using

host% cd ~/uml/linux

host% bzcat uml-patch-2.4.0-prerelease.bz2 | patch -p1

5. Run your favorite config; `make xconfig ARCH=um' is the most
convenient. `make config ARCH=um' and 'make menuconfig
ARCH=um' will work as well. The defaults will give you a useful
kernel. If you want to change something, go ahead, it probably won't
hurt anything.

Note: If the host is configured with a 2G/2G address space split rather
than the usual 3G/1G split, then the packaged UML binaries will not
run. They will immediately segfault.

Finish with `make linux ARCH=um': the result is a file called `linux' in
the top directory of your source tree. You may notice that the final
binary is pretty large (many 10's of megabytes for a debuggable UML).
This is almost entirely symbol information. The actual binary is
comparable in size to a native kernel. You can run that huge binary,

MSc DCNDS Group 4 - NAIRS

 88

and only the actual code and data will be loaded into memory, so the
symbols only consume disk space unless you are running UML under
gdb. You can strip UML:

host% strip linux

to see the true size of the UML kernel.

Make sure that you don't build this kernel in /usr/src/linux. On some distributions,
/usr/include/asm is a link into this pool. The user-mode build changes the other end of
that link, and things that include <asm/anything.h> stop compiling.

The sources are also available from cvs at the project's cvs page , which has directions
on getting the sources. You can also browse the CVS pool from there.

If you get the CVS sources, you will have to check them out into an empty directory.
You will then have to copy each file into the corresponding directory in the
appropriate kernel pool.

If you don't have the latest kernel pool, you can get the corresponding user-mode
sources with

host % cvs co - r v_2_3_x l i nux

where 'x' is the version in your pool. Note that you will not get the bug fixes and
enhancements that have gone into subsequent releases.

If you build your own kernel, and want to boot it from one of the filesystems
distributed from this site, then, in nearly all cases, devfs must be compiled into the
kernel and mounted at boot time. The exception is the tomsrtbt filesystem. For this,
devfs must either not be in the kernel at all, or "devfs=nomount" must be on the
kernel command line. Any disagreement between the kernel and the filesystem being
booted about whether devfs is being used will result in the boot getting no further than
single-user mode.

If you don't want to use devfs, you can remove the need for it from a filesystem by
copying /dev from someplace, making a bunch of /dev/ubd devices:

UML# for i in 0 1 2 3 4 5 6 7; do mknod ubd$i b 98 $[$i * 16]; done
and changing /etc/fstab and /etc/inittab to refer to the non-devfs devices.

Compiling and Installing kernel Modules

UML modules are built in the same way as the native kernel (with the exception of
the 'ARCH=um' that you always need for UML):

MSc DCNDS Group 4 - NAIRS

 89

host % make modul es ARCH=um
Any modules that you want to load into this kernel need to be built in the user-mode
pool. Modules from the native kernel won't work. If you notice that the modules you
get are much larger than they are on the host, see the note above about the size of the
final UML binary. You can install them by using ftp or something to copy them into
the virtual machine and dropping them into /lib/modules/`uname -r`. You can also get
the kernel build process to install them as follows:

1. with the kernel not booted, mount the root filesystem in the top level of
the kernel pool:

host% mount root_fs mnt -o loop

2. run

host% make modules_install INSTALL_MOD_PATH=`pwd`/mnt
ARCH=um

3. unmount the filesystem

host% umount mnt

4. boot the kernel on it

If you can't mount the root filesystem on the host for some reason (like it's a COW
file), then an alternate approach is to mount the UML kernel tree from the host into
the UML with hostfs and run the modules_install inside UML:

1. With UML booted, mount the host kernel tree inside UML at the same
location as on the host:

UML# mount none -t hostfs path to UML pool -o path to UML pool

2. Run make modules_install:

UML# cd path to UML pool ; make modules_install

The depmod at the end may complain about unresolved symbols because there is an
incorrect or missing System.map installed in the UML filesystem. This appears to be
harmless. insmod or modprobe should work fine at this point.

When the system is booted, you can use insmod as usual to get the modules into the
kernel. A number of things have been loaded into UML as modules, especially
filesystems and network protocols and filters, so most symbols which need to be
exported probably already are. However, if you do find symbols that need exporting,
let us know, and they'll be "taken care of".

MSc DCNDS Group 4 - NAIRS

 90

If you try building an external module against a UML tree, you will find that it doesn't
compile because of missing includes. There are less obvious problems with the
CFLAGS that the module Makefile or script provides which would make it not run
even if it did build. To get around this, you need to provide the same CFLAGS that
the UML kernel build uses.

A reasonably slick way of getting the UML CFLAGS is

cd uml-tree ; make script 'SCRIPT=@echo $(CFLAGS)' ARCH=um
If the module build process has something that looks like
$(CC) $(CFLAGS) file
then you can define CFLAGS in a script like this
CFLAGS=`cd uml-tree ; make script 'SCRIPT=@echo $(CFLAGS)' ARCH=um`
and like this in a Makefile
CFLAGS=$(shell cd uml-tree ; make script 'SCRIPT=@echo $$(CFLAGS)'
ARCH=um)

MSc DCNDS Group 4 - NAIRS

 91

AAPPPPEENNDDII XX BB:: UUMM LL NNeettwwoorr kkiinngg

Setting up the network

This page describes how to set up the various transports and to provide a UML
instance with network access to the host, other machines on the local net, and the rest
of the net.

As of 2.4.5, UML networking has been completely redone to make it much easier to
set up, fix bugs, and add new features.

There is a new helper, uml_net, which does the host setup that requires root
privileges.

There are currently five transport types available for a UML virtual machine to
exchange packets with other hosts:

• ethertap
• TUN/TAP
• Multicast
• a switch daemon
• slip
• slirp
• pcap

The TUN/TAP, ethertap, slip, and slirp transports allow a UML instance to exchange
packets with the host. They may be directed to the host or the host may just act as a
router to provide access to other physical or virtual machines.

The pcap transport is a synthetic read-only interface, using the libpcap binary to
collect packets from interfaces on the host and filter them. This is useful for building
preconfigured traffic monitors or sniffers.

The daemon and multicast transports provide a completely virtual network to other
virtual machines. This network is completely disconnected from the physical network
unless one of the virtual machines on it is acting as a gateway.

With so many host transports, which one should you use? Here's when you should use
each one:

• ethertap - if you want access to the host networking and it is running 2.2
• TUN/TAP - if you want access to the host networking and it is running 2.4.

Also, the TUN/TAP transport is able to use a preconfigured device, allowing it
to avoid using the setuid uml_net helper, which is a security advantage.

• Multicast - if you want a purely virtual network and you don't want to set up
anything but the UML

MSc DCNDS Group 4 - NAIRS

 92

• a switch daemon - if you want a purely virtual network and you don't mind
running the daemon in order to get somewhat better performance

• slip - there is no particular reason to run the slip backend unless ethertap and
TUN/TAP are just not available for some reason

• slirp - if you don't have root access on the host to setup networking, or if you
don't want to allocate an IP to your UML

• pcap - not much use for actual network connectivity, but great for monitoring
traffic on the host

Ethertap is available on 2.4 and works fine. TUN/TAP is preferred to it because it has
better performance and ethertap is officially considered obsolete in 2.4. Also, the root
helper only needs to run occasionally for TUN/TAP, rather than handling every
packet, as it does with ethertap. This is a slight security advantage since it provides
fewer opportunities for a nasty UML user to somehow exploit the helper's root
privileges.

General setup

First, you must have the virtual network enabled in your UML. If are running a
prebuilt kernel from this site, everything is already enabled. If you build the kernel
yourself, under the "Network device support" menu, enable "Network device
support", and then the three transports.

The next step is to provide a network device to the virtual machine. This is done by
describing it on the kernel command line. The general format is

eth<n>=<transpor t>,<transpor t args>
For example, a virtual ethernet device may be attached to a host ethertap device as
follows:
eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254
This sets up eth0 inside the virtual machine to attach itself to the host /dev/tap0,
assigns it an ethernet address, and assigns the host tap0 interface an IP address.

Note that the IP address you assign to the host end of the tap device must be different
than the IP you assign to the eth device inside UML. If you are short on IPs and don't
want to comsume two per UML, then you can reuse the host's eth IP address for the
host ends of the tap devices. Internally, the UMLs must still get unique IPs for their
eth devices. You can also give the UMLs non-routable IPs (192.168.x.x or 10.x.x.x)
and have the host masquerade them. This will let outgoing connections work, but
incoming connections won't without more work, such as port forwarding from the
host.

Also note that when you configure the host side of an interface, it is only acting as a
gateway. It will respond to pings sent to it locally, but is not useful to do that since it's
a host interface. You are not talking to the UML when you ping that interface and get
a response.

MSc DCNDS Group 4 - NAIRS

 93

You can also add devices to a UML and remove them at runtime. See the mconsole
page for details.

The sections below describe this in more detail.

Once you've decided how you're going to set up the devices, you boot UML, log in,
configure the UML side of the devices, and set up routes to the outside world. At that
point, you will be able to talk to any other machines, physical or virtual, on the net.

If ifconfig inside UML fails and the network refuses to come up, run 'dmesg' to see
what ended up in the kernel log. That will usually tell you what went wrong.

Userspace daemons

You will likely need the setuid helper, or the switch daemon, or both. They are both
installed with the RPM and deb, so if you've installed either, you can skip the rest of
this section.

If not, then you need to check them out of CVS , build them, and install them. The
helper is uml_net, in CVS /tools/uml_net, and the daemon is uml_switch, in CVS
/tools/uml_router. They are both built with a plain 'make'. Both need to be installed in
a directory that's in your path - /usr/bin is recommend. On top of that, uml_net needs
to be setuid root.

Specifying ethernet addresses

Below, you will see that the TUN/TAP, ethertap, and daemon interfaces allow you to
specify hardware addresses for the virtual ethernet devices. This is generally not
necessary. If you don't have a specific reason to do it, you probably shouldn't. If one is
not specified on the command line, the driver will assign one based on the device IP
address. It will provide the address fe:fd:nn:nn:nn:nn where nn.nn.nn.nn is the device
IP address. This is nearly always sufficient to guarantee a unique hardware address for
the device. A couple of exceptions are:

• Another set of virtual ethernet devices are on the same network and
they are assigned hardware addresses using a different scheme which
may conflict with the UML IP address-based scheme

• You aren't going to use the device for IP networking, so you don't
assign the device an IP address

If you let the driver provide the hardware address, you should make sure that the
device IP address is known before the interface is brought up. So, inside UML, this
will guarantee that:
UML# ifconfig eth0 192.168.0.250 up
If you decide to assign the hardware address yourself, make sure that the first byte of
the address is even. Addresses with an odd first byte are broadcast addresses, which
you don't want assigned to a device.

MSc DCNDS Group 4 - NAIRS

 94

UML inter face setup
Once the network devices have been described on the command line, you should boot
UML and log in.

The first thing to do is bring the interface up:

UML# ifconfig ethn ip-address up
You should be able to ping the host at this point.

To reach the rest of the world, you should set a default route to the host:

UML# route add default gw host ip
Again, with host ip of 192.168.0.4:
UML# route add default gw 192.168.0.4
This page used to recommend setting a network route to your local net. This is wrong,
because it will cause UML to try to figure out hardware addresses of the local
machines by arping on the interface to the host. Since that interface is basically a
single strand of ethernet with two nodes on it (UML and the host) and arp requests
don't cross networks, they will fail to elicit any responses. So, what you want is for
UML to just blindly throw all packets at the host and let it figure out what to do with
them, which is what leaving out the network route and adding the default route does.

Note: If you can't communicate with other hosts on your physical ethernet, it's
probably because of a network route that's automatically set up. If you run 'route -n'
and see a route that looks like this:

Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

with a mask that's not 255.255.255.255, then replace it with a route to your host:
UML# route del -net 192.168.0.0 dev eth0 netmask 255.255.255.0
UML# route add -host 192.168.0.4 dev eth0
This, plus the default route to the host, will allow UML to exchange packets with any
machine on your ethernet.

Multicast
The simplest way to set up a virtual network between multiple UMLs is to use the
mcast transport. This was written by Harald Welte and is present in UML version
2.4.5-5um and later. Your system must have multicast enabled in the kernel and there
must be a multicast-capable network device on the host. Normally, this is eth0, but if
there is no ethernet card on the host, then you will likely get strange error messages
when you bring the device up inside UML.

To use it, run two UMLs with

MSc DCNDS Group 4 - NAIRS

 95

eth0=mcast
on their command lines. Log in, configure the ethernet device in each machine with
different IP addresses:
UML1# ifconfig eth0 192.168.0.254
UML2# ifconfig eth0 192.168.0.253
and they should be able to talk to each other.

The full set of command line options for this transport are

ethn=mcast,ethernet address,multicast address,multicast port,ttl
Harald's original README is here and explains these in detail, as well as some other
issues.

TUN/TAP with the uml_net helper

TUN/TAP is the preferred mechanism on 2.4 to exchange packets with the host. The

TUN/TAP backend has been in UML since 2.4.9-3um.

The easiest way to get up and running is to let the setuid uml_net helper do the host

setup for you. This involves insmod-ing the tun.o module if necessary, configuring

the device, and setting up IP forwarding, routing, and proxy arp. If you are new to

UML networking, do this first. If you're concerned about the security implications of

the setuid helper, use it to get up and running, then read the next section to see how to

have UML use a preconfigured tap device, which avoids the use of uml_net.

If you specify an IP address for the host side of the device, the uml_net helper will do

all necessary setup on the host - the only requirement is that TUN/TAP be available,

either built in to the host kernel or as the tun.o module. The format of the command

line switch to attach a device to a TUN/TAP device is

eth<n>=tuntap,,,<host IP address>

For example, this argument will attach the UML's eth0 to the next available tap

device, assign the IP address 192.168.0.254 to the host side of the tap device, and

assign an ethernet address to it based on the IP address assigned to it by ifconfig

inside UML.

eth0=tuntap,,,192.168.0.254

MSc DCNDS Group 4 - NAIRS

 96

If you using the uml_net helper to set up the host side of the networking, as in this

example, note that changing the UML IP address will cause uml_net to change the

host routing and arping to match. This is one reason you should not be using uml_net

if there is any possibility that the user inside the UML may be unfriendly. This feature

is convenient, but can be used to make the UML pretend to be something like your

name server or mail server, and the host will steal packets intended for those servers

and forward them to the UML. See the next section for setting up networking in a

secure manner.

There are a couple potential problems with running the TUN/TAP transport on a 2.4

host kernel

• TUN/TAP seems not to work on 2.4.3 and earlier. Upgrade the host
kernel or use the ethertap transport.

• With an upgraded kernel, TUN/TAP may fail with
• File descriptor in bad state

This is due to a header mismatch between the upgraded kernel and the
kernel that was originally installed on the machine. The fix is to make
sure that /usr/src/linux points to the headers for the running kernel.

These were pointed out by Tim Robinson in this uml-user post .

TUN/TAP with a preconfigured tap device

If you prefer not to have UML use uml_net (which is somewhat insecure), with UML
2.4.17-11, you can set up a TUN/TAP device beforehand. The setup needs to be done
as root, but once that's done, there is no need for root assistance. Setting up the device
is done as follows:

• Create the device with tunctl (available from the UML utilities tarball)

host# tunctl -u uid

where uid is the user id or username that UML will be run as. This will
tell you what device was created.

• Configure the device IP (change IP addresses and device name to suit)

MSc DCNDS Group 4 - NAIRS

 97

host# ifconfig tap0 192.168.0.254 up

• Set up routing and arping if desired - this is my recipe, there are other
ways of doing the same thing

host# bash -c 'echo 1 > /proc/sys/net/ipv4/ip_forward'

host# route add -host 192.168.0.253 dev tap0

host# bash -c 'echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp'

host# arp -Ds 192.168.0.253 eth0 pub

Note that this must be done every time the host boots - this
configuration is not stored across host reboots. So, it's probably a good
idea to stick it in an rc file. An even better idea would be a little utility
which reads the information from a config file and sets up devices at
boot time.

• Rather than using up two IPs and ARPing for one of them, you can
also provide direct access to your LAN by the UML by using a bridge.

host# brctl addbr br0

host# ifconfig eth0 0.0.0.0 promisc up

host# ifconfig tap0 0.0.0.0 promisc up

host# ifconfig br0 192.168.0.1 netmask 255.255.255.0 up

host# brctl stp br0 off

host# brctl setfd br0 1

host# brctl sethello br0 1

host# brctl addif br0 eth0

host# brctl addif br0 tap0

Note that 'br0' should be setup using ifconfig with the existing IP
address of eth0, as eth0 no longer has its own IP.

• Also, the /dev/net/tun device must be writable by the user running
UML in order for the UML to use the device that's been configured for
it. The simplest thing to do is

MSc DCNDS Group 4 - NAIRS

 98

host# chmod 666 /dev/net/tun

Making it world-writeable looks bad, but it seems not to be exploitable
as a security hole. However, it does allow anyone to create useless tap
devices (useless because they can't configure them), which is a DOS
attack. A somewhat more secure alternative would to be to create a
group containing all the users who have preconfigured tap devices and
chgrp /dev/net/tun to that group with mode 664 or 660.

• Once the device is set up, run UML with 'eth0=tuntap,device name'
(i.e. 'eth0=tuntap,tap0') on the command line (or do it with the
mconsole config command).

• Bring the eth device up in UML and you're in business.

If you don't want that tap device any more, you can make it non-persistent with
host# tunctl -d tap device
Finally, tunctl has a -b (for brief mode) switch which causes it to output only the
name of the tap device it created. This makes it suitable for capture by a script:
host# TAP=`tunctl -u 1000 -b`

Ether tap

Ethertap is the general mechanism on 2.2 for userspace processes to exchange packets
with the kernel.

To use this transport, you need to describe the virtual network device on the UML
command line. The general format for this is

eth<n>=ethertap,<device>,<ethernet address>,<host IP address>
So, the previous example
eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254
attaches the UML eth0 device to the host /dev/tap0, assigns it the ethernet address
fe:fd:0:0:0:1, and assigns the IP address 192.168.0.254 to the host side of the tap
device.

The tap device is mandatory, but the others are optional. If the ethernet address is
omitted, one will be assigned to it.

The presence of the tap IP address will cause the helper to run and do whatever host
setup is needed to allow the virtual machine to communicate with the outside world.
If you're not sure you know what you're doing, this is the way to go.

If it is absent, then you must configure the tap device and whatever arping and routing
you will need on the host. However, even in this case, the uml_net helper still needs
to be in your path and it must be setuid root if you're not running UML as root. This is
because the tap device doesn't support SIGIO, which UML needs in order to use
something as a source of input. So, the helper is used as a convenient asynchronous

MSc DCNDS Group 4 - NAIRS

 99

IO thread. If you're using the uml_net helper, you can ignore the following host setup
- uml_net will do it for you. You just need to make sure you have ethertap available,
either built in to the host kernel or available as a module.

If you want to set things up yourself, you need to make sure that the appropriate /dev
entry exists. If it doesn't, become root and create it as follows:

mknod /dev/tap<minor> c 36 <minor> + 16
For example, this is how to create /dev/tap0:
mknod /dev/tap0 c 36 0 + 16
You also need to make sure that the host kernel has ethertap support. If ethertap is
enabled as a module, you apparently need to insmod ethertap once for each ethertap
device you want to enable. So,
host# insmod ethertap
will give you the tap0 interface. To get the tap1 interface, you need to run
host# insmod ethertap unit=1 -o ethertap1

The switch daemon
Note: This is the daemon formerly known as uml_router, but which was renamed so
the network weenies of the world would stop growling at me.

The switch daemon, uml_switch, provides a mechanism for creating a totally virtual
network. By default, it provides no connection to the host network (but see -tap,
below).

The first thing you need to do is run the daemon. Running it with no arguments will
make it listen on a default pair of unix domain sockets.

If you want it to listen on a different pair of sockets, use

-unix control socket data socket

If you want it to act as a hub rather than a switch, use
-hub

If you want the switch to be connected to host networking (allowing the umls to get
access to the outside world through the host), use

-tap tap0

Note that the tap device must be preconfigured (see "TUN/TAP with a preconfigured
tap device", above). If you're using a different tap device than tap0, specify that
instead of tap0.

uml_switch can be backgrounded as follows

host% uml_switch [options] < /dev/null > /dev/null

MSc DCNDS Group 4 - NAIRS

 100

The reason it doesn't background by default is that it listens to stdin for EOF. When it
sees that, it exits.

The general format of the kernel command line switch is

ethn=daemon,ethernet address,socket type,control socket,data socket
You can leave off everything except the 'daemon'. You only need to specify the
ethernet address if the one that will be assigned to it isn't acceptable for some reason.
The rest of the arguments describe how to communicate with the daemon. You should
only specify them if you told the daemon to use different sockets than the default. So,
if you ran the daemon with no arguments, running the UML on the same machine
with
eth0=daemon
will cause the eth0 driver to attach itself to the daemon correctly.

Slip

Slip is another, less general, mechanism for a process to communicate with the host
networking. In contrast to the ethertap interface, which exchanges ethernet frames
with the host and can be used to transport any higher-level protocol, it can only be
used to transport IP.

The general format of the command line switch is

ethn=slip,slip IP
The slip IP argument is the IP address that will be assigned to the host end of the slip
device. If it is specified, the helper will run and will set up the host so that the virtual
machine can reach it and the rest of the network.

There are some oddities with this interface that you should be aware of. You should
only specify one slip device on a given virtual machine, and its name inside UML will
be 'umn', not 'eth0' or whatever you specified on the command line. These problems
will be fixed at some point.

Slirp

slirp uses an external program, usually /usr/bin/slirp, to provide IP only networking
connectivity through the host. This is similar to IP masquerading with a firewall,
although the translation is performed in user-space, rather than by the kernel. As slirp
does not set up any interfaces on the host, or changes routing, slirp does not require
root access or setuid binaries on the host.

The general format of the command line switch for slirp is:

ethn=slirp,ethernet address,slirp path

MSc DCNDS Group 4 - NAIRS

 101

The ethernet address is optional, as UML will set up the interface with an ethernet
address based upon the initial IP address of the interface. The slirp path is generally
/usr/bin/slirp, although it will depend on distribution.

The slirp program can have a number of options passed to the command line and we
can't add them to the UML command line, as they will be parsed incorrectly. Instead,
a wrapper shell script can be written or the options inserted into the ~/.slirprc file.
More information on all of the slirp options can be found in its man pages.

The eth0 interface on UML should be set up with the IP 10.2.0.15, although you can
use anything as long as it is not used by a network you will be connecting to. The
default route on UML should be set to use 'eth0' without a gateway IP:

UML# route add default dev eth0
slirp provides a number of useful IP addresses which can be used by UML, such as
10.0.2.3 which is an alias for the DNS server specified in /etc/resolv.conf on the host
or the IP given in the 'dns' option for slirp.

Even with a baudrate setting higher than 115200, the slirp connection is limited to
115200. If you need it to go faster, the slirp binary needs to be compiled with
FULL_BOLT defined in config.h.

pcap

The pcap transport is attached to a UML ethernet device on the command line or with
uml_mconsole with the following syntax:

ethn=pcap,host interface,filter expression,option1,option2
The expression and options are optional.

The interface is whatever network device on the host you want to sniff. The
expression is a pcap filter expression, which is also what tcpdump uses, so if you
know how to specify tcpdump filters, you will use the same expressions here. The
options are up to two of 'promisc', 'nopromisc', 'optimize', 'nooptimize'. 'promisc' and
'nopromisc' control whether pcap puts the host interface into promiscuous mode.
'optimize' and 'nooptimize' control whether the pcap expression optimizer is used.

Example:

eth0=pcap,eth0,tcp
eth1=pcap,eth0,!tcp
will cause the UML eth0 to emit all tcp packets on the host eth0 and the UML eth1 to
emit all non-tcp packets on the host eth0.

Setting up the host yourself
If you don't specify an address for the host side of the ethertap or slip device, UML
won't do any setup on the host. So this is what is needed to get things working (the

MSc DCNDS Group 4 - NAIRS

 102

examples use a host-side IP of 192.168.0.251 and a UML-side IP of 192.168.0.250 -
adjust to suit your own network):

• The device needs to be configured with its IP address. Tap devices are
also configured with an mtu of 1484. Slip devices are configured with
a point-to-point address pointing at the UML ip address.

host# ifconfig tap0 arp mtu 1484 192.168.0.251 up

host# ifconfig sl0 192.168.0.251 pointopoint 192.168.0.250 up

• If a tap device is being set up, a route is set to the UML IP.

UML# route add -host 192.168.0.250 gw 192.168.0.251

• To allow other hosts on your network to see the virtual machine, proxy
arp is set up for it.

host# arp -Ds 192.168.0.250 eth0 pub

• Finally, the host is set up to route packets.

host# echo 1 > /proc/sys/net/ipv4/ip_forward

MSc DCNDS Group 4 - NAIRS

 103

AAPPPPEENNDDII XX CC:: UUMM LL UUtt ii ll ii tt iieess

Compiling and installing UML utilities

Many features of the UML kernel require a user-space helper program, so a
uml_utilities package is distributed separately from the kernel patch which provides
these helpers. Included within this is:

• port-helper - Used by consoles which connect to xterms or ports
• tunctl - Configuration tool to create and delete tap devices
• uml_net - Setuid binary for automatic tap device configuration
• uml_switch - User-space virtual switch required for daemon transport

The uml_utilities tree is compiled with:
host# make && make install
Note that UML kernel patches may require a specific version of the uml_utilities
distribution. If you don't keep up with the mailing lists, ensure that you have the latest
release of uml_utilities if you are experiencing problems with your UML kernel,
particularly when dealing with consoles or command-line switches to the helper
programs

MSc DCNDS Group 4 - NAIRS

 104

AAPPPPEENNDDII XX DD:: VVii rr ttuuaall NNeettwwoorr kk SShheell ll SSccrr iippttss

11.. PPhhyyssiiccaall LL iinnuuxx HHoosstt SSccrr iippttss

Super-script used to create the overlay UML network #

#!/bin/bash

uml_start_usage()
{
 echo "Usage: ./uml_start [-c | -h] [-a | -u | -v <subnet_count> <nodes_per_subnet>]
"
 echo " -a for attacker network"
 echo " -c for the core network"
 echo " -u for user network"
 echo " -v for victim network"
 echo " -h to print this help message"
}

start_attack_network()
{
 SUBNET_IP="$1"
 SUBNET_COUNT="$2"
 NODE_COUNT="$3"

 clear
 echo 'setting up attack network'
 sleep 2
 ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT attack
}

start_core_network()
{
 clear
 echo 'starting netcore_builder'
 sleep 2
 ./netcore_builder

uml_start

MSc DCNDS Group 4 - NAIRS

 105

}

start_user_network()
{
 SUBNET_IP="$1"
 SUBNET_COUNT="$2"
 NODE_COUNT="$3"

 clear
 echo 'setting up user network'
 sleep 2
 ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT user
}

start_victim_network()
{
 SUBNET_IP="$1"
 SUBNET_COUNT="$2"
 NODE_COUNT="$3"

 clear
 echo 'setting up victim network'
 sleep 2
 ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT victim
}

if [$# -eq 0]
then
 uml_start_usage
 return 1
fi

 SUBNET_COUNT="$2"
 NODE_COUNT="$3"
 SUBNET_IP="192.168"

set up route for SUBNET_IP on physical network
route add -net "$SUBNET_IP.0.0/16" dev eth0 2> /dev/null

getopts a:cu:v: options

 case "$options" in

 a) start_attack_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT ;;
 c) start_core_network;;
 u) start_user_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT ;;

MSc DCNDS Group 4 - NAIRS

 106

 v) start_victim_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
;;
 \?) uml_start_usage;;
 esac

#!/bin/bash

if [$# -ne 4]
then
 echo wrong number of arguments
 echo usage: subnet_builder subnet_IP no_of_subnets no_of_host_per_subnet
network_type
 echo example: subnet_builder 192.168.0 1 2 attack
 echo The example sets up 1 subnet per router with 2 hosts where 192.168.0 is
the subnet address
 echo 'network_type = { victim|attack|user} '
 return 1
fi

#create a router and its subnet(s)
#arguments: router_ID subnet_ip subnet_count node_count switch_port
build_subnet()
{
 if [$# -ne 5]
 then
 echo wrong number of arguments
 echo usage: build_subnet router_ID subnet_IP no_of_subnets
node_count switch_port
 echo example: build_subnet 1 192.168 1 2 22000
 exit 1
 fi

ID="$1"
SUBNET_IP="$2"
SUBNET_COUNT="$3"
NODE_COUNT="$4"
PORT="$5"
ROUTER_IP="$SUBNET_IP.$ID.1"
HOST_IP=`ifconfig eth0 | grep 'inet addr' | cut -d: -f2 | cut -d' ' -f1`

i=1

subnet_builder

MSc DCNDS Group 4 - NAIRS

 107

j=0
k=1

#set router tap device drivers
eth_devices="eth0=tuntap,,,$ROUTER_IP"

#set up the switches
while [$k -le $SUBNET_COUNT]

do
 uml_switch -unix $((PORT+i)) $((PORT+1+i)) -hub < /dev/null &
 #the next line is for the router's other eth devices
 eth_devices=${ eth_devices} '
eth'$((j+1))=daemon,,unix,"$((PORT+i)),$((PORT+1+i))"
 i=$((i+2))
 j=$((j+1))
 k=$((k+1))
done
echo setting up the switches ...
sleep 2 #allow things to stabilize
echo 'finished'

 # set up the router/firewall (with 2 consoles)
 linux umid="Router:$ROUTER_IP"
":$ID:$SUBNET_COUNT:$NODE_COUNT:$HOST_IP:"
ubd0=${ file_systems} "/router/root_fs_cow$ID",${ file_systems} '/root_fs'
${ eth_devices} ssl=pty con=pty con0=xterm con1=xterm mem=64M &

 # set up the hosts
 i=1
 while [$i -le $SUBNET_COUNT]
 do
 j=0
 while [$j -lt $NODE_COUNT]
 do
 k=$[16*(i-1)+17+j]
 . vhost_setup "$SUBNET_IP.$ID.$k" &
 j=$((j+1))
 done
 i=$((i+1))
 done
}

uml_home='/home/uml'
cd ${ uml_home}
file_systems=${ uml_home} '/filesystem'
#cleanup previous uml junks that might still be lurking around

MSc DCNDS Group 4 - NAIRS

 108

./cleanup

SUBNET_IP="$1"
SUBNET_COUNT="$2"
NODE_COUNT="$3"
NET_TYPE="$4"

#set up the subdirectories for cow files properly
#start with the router cow file directory
 if ! test -e ${ file_systems} '/router' -a -d ${ file_systems} '/router'
 then
 echo "${ file_systems} '/router' does not exist, creating ..."
 mkdir ${ file_systems} '/router'
 chmod a+rw ${ file_systems} '/router'
 fi

#check whether there is a subdirectory for all the specified sub-subnet
#if not create one
subnet_home=${ file_systems} '/subnet'
i=1
while [$i -le $SUBNET_COUNT]
do
 if ! test -e ${ subnet_home} ${ i} -a -d ${ subnet_home} ${ i}
 then
 echo "${ subnet_home} ${ i} does not exist, creating ..."
 mkdir ${ subnet_home} ${ i}
 chmod a+rw ${subnet_home} ${ i}
 fi
 i=$((i+1))
done

enable ip forwarding proxy arping etc on the physical host
sysctl -w net.ipv4.ip_forward="1"
sysctl -w net.ipv4.conf.all.proxy_arp="1"
route add -net 192.168.0.0/16 dev eth0

ID=0
if [$NET_TYPE = victim]
then

 ID=1
 PORT=22000
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
$PORT

elif [$NET_TYPE = user]
then

MSc DCNDS Group 4 - NAIRS

 109

 ID=9
 PORT=22000
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
$PORT

 ID=10
 PORT=23000
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
$PORT

elif [$NET_TYPE = attack]
then

 ID=11
 PORT=22000
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
$PORT

 ID=12
 PORT=23000
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT
$PORT

fi

#!/bin/bash
set up the virtual uml host

if [$# != 1]
then
 echo
 echo wrong number of arguments
 echo usage: vhost_setup ip_address
 echo example: vhost_setup 192.168.0.33
 echo
 return
fi
#extract the ip
full_ip="$1"
subnet_ip=`echo "$1" | cut -d'.' -f1-3`
ip_add=`echo "$1" | cut -d'.' -f4`
HOST_IP=`ifconfig eth0 | grep 'inet addr' | cut -d: -f2 | cut -d' ' -f1`
ROUTER_ID=`echo "$1" | cut -d'.' -f3`

Vhost_setup

MSc DCNDS Group 4 - NAIRS

 110

P=2
case "$ROUTER_ID" in
 1|2|9|11) P=2;;
 10|12) P=3;;
esac

case "$ip_add" in

 1[7-9]|2[0-9]|30)
 subsubnet='subnet1';switch="2"$P"001,2"$P"002";;
 3[3-9]|4[0-6])
 subsubnet='subnet2';switch="2"$P"003,2"$P"004";;
 49|5[0-9]|6[0-2])
 subsubnet='subnet3';switch="2"$P"005,2"$P"006";;
 6[5-9]|7[0-8])
 subsubnet='subnet4';switch="2"$P"007,2"$P"008";;
 8[1-9]|9[1-4])
 subsubnet='subnet5';switch="2"$P"009,2"$P"010";;
 9[7-9]|10[0-9]|110)
 subsubnet='subnet6';switch="2"$P"011,2"$P"012";;
 11[3-9]|12[0-6])
 subsubnet='subnet7';switch="2"$P"013,2"$P"014";;
 129|13[0-9]|14[1-2])
 subsubnet='subnet8';switch="2"$P"015,2"$P"016";;
 14[5-9]|15[0-8])
 subsubnet='subnet9';switch="2"$P"017,2"$P"018";;
 16[1-9]|17[0-4])
 subsubnet='subnet10';switch="2"$P"019,2"$P"020";;
 17[7-9]|18[0-9]|190)
 subsubnet='subnet11';switch="2"$P"021,2"$P"022";;
 19[3-9]|20[0-6])
 subsubnet='subnet12';switch="2"$P"023,2"$P"024";;
 209|21[0-9]|22[0-2])
 subsubnet='subnet13';switch="2"$P"025,2"$P"026";;
 22[5-9]|23[0-8])
 subsubnet='subnet14';switch="2"$P"027,2"$P"028";; #note tap and router are
on this subnet

 *) echo
 echo 'the ip address you entered is not in the valid range'
 echo 'usage: vhost_setup ip_address'
 echo 'example: vhost_setup 192.168.0.33 '
 return
 ;;
esac

MSc DCNDS Group 4 - NAIRS

 111

#start the virtual umlinux hosts
root_file_location='/home/uml/filesystem/root_fs'
cow_file_location='/home/uml/filesystem/'${ subsubnet} '/cow_fs_for_ip_'${ full_ip}
linux umid="VHost:${ subnet_ip} .${ ip_add} " "::::$HOST_IP:"
ubd0=${ cow_file_location} ,${ root_file_location} eth0=daemon,,unix,${ switch}
ssl=pty con=pty con0=xterm mem=64M &

#!/bin/bash

builds the core of the network with 6 routers #
each router has 3 interfaces one connected to #
a tunnel and the others a (UML) switch #

Netcore_Builder_Usage() {

 echo "Usage: netcore_builder"
}

clear

SUBNET_IP="192.168"
#get ip of localhost
UML_HOME='/home/uml'
FILE_SYSTEMS=$UML_HOME'/filesystem'
cd $UML_HOME

./cleanup

if ! test -e ${ FILE_SYSTEMS} '/router' -a -d ${ FILE_SYSTEMS} '/router'
 then
 echo "${ FILE_SYSTEMS} '/router' does not exist, creating ..."
 mkdir ${ FILE_SYSTEMS} '/router'
 chmod a+rw ${ FILE_SYSTEMS} '/router'
fi

switches to connect routers
uml_switch -unix 23001 23002 < /dev/null &
uml_switch -unix 23003 23004 < /dev/null &

Netcore-builder

MSc DCNDS Group 4 - NAIRS

 112

for i in 3 4 5 6 7 8
#for i in 6 7 8
do
 case $i in
 3|4|5) SWITCH="daemon,,unix,23001,23002";;
 6|7|8) SWITCH="daemon,,unix,23003,23004";;
 esac

 case $i in
 3|6) SWITCH="$SWITCH eth2=$SWITCH";;
 esac

 ID="$i"
 TAP_IP="$SUBNET_IP.$ID.1"

 ETH_DEVICES="eth0=tuntap,,,$TAP_IP eth1=$SWITCH"

 #start up core router
 linux umid="CRouter:$TAP_IP" ":$ID:"
ubd0="$FILE_SYSTEMS/router/root_fs_cowCRouter$i,$FILE_SYSTEMS/root_fs"
$ETH_DEVICES ssl=pty con=pty con0=xterm mem=64M &

done

#!/bin/bash
#utility to clean up all the "mess" associated with uml

#sweep off all umlinux instances
echo 'removing umlinux instances'
kill -9 `ps aux | grep linux | cut -c10-14` 2>/dev/null
rm -rf /tmp/uml/*

echo 'removing the switches'
#remove the uml switches
kill -9 `ps aux | grep uml_switch | cut -c10-14` 2>/dev/null
rm -rf /home/uml/22*
rm -rf /home/uml/23* #and the associated files

#and the tap devices if they exist
echo 'bringing down the tap devices'
i=0
while [$i -lt 20]
do

cleanup

MSc DCNDS Group 4 - NAIRS

 113

 ifconfig eth0:$i down 2>/dev/null
 tunctl -d tap$i >/dev/null 2>/dev/null
 ip t d tunl$i 2>/dev/null
 i=$((i+1))
done

echo 'finished'
UUMM LL hhoosstt ssccrr iippttss

#! / bi n/ sh

/ et c/ i ni t . d/ uml boot : i ni t i al s t ar t up conf i gur at i on f or uml

Thi s i s t he st ar t - up scr i pt used i nsi de UML t o #
aut omat i cal l y conf i gur e uml host dur i ng boot up. #

I NSTALL: #
A syml i nk t o t hi s f i l e shoul d be put under / et c/ i ni t . d #
wi t h per mi ssi on 0755. #
Al l scr i pt s ar e kept i n / et c/ scr i pt s #
Al so, set up syml i nks under / et c/ r cN. d (r un:) #
updat e- r c. d - f uml boot st ar t 5 2 3 4 5 . #

HOSTNAME=` cut - d: - f 1 / pr oc/ cmdl i ne | cut - d" =" - f 2`
UML_I P=` cut - d: - f 2 / pr oc/ cmdl i ne`
HOST_I P=` cut - d: - f 6 / pr oc/ cmdl i ne`

Conf i gur abl e opt i ons

case " $1" i n
 st ar t)
 #set up host name and domai n name and command pr ompt
 echo " set t i ng host name t o $HOSTNAME at domai n
cs. ucl . ac. uk"
 / sbi n/ sysct l - w ker nel . host name=$HOSTNAME
 / sbi n/ sysct l - w ker nel . domai nname=' cs. ucl . ac. uk '

 i f [- e / et c/ pr of i l e_backup]
 t hen
 cp / et c/ pr of i l e_backup / et c/ pr of i l e

 el se
 cp / et c/ pr of i l e / et c/ pr of i l e_backup
 f i
 echo " expor t PS1=$HOSTNAME" >> / et c/ pr of i l e
 echo " expor t HOST_I P=$HOST_I P UML_I P=$UML_I P
HOSTNAME=$HOSTNAME" >> / et c/ pr of i l e

umlboot

MSc DCNDS Group 4 - NAIRS

 114

 ; ;

 s t op)
 ; ;
 r el oad| f or ce- r el oad)
 ; ;
 r est ar t)
 ; ;

 *)
 echo " Usage: / et c/ i ni t . d/ uml boot
{ st ar t | s t op| r el oad| f or ce- r el oad| r est ar t } "
 ex i t 1

esac

exi t 0

#! / bi n/ bash

/ et c/ i ni t . d/ uml net : net wor k conf i gur at i on f or uml

Thi s i s t he st ar t - up scr i pt used i nsi de UML t o #
aut omat i cal l y conf i gur e net wor ki ng dur i ng boot up. #

I NSTALL: #
A syml i nk t o t hi s f i l e shoul d be put under / et c/ i ni t . d #
wi t h per mi ssi on 0755.
 #
Al l scr i pt s ar e kept i n / et c/ scr i pt s #
Al so, set up syml i nks under / et c/ r cN. d (r un:) #
updat e- r c. d - f uml net st ar t 40 2 3 4 5 . #

#UML_CONFI G_STR
UML_VHOST_STR=" VHost "
UML_ROUTER_STR=" Rout er "
UML_CROUTER_STR=" CRout er "

f i nd out t he t ype of t hi s i nst ance
get _host _t ype() {
 TYPE=` cut - d: - f 1 / pr oc/ cmdl i ne | cut - d" =" - f 2`
 echo $TYPE
}

conf i g_host () {
 pr i nt l n " UML det ect ed as $UML_VHOST_STR"

umlnet

MSc DCNDS Group 4 - NAIRS

 115

 / et c/ scr i pt s/ vhost . conf
}

conf i g_r out er () {
 pr i nt l n " UML det ect ed as $UML_ROUTER_STR"
 / et c/ scr i pt s/ r out er . conf
}

conf i g_cor e()
{
 pr i nt l n " UML det ect ed as Cor e Rout er "
 / et c/ scr i pt s/ c_r out er . conf
}
pr i nt l n() {
 echo " uml net : $* "
}

s t ar t _uml _net _conf i g() {

 # ext r act t ype f r om umi d
 uml _t ype=` get _host _t ype`

 case " $uml _t ype" i n
 $UML_ROUTER_STR)
 conf i g_r out er
 ; ;
 $UML_VHOST_STR)
 conf i g_host
 ; ;
 $UML_CROUTER_STR)
 conf i g_cor e
 ; ;
 *)
 echo " unknown host t ype $uml _t ype"
 ex i t 1
 ; ;
 esac
}

case " $1" i n
 s t ar t)
 s t ar t _uml _net _conf i g
 ; ;
 *)
 ; ;
esac

#! / bi n/ bash

/ et c/ scr i pt s/ cr eat e_t unnel : t unnel cr eat i on ut i l i t y
#####################################

Sampl e: #

Create_tunnel

MSc DCNDS Group 4 - NAIRS

 116

TUNNEL_NAME=" t unl 1" #
REMOTE_GW= " 192. 168. 1. 2" #
REMOTE_TUN_I P= " 192. 168. 2. 2" #
LOCAL_TUN_I P=" 192. 168. 1. 3" #

#####################################

TUNNEL_NAME=$1
REMOTE_GW=$2
REMOTE_TUN_I P=$3
LOCAL_TUN_I P=$4
PORT=$5

openvpn - - r emot e $REMOTE_GW - - dev $TUNNEL_NAME - - i f conf i g
$LOCAL_TUN_I P $REMOTE_TUN_I P - - por t $PORT - - shaper 60000 &

#! / bi n/ bash
#Vi r t ual host conf i gur at i on f i l e

#ext r act i p addr ess
i p_add=` cut - d: - f 2 / pr oc/ cmdl i ne` #of t hi s host
subnet _i p=` echo $i p_add | cut - d' . ' - f 1- 3`
l ast _oct et =` echo $i p_add | cut - d' . ' - f 4`
br oadcast _i p=$(((l ast _oct et & 240) | 15)) # net mask 240
gat eway_i p=$((br oadcast _i p- 1))

#conf i gur e et h0
i f conf i g et h0 ${ i p_add} net mask 255. 255. 255. 240 br oadcast
${ subnet _i p} . ${ br oadcast _i p} up

#cr eat e r out e t o t he r out er
r out e add def aul t gw ${ subnet _i p} . ${ gat eway_i p}

#net wor ki ng compl et e

#! / bi n/ bash
/ et c/ scr i pt s/ r out er . conf : r out er conf i gur at i on ut i l i t y

WD=` pwd`
cd / et c/ scr i pt s

#ext r act I P addr esses
i p_add=` cut - d: - f 2 / pr oc/ cmdl i ne` #of t he r out er
I D=` cut - d: - f 3 / pr oc/ cmdl i ne` #Rout er I D

router.conf

vhost.conf

MSc DCNDS Group 4 - NAIRS

 117

subnet _count =` cut - d: - f 4 / pr oc/ cmdl i ne`
node_count =` cut - d: - f 5 / pr oc/ cmdl i ne`
subnet _addr ess=` echo $i p_add | cut - d' . ' - f 1- 3`
l ast _oct et =` echo $i p_add | cut - d' . ' - f 4`
br oadcast _i p=$(((l ast _oct et & 240) | 15)) # net mask 240
SUB_16ADD=` echo $i p_add | cut - d' . ' - f 1- 2`
I P_ADD=" $SUB_16ADD. $I D. 2"

#br i ng up t he et h0 dr i ver
i f conf i g et h0 $I P_ADD up

i =1
j =1
i f [$I D - eq 1]
t hen
 #j =2
 #i f conf i g et h1 " $SUB_16ADD. 2. 2" up
 . / cr eat e_t unnel t unl 1 $SUB_16ADD. 3. 2 $SUB_16ADD. 100. 3
$SUB_16ADD. 100. 1 5000

 s l eep 5
 f or I ND i n 3 4 5 9 10
 do
 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 1
 done
 . / cr eat e_t unnel t unl 2 $SUB_16ADD. 6. 2 $SUB_16ADD. 100. 6
$SUB_16ADD. 100. 2 5100
 s l eep 5
 f or I ND i n 6 7 8 11 12
 do
 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 2
 done

el i f [$I D - eq 9]
t hen
 . / cr eat e_t unnel t unl 1 $SUB_16ADD. 4. 2 $SUB_16ADD. 100. 4
$SUB_16ADD. 100. 9 5000
 s l eep 5
 f or I ND i n 1 2 3 4 5 10
 do
 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 1
 done
el i f [$I D - eq 10]
t hen
 . / cr eat e_t unnel t unl 1 $SUB_16ADD. 5. 2 $SUB_16ADD. 100. 5
$SUB_16ADD. 100. 10 5000
 s l eep 5
 f or I ND i n 1 2 3 4 5 9
 do
 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 1
 done
el i f [$I D - eq 11]
t hen
 . / cr eat e_t unnel t unl 1 $SUB_16ADD. 7. 2 $SUB_16ADD. 100. 7
$SUB_16ADD. 100. 11 5000
 s l eep 5
 f or I ND i n 1 2 6 7 8 12
 do

MSc DCNDS Group 4 - NAIRS

 118

 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 1
 done
el i f [$I D - eq 12]
t hen
 . / cr eat e_t unnel t unl 1 $SUB_16ADD. 8. 2 $SUB_16ADD. 100. 8
$SUB_16ADD. 100. 12 5000
 s l eep 5
 f or I ND i n 1 2 6 7 8 11
 do
 r out e add - net " $SUB_16ADD. $I ND. 0/ 24" dev t unl 1
 done
f i

whi l e [$i - l e $subnet _count]
do
 r out er _i p=$((16* (i - 1) + 30)) #addr esses we r eser ved f or t he
r out er , j ust bel ow br oadcast addr ess
 i f conf i g et h${ j } ${ subnet _addr ess} . ${ r out er _i p} net mask
255. 255. 255. 240 br oadcast ${ subnet _addr ess} . $((r out er _i p + 1)) up
 i =$((i +1))
 j =$((j +1))
done

#add t he r out e t o nei ghbour i ng r out er (s) t hr ough et h0
case $I D i n
 1)
 r out e add - host " $SUB_16ADD. 3. 2" dev et h0
 r out e add - host " $SUB_16ADD. 6. 2" dev et h0
 ; ;
 9)
 r out e add - host " $SUB_16ADD. 4. 2" dev et h0
 ; ;
 10)
 r out e add - host " $SUB_16ADD. 5. 2" dev et h0
 ; ;
 11)
 r out e add - host " $SUB_16ADD. 7. 2" dev et h0
 ; ;
 12)
 r out e add - host " $SUB_16ADD. 8. 2" dev et h0
 ; ; *) echo ' i nval i d I D'

esac

enabl e i p f or war di ng
sysct l - w net . i pv4. i p_f or war d=" 1"
set up pr oxy ar p f or t he subnet s
sysct l - w net . i pv4. conf . al l . pr oxy_ar p=" 1"

cr eat e a r out e t o t he physi cal host
HOST_I P=` cut - d: - f 6 / pr oc/ cmdl i ne`
HOST_NET=` echo $HOST_I P | cut - d' . ' - f 1- 3`
r out e add - net $HOST_NET. 0/ 24 dev et h0
cd " $WD"

MSc DCNDS Group 4 - NAIRS

 119

#! / bi n/ bash
/ et c/ scr i pt s/ c_r out er . conf : cor e r out er conf i gur at i on ut i l i t y

I D=` cut - d: - f 3 / pr oc/ cmdl i ne`
WD=` pwd`

cd / et c/ scr i pt s

case $I D i n

 3) i f conf i g et h0 192. 168. 3. 2 up
 i f conf i g et h1 192. 168. 34. 1 up
 i f conf i g et h2 192. 168. 35. 1 up
 . / cr eat e_t unnel t unl 1 192. 168. 1. 2 192. 168. 100. 1 192. 168. 100. 3
5000
 s l eep 5
 r out e add - net 192. 168. 1. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 2. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 4. 0/ 24 gw 192. 168. 34. 1
 r out e add - net 192. 168. 5. 0/ 24 gw 192. 168. 35. 1
 r out e add - net 192. 168. 9. 0/ 24 gw 192. 168. 34. 1
 r out e add - net 192. 168. 10. 0/ 24 gw 192. 168. 35. 1
 r out e add - host 192. 168. 1. 2 dev et h0; ;

 4) i f conf i g et h0 192. 168. 4. 2 up
 i f conf i g et h1 192. 168. 34. 2 up
 . / cr eat e_t unnel t unl 1 192. 168. 9. 2 192. 168. 100. 9 192. 168. 100. 4
5000
 s l eep 5
 r out e add - net 192. 168. 9. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 1. 0/ 24 gw 192. 168. 34. 2
 r out e add - net 192. 168. 3. 0/ 24 gw 192. 168. 34. 2
 r out e add - net 192. 168. 5. 0/ 24 gw 192. 168. 34. 2
 r out e add - net 192. 168. 2. 0/ 24 gw 192. 168. 34. 2
 r out e add - host 192. 168. 9. 2 dev et h0; ;

 5) i f conf i g et h0 192. 168. 5. 2 up
 i f conf i g et h1 192. 168. 35. 2 up
 . / cr eat e_t unnel t unl 1 192. 168. 10. 2 192. 168. 100. 10 192. 168. 100. 5
5000
 s l eep 5
 r out e add - net 192. 168. 10. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 1. 0/ 24 gw 192. 168. 35. 2
 r out e add - net 192. 168. 3. 0/ 24 gw 192. 168. 35. 2
 r out e add - net 192. 168. 4. 0/ 24 gw 192. 168. 35. 2
 r out e add - net 192. 168. 2. 0/ 24 gw 192. 168. 35. 2
 r out e add - host 192. 168. 10. 2 dev et h0; ;

 6) i f conf i g et h0 192. 168. 6. 2 up
 i f conf i g et h1 192. 168. 67. 1 up
 i f conf i g et h2 192. 168. 68. 1 up
 . / cr eat e_t unnel t unl 1 192. 168. 1. 2 192. 168. 100. 2 192. 168. 100. 6
5100

c_router.conf

MSc DCNDS Group 4 - NAIRS

 120

 s l eep 5
 r out e add - net 192. 168. 1. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 2. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 7. 0/ 24 gw 192. 168. 67. 1
 r out e add - net 192. 168. 8. 0/ 24 gw 192. 168. 68. 1
 r out e add - net 192. 168. 11. 0/ 24 gw 192. 168. 67. 1
 r out e add - net 192. 168. 12. 0/ 24 gw 192. 168. 68. 1
 r out e add - host 192. 168. 1. 2 dev et h0; ;

 7) i f conf i g et h0 192. 168. 7. 2 up
 i f conf i g et h1 192. 168. 67. 2 up
 . / cr eat e_t unnel t unl 1 192. 168. 11. 2 192. 168. 100. 11 192. 168. 100. 7
5000
 s l eep 5
 r out e add - net 192. 168. 11. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 1. 0/ 24 gw 192. 168. 67. 2
 r out e add - net 192. 168. 2. 0/ 24 gw 192. 168. 67. 2
 r out e add - net 192. 168. 6. 0/ 24 gw 192. 168. 67. 2
 r out e add - net 192. 168. 8. 0/ 24 gw 192. 168. 67. 2
 r out e add - host 192. 168. 11. 2 dev et h0; ;

 8) i f conf i g et h0 192. 168. 8. 2 up
 i f conf i g et h1 192. 168. 68. 2 up
 . / cr eat e_t unnel t unl 1 192. 168. 12. 2 192. 168. 100. 12 192. 168. 100. 8
5000
 s l eep 5
 r out e add - net 192. 168. 12. 0/ 24 dev t unl 1
 r out e add - net 192. 168. 1. 0/ 24 gw 192. 168. 68. 2
 r out e add - net 192. 168. 2. 0/ 24 gw 192. 168. 68. 2
 r out e add - net 192. 168. 6. 0/ 24 gw 192. 168. 68. 2
 r out e add - net 192. 168. 7. 0/ 24 gw 192. 168. 68. 2
 r out e add - host 192. 168. 12. 2 dev et h0; ;

 *) echo ' er r or i n net wor k conf i gur at i on' ; exi t 1; ;
esac

#enabl e i p f or war di ng
sysct l - w net . i pv4. i p_f or war d=" 1"

#enabl e pr oxy ar pi ng
sysct l - w net . i pv4. conf . al l . pr oxy_ar p=" 1"
cd " $WD"

