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ABSTRACT 
 

As computer networks become increasingly complex and network denial-of-service 

(DoS) attacks become more common place, automated network intrusion detection 

and response will be critical in providing reliable network services. In this report, we 

review the state-of-the-art in network intrusion detection systems and then propose a 

strategy of using network traffic profiles as the foundation for detecting and 

responding to network denial-of-service attack. We also present our implementation 

of the strategy and evaluate it under a controlled environment. The results show that 

our approach is effective in mitigating such attacks. 
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1 Introduction 
 

Valuable properties need to be protected against theft, damage or destruction.  People 

spend a lot of time, money and effort to ensure that their valuables and treasures are 

safe.  Modern homes are installed with expensive alarm systems that can detect 

burglars, notify authorities when a break-in has occurred.  Some alarms are even able 

to alert the owner when the house is on fire.  Cars too are equipped with expensive 

alarm systems to safeguards against break-ins. 

 

The same considerations should also be given to computer systems and data.  Today’s 

information systems in many organizations are highly interconnected via local area 

and wide area computer networks.  These networks are potential targets of attack such 

as network bandwidth attack.  One of the attacks, Denial of Service (DoS) has always 

been a critical threat to networks because of how easy it is to launch the attack from 

the many readily available attack tools.  Malicious users look for vulnerable targets 

such as un-patched systems and networks running insecure services to launch the 

attacks.  This method of attack has been known for some time but defending against it 

is a different matter.  

 

Let’s consider a scenario to paint a picture of the dangerous nature of this attack.  An 

attacker sends forged ICMP echo packets to the broadcast address of a vulnerable 

network.  All the systems on this network reply to the victim with ICMP echo replies.  

This rapidly exhausts the bandwidth available on the target network thus effectively 

denying service to legitimate users. 

 

When a network is attacked, the ideal response would be to stop the attack before it 

can cause any further damage and deny users the services provided by the network   

Currently, the defence against DoS attacks relies heavily on intensive manual work by 

the network administrator.  The first activity involves the use of network traffic 

probes and statistics.  The second activity involves inserting packet filtering or rate 

limiting rules into the associated router.  After which, the network administrators will 
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contact his counterpart in the upstream organization(s) from which the offending 

traffic is being forwarded to try and stop the attack.  Obviously, this procedure has a 

major drawback in that it is time consuming and requires the administrator to be 

available immediately and always-on alert. 

 

In this paper, we propose the framework and implement the design for a Network 

Intrusion Detection and Response System (NIRS) that automates this procedure. It 

employs a rate based learning agent approach to detect DoS attacks and applies a rate 

limiting pushback mechanism [1] to provide an active response in which the firewall, 

intrusion detection system (IDS), routers and other network components interact 

together to throttle the attack as close to the source as possible. 

 

This report provides in the first part: the background, objectives, scope, tools and 

technologies used for the project. The second part describes the methodology and 

detailed implementation of the system and the testing environment. The third part 

contains the test result and the analysis of the result. The last part contains an 

evaluation of the project, discusses related work and highlights areas for future work  
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2 Background 
 

2.1 Denial-of-Service Attack 

 

A Denial-of-Service (DoS) attack is an incident in which a user or organization is 

deprived of the services of a resource they would normally expect to have.  Typically, 

the loss of service is the inability of a particular network service to be available or the 

temporary loss of all network connectivity and services.  Many attackers use other 

unsuspected third party computers, known as zombies or slaves, to flood the victim 

with millions of incoming traffic.  A DoS attack is a type of security breach to a 

computer system that does not usually result in the theft of information.  However, 

these attacks can cost the target organization a great deal of time and money. 

 

 

2.2 Intrusion Detection 

 

Intrusion detection has been an active field of research for about two decades.  This is 

exemplified by an influential paper, published in 1980, Computer Security Threat 

Monitoring and Surveillance by James Anderson [2].  It was followed some years 

later in 1987 by the seminal paper An Intrusion Detection Model by Dorothy Denning 

[3] that provides a methodological framework for an intrusion detection system. 

 

An intrusion detection system (IDS) inspects all inbound and outbound network 

activity and identifies suspicious patterns that may indicate a network or system attack 

from someone attempting to break into or compromise a system.  Network Intrusion 

Detection Systems (NIDS) monitors packets on the network wire and attempts to 

discover if an attacker is attempting to break into a system or cause a denial-of-service 

attack. 
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2.2.1 IDS Components 

 

In [4] the components that make up an Intrusion Detection system were identified as 

follows: 

• Information Source – Data utilised by the IDS 

• Analysis Engine – Process by which the intrusion decision is made 

• Response – action taken when an intrusion is detected [4]. 

 

 

2.2.2 Detection Techniques 

 

IDS falls into three different categories: 

 

Host-based vs. network-based systems 

 

In a host-based system, the IDS examines the activity of each individual host in the 

system while, network-based intrusion detection systems are dedicated software 

systems that sit on a network wire and analyse the individual packets flowing through 

a network.  They can detect malicious packets that are designed to be overlooked by a 

firewall’s filtering rules.   

 

Anomaly detection vs. misuse detection 

 

Denning [3] described the classical model for anomaly detection: 

 

• A model is built which contains metrics that are derived from system 

operation.  

• A metric is defined as a random variable representing a quantitative measure 

accumulated over a period.  Example: average CPU load, number of network 

connections per minute. 

• Security violations could be detected from abnormal patterns of system usage. 
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In anomaly detection, the network administrator defines the normal behaviour of the 

network’s traffic, protocol and typical packet size.  The anomaly detector works by 

monitoring network segments to look for anomalies by comparing their state to the 

normal behaviour that has been defined. 

 

In misuse detection, the IDS analyzes the information it gathers and compares it to 

large databases of attack signatures. It looks for signatures of specific attack type that 

has already been documented.  This system relies heavily on a good attack signatures 

database as the base to compare the packets against. 

 

Reactive system vs. passive system 

 

The IDS in a reactive system responds to suspicious activity by logging off a user or 

by reprogramming the firewall to block network traffic from the suspected malicious 

source while the IDS in a passive system detects a potential security breach by 

logging the information and signalling an alert. 

 

NIRS is a hybrid of three techniques – anomaly, reactive and network based system 

which detects intrusions by observing deviations from normal behaviour and re-

programmes a firewall to block the malicious traffic. 

 

 

2.2.3 False Positive and False Negative 

 

The main goal of an effective IDS as observed in [5] is to provide high rates of attack 

detection with very small rates of false alarms. There are two types of false alarms 

associated with Intrusion detection systems i.e. False positive and False negative. 

 

As highlighted in [6], false positives occurs when the IDS sensor misinterprets normal 

packets or activities as an attack. Such errors can degrade the productivity of the 

systems because they can  invoke unnecessary countermeasures. On the other hand, 
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false negative errors occur when  an attacker is misclassified as a normal user. A fatal 

problem may arise from a false negative error as unauthorized or abnormal activities 

generate unexpected or undesirable operations of the systems. This can cause great 

losses for an organization. 

 

 

2.3 Active Response  

 

For accurate intrusion detection, the system must have reliable and complete data 

about the target system’s activities and this is a complex issue in itself.  Most systems 

have logs generated by either the operating system routers or firewalls that provide 

information on network operation and activities.  However, logging too much 

information can put a serious overhead on the system.  Therefore, the amount of 

system activity information collected is a trade-off between overhead and 

effectiveness.   

 

The concept of active response in an IDS is based on the idea of having an IDS 

capable of automatic reaction once an attack is detected.  The goal is to prevent the 

attack from spreading to other parts of the network and using up all of the network 

bandwidth and hindering other network services. 

 

A paper in SecurityFocus group [7] identified two types of response mechanism: 

1. Session Sniping 

2. Firewall Update 

 

 

2.3.1 Session Sniping 

 

Session sniping or knockdown is a direct intervention between an attacker and the 

victim in order to disrupt the communication.  To do this, the IDS sends packets to 

break down the connection that triggered the response.  The most effective way to 
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knockdown a TCP connection is to forge packets to reset the connection.  This is done 

by sending forged packets with the TCP Reset bit set to one on both systems. 

 

 

2.3.2 Firewall Update 

 

A second method mentioned in [7] is firewall rules manipulation. An IDS uses this 

method to actively respond to attackers by instructing the firewall to drop or block all 

traffic coming from the source IP of the attacker.  The reasoning behind this method 

of response is to stop the attacker from further doing damage to the network. 

 

 

2.3.3 Pushback mechanism 

 

Another mechanism used for response in intrusion detection system is pushback [1].  

Pushback mechanism is based on aggregate congestion control (ACC) and its 

particularly used in defending against Distributed DoS.  It allows a router to request 

adjacent upstream routers to rate-limit traffic corresponding to the specified 

aggregates.  Pushback can prevent upstream bandwidth from being wasted on packets 

that are eventually going to be dropped downstream.  In the case of DoS attack, if the 

attack traffic is concentrated at a few upstream links, pushback can protect other 

traffic within the aggregate from the attack traffic. 

 

 

2.4 State-of-the-Art 

 

This section briefly describes some of the recent and current intrusion detection 

research effort.  A lot of the current research has been focusing on anomaly based 

detection.  There are many different approaches to anomaly based intrusion detections 

that can be found. 
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Some of them are: 

• Probability based 

• State based 

• Data Mining 

 

 

2.4.1 Probability Based Approaches 

 

Anomaly detection systems such as SPADE [8], ADAM [9], and NIDES [10] adopted 

an approach in which the system will learn a statistical model of normal traffic, and 

flag deviations from this model.  These statistical models were usually based on the 

distribution of elements such as source and destination addresses and ports per 

transaction (TCP connections, and sometimes UDP and ICMP packets).  The lower 

the probabilities, the higher the anomaly scores were, since these are presumably 

more likely to be hostile. 

 

ADAM used a classifier which could be trained on both known attacks and on 

(presumably) attack-free traffic.  Patterns which did not match any learned category 

were flagged as anomalous.  ADAM also modeled address subnets (prefixes) in 

addition to ports and individual addresses.  NIDES, like SPADE and ADAM, 

modeled ports and addresses, flagging differences between short and long term 

behaviour. 

 

SPADE, ADAM, and NIDES all used frequency-based models, in which the 

probability of an event was estimated by its average frequency during training.  While 

PHAD [11], ALAD [12], and LERAD [13] used time-based models, in which the 

probability of an event depended instead on the time since it last occurred.  For each 

attribute, they collected a set of allowed values (anything observed at least once in 

training), and flagged novel values as anomalous. 
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2.4.2 State Based Approach 

 

Another slightly different approach to pure anomaly is the state based approach to 

network intrusion detection.  A recent paper by Sekar et al. titled Specification-based 

Anomaly Detection: A New Approach for Detecting Network Intrusions [14] described 

the approach in which it tried to detect intrusion through anomalous state transition 

and at the same time incorporate state machines of network protocols.  The main 

advantage of this approach is that it can detect high rate of known and also unknown 

attacks.  At the same time, it has a rather reasonable false alarm rate that is 

comparable to the misuse methods.  However it comes at a heavy price of having to 

build complex state based models of network protocols in the network. 

 

 

2.4.3 Data Mining Approach 

 

In their paper Mining in a Data-flow Environment: Experience in Network Intrusion 

Detection [15], Lee, Stolfo and Mok described the Data Mining approach.  Data 

Mining looks at connection sessions and this is different from the normal anomaly 

approach which looks at individual packets.   This approach works by using data 

mining tools and methods to differentiate anomalous sessions from normal sessions in 

an iterative manner using training data it gathers as a reference. 
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3 Objectives and Scope 
 

3.1 Motivations 

 

In the past few years, network based computer systems have been playing an 

increasingly vital role in modern society [16] and we have witnessed a tremendous 

growth in the inter-networking arena with the Internet and the Web infiltrating all 

segments of the economy faster than any previous technology.  Though the 

possibilities and opportunities seem limitless; unfortunately however, the risks and 

incidences of security breaches are also on the increase. In [17], it was noted that 

during the past twelve years, the growth of incidents reported to the Computer 

Emergency Response Team/Coordination Center (CERT/CC) has reflected the growth 

of the Internet itself.  Figure 3.1 below from [17] which shows the number of 

incidents reported to CERT/CC between 1988 and 1999 illustrates this growth.. 

 

 

 

Figure 3.1: Growth In Number  Of Incidents Handled By The CERT/CC 
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As indicated in [18], while a computer system should provide protection, integrity and 

assurance against denial of service, however, due to increased connectivity 

(especially on the Internet), and the vast spectrum of financial possibilities that are 

opening up, more and more systems and networks are subject to attack by intruders. 

 

Highlights of the year 2002 annual Computer Crime and Security Survey" [17] 

conducted by the Computer Security Institute (CSI) with the participation of the San 

Francisco Federal Bureau of Investigation's (FBI) Computer Intrusion Squad 

indicated that; ninety percent of respondents (primarily large corporations and 

government agencies) detected computer security breaches within the last twelve 

calendar months, Eighty percent acknowledged financial losses due to computer 

breaches and forty percent detected denial of service attacks. This confirms that the 

threat from computer crime and other information security breaches continues 

unabated and that the financial toll is mounting.  

 

While it is very important that the security mechanisms of a system are designed so as 

to prevent unauthorized access to system resources and data, completely preventing 

breaches of security appear, at present, unrealistic [18]. Thus, a response to these 

growing threats is for organizations to put in place a layered security architecture to 

achieve optimum [17].  As noted by Kumar Das [18], Intrusion detection has become 

an essential component of computer security in recent years with Security 

Administrators complementing existing security measures with intrusion detection 

systems (IDSs) to achieve defence in-depth [17]. 

 

The Intrusion Detection research field effort is focused on detecting intrusion attempts 

so that action may be taken to throttle them.  There are currently, a good number of 

commercial and research intrusion detection systems that detect intrusions using 

either the misuse or anomaly detection paradigm.  However, most of these systems 

employ a passive approach to responding to detected intrusions. This normally 

involves sending an alert to an administrator to notify him of the detected intrusion or 

logging to a file.  It is obvious that this approach of relying on a Systems 

Administrator to respond to detected intrusion does not scale, and in most cases could 
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not tackle problems as soon as they occur or are about to. A more effective approach 

is required. Automatic active response to intrusion has thus recently become an active 

research area. 

 

Therefore, the motivation for this work is two fold: 

 

1. to contribute to the evolving field of implementing an active response to 

intrusion detection 

2. to explore the use of traffic profiling approach to intrusion detection 

 

 

3.2 Project Goal 

 

The goal of this research effort is to design and implement an Intrusion detection and 

response system which provides end-to-end network security from intrusion detection 

to active response.  

 

 

3.3 Project Scope 

 

The project will define a framework for detecting and responding to network based 

Denial of Service type attack. It will also implement a network traffic profile-based 

Intrusion Detection System for detecting DoS attacks. Finally, it will implement an 

active response system using the pushback mechanism for rate limiting. Due to time 

constraints the security requirements of the system like authentication of agents, or 

inter-agent communication protocols and system policy description or specification 

will not be considered.  
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4 Methodology 
 

Denial of Service (DoS) Intrusion detection mechanisms fall into two broad 

categories in their mode of implementation, i.e. Misuse detection and Anomaly 

detection.  In misuse detection, the IDS looks for recognised attack patterns 

(signatures) that has already been documented in its database.  Anomaly detection 

systems on the other hand look for deviations in normal usage behaviour patterns. It 

basically monitors network segments to compare their state to the normal baseline and 

look for deviations.  While misuse patterns are often simpler to process and locate, 

they tends to fail when new attack methods are discovered and implemented.  

Anomaly detection on the other hand though able to detect new attacks, is often 

highly difficult to implement, as what is “normal”  usage has to be established and it 

must be tailored to the environment it is being deployed in as behaviour patterns and 

system usage often vary widely in different environments.   

 

The approach adopted in this work falls in the Anomaly detection domain. We 

employed a based Rate based premise to characterise normal network traffic and 

detect intrusion from deviations from the characterised traffic profile.  

 

Furthermore, we also investigated the possibility of using a Token Bucket 

implementation to detect intrusions given a traffic characterisation derived from a 

linear bound arrival process algorithm.  A detailed description of both follows. 

 

 

4.1 Rate-Based Traffic Profiling 

 

The traffic profile of the network (with the network isolated from external traffic) was 

first generated via a learning process.  This information was then used to set the 

threshold of the detection engine. The detection engine then monitors and compares 

network traffic (when the network is not isolated) with the set threshold values and 
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sends an alert when the values are exceeded.  The alert serves as a trigger to activate 

the response system which then employs the pushback paradigm [1] to throttle the 

attack by rate limiting along the identified attack path. A more detailed description of 

the different component follows later. 

 

 

4.1.1 Network Profiling 

 

The first step in our approach was the learning process in which a learning agent 

gathered statistics of the usage of the network in an isolated network environment.  

The data gathered were the average data rate per protocol, average packet rate per 

protocol, average packet size per protocol and the standard deviation of these 

measurements from their respective means. While theses data can be gathered for 

different protocols, we gathered them for the three main protocols used in DoS attack 

i.e. TCP, UDP and ICMP protocols. These parameters which indicated the 

contribution per protocol were used to build the network profile and were inputs for 

the detection and the response agent. 

 

 

4.1.2 Intrusion Detection Model 

 

Given that the learning agent has gathered a normal usage profile for the network, the 

next step was to use that information in helping to detect when the network is under a 

DoS attack.  Using Figure 4.1 we want to describe the steps that form the foundation 

for the detection framework developed in the NIRS project. 

 

Assuming for a protocol, the average data rate is given by � , which was measured 

over the network profiling period, and ymax is the maximum data rate available for 

that protocol constrained by the actual network data rate, and �  is the standard 

deviation of the population used for the profile. We want to find a function P(x) that 
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gives the probability that an observed measurement during the network runtime 

constitutes a DoS attack traffic. 

 

 

Figure 4.1: Network Profile Parameters Used in Intrusion Detection 

 

 

By definition, DoS attacks render a service unusable by consuming all the resources 

available to the service. In this context we are interested in network DoS, that is, a 

complete consumption of network bandwidth that renders the network unusable to 

other legitimate traffic. We want to associate a probability P(x) =1 with a condition 

when all the available bandwidth is consumed, i.e. data rate at that instance is equal to 

ymax. We want to start looking for suspicious traffic profiles when values exceed the 

mean � , as such we associate a probability P(x = � ) =0 where the measured value 

equals the population mean for the profile sample. 
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The level of confidence on the mean is a function of the population size used during 

the network profiling period; the larger the size the more accurate the mean tends to 

be, furthermore, the nature of the traffic over the sample period also affects the 

interpretation of the level of confidence we have over samples whose values are close 

to the mean. For traffic profiles that are bursty over the sample period, there would 

tend to be larger variations about the mean, which is reflected by the variance �  of the 

population about the mean. Steady rate traffic would tend to have lower variances in 

comparison with bursty traffic. As a result the variance of the population affects the 

value of P(x) close to � .  For two three-tuple profiles {P1, � , � 1} and {P2, � , � 2}, 

generally 

 

( ) ( )xPxP
xx ++ →→

> µµ :2:1
 

 

Where  

�
1 < � 2 

 

If we represent the probability function with a sigmoid, we have: 

 

( )
axe

xP −+
=

1

1
 

This is shown in Figure 4.2 
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The Sigmoid function
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Figure 4.2: The Sigmoid Function Showing the Effect of a on the Slope 

 

 

As shown in the figure, curves with a larger values of a have steeper slopes than those 

that do not. It can be shown that a is proportional to � . By normalizing �  over ymax we 

set a = � /ymax which gives: 
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The probability P(x) indicates the level of confidence that a network traffic sample at 

an instance constitutes an attack or not. However, to account for possible transients 

spikes that may lead to false positives; a parameter is introduced to relax P(x) 

measurements over a number of steps. This parameter leads to the confidence 

threshold beyond which a signal is sent to the response system of the probability of 

intrusion. The confidence measurement is thus given by 

( )�
=

=
n

i
in xP

n
c

1

1
 



MSc DCNDS  Group 4 - NAIRS 

 18 

where n is the number of steps before a trigger signal is sent to the response system. 

Given a confidence threshold of C, a trigger signal is sent if and only if xi > �   for 

every i ∈ { 1, 2, …, n }  and cn ≥ C. The trigger signal S consists of a level of 

confidence and network information parameters.  That is 

Iff 

µ>ix   { }ni ,...,2,1∈∀  

and 

( )
�

=
=

n

i
in xP

n
c

1

1
 ≥  C 

then 

S={ cn, NET_INFO}  

 

Where NET_INFO contains network specific information like the offending protocol, 

IP addresses, interface etc required by the response system. 

 

 

4.2 Token Bucket Approach 

 

Token Bucket descriptor belongs the class of Linear bounded arrival process, or 

LBAP, which is a class of data source descriptor. As pointed out in [19], the  LBAP 

descriptor correctly model the fact that even a “smooth”  source may have periods in 

which it is bursty [19].  Even though it may not accurately represent sources that have 

occasionally very large burst, it does gives a better characterisation of the source then 

the aggregated rate in most cases. 

 

Hence, we investigate the use of token bucket parameters, instead of aggregated rate, 

to profile normal traffic destined to a particular host.  Given this profile, we can then 

use a token bucket policer to identify if the incoming traffic, at any point in time, has 
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deviated from the normal. A decision of DoS attack can then be made by how much 

deviation from normal is accepted as noise.  

 

 

4.2.1 Token Bucket Policer 

 

Linear bounded arrival process, or LBAP, is a class of data source descriptor. A 

LBAP descriptor for an arbitrary data source describes the number of bit the source 

transmits in any given interval of length t by a linear function of t. This linear function 

can be characterised by two parameters �  and � , so that: 

 

 Number of bits transmitted in any given time interval t �  � t + �  

 

�  corresponds to the observed long-term average rate of data generated in the network 

by the source, and �  is the longest burst a source would send given a choice of �  while 

still obeying the above definition. 

 

A token bucket/leaky bucket regulator regulates a data source to a LBAP descriptor 

[20] Formally, it accumulates fixed-size tokens in a token bucket and transmits a 

packet only if the sum of the token sizes in the bucket adds up to the packet’s size. On 

departure of each packet, the regulator removes tokens corresponding to the packet 

size from the token bucket. Token are refilled periodically to the bucket at rate �  and 

the size of the bucket is limited by � . The regulator would delay a packet by queuing 

it in a data buffer if it does not have sufficient token for transmission. 

 

If a token bucket regulator does not have a data, it is called a token bucket policer 

[19]. Consider if we attach such a policer to a data source, we can then verify the 

conformance of the traffic generated by that source to a particular token bucket 

descriptor, which is a form of LBAP descriptor. 

 

Token bucket regulators and policers are widely used in both academic and industrial 

settings.  For example, token bucket forms the foundation of Quality-of-service(QoS) 
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guarantee for both Asynchronous Transfer Mode (ATM) networks and INTSERV and 

the QoS  framework for the internet put forward by the IETF.  In both cases token 

bucket policers are adopted to “police”  if data generated by a particular source does 

not conform to the LBAP descriptor negotiated during the “call setup”  process.  

 

 

4.2.2 Traffic Character ization and Policing 

 

For a given data source, we would like to come up with a LBAP descriptor for that 

source such that there exists no other descriptor which has a smaller �  and � . We call 

such a descriptor the minimal descriptor, but it is not unique for any data source. In 

fact, the set of minimal descriptor can be described as the burstiness curve for the data 

source [21].  Each combination would require a different data buffer size for token 

bucket regulator.  However, it does not matter for traffic policer because a policer 

does not have any data buffer by definition. Thus, for the purpose of traffic policing, it 

is indifferent to use any point on the burstiness curve.  

 

As a result, in order to characterise a data source for our purpose, we will only need to 

find a point on the corresponding burstiness curve. In fact, two algorithms have been 

suggested in [22] to compute the burstiness curve of video sources. It has been further 

claimed that such algorithm is suitable for any bursty ON-OFF traffic, including voice 

and data.  With the normal traffic characterised by picking a point, (� ’ , � ’ ), on the 

curve generated by the algorithms, we can then use the pair as a basis to configure the 

token bucket traffic policer. 

 

 

4.3 The Response System 

 

The agent-based response system uses the information supplied by the intrusion 

detection framework to carry out a response using the pushback mechanism. The 

pushback mechanism is a method for isolating offensive traffic by iteratively reducing 
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traffic destined for a resource, walking from the destination resource back towards the 

traffic source; hence the name pushback [1]. Given the two-tuple, S={ cn, 

NET_INFO} , the response agent may use this information as a basis for further 

forensic examination at the current site to further refine the quality of isolation of the 

offending traffic from normal traffic. Within the constraints of the available 

information, the response agent sends a pushback message to upstream agents along 

the path of the attack traffic to rate-limit on the attack traffic given the description 

gathered from the detection engine and, if available, results gathered from further 

forensic analysis extracted after the intrusion was detected. 

 

To limit the performance overhead associated with intrusion detection, the vital 

statistics that the detection system looks at are minimized, however in the event of the 

statistics being gathered indicating a high probability of intrusion, the response system 

may ask for further forensic analysis which involves looking at non-spoofable 

attributes of the traffic like the network interface from which the traffic is originating, 

destination IP address, protocol header options etc. 

 

In a rate-limiting scenario, the NET_INFO specification could involve the protocol, 

protocol header options, destination IP address, network interface, data rate and 

source IP. The problem with specifying source IP as a classification parameter arises 

when the system is responding to streams from unauthenticated sources. In such 

instances, the source IP might be spoofed and the rate limit would be applied to 

innocent sources, this might translate to a very important customer IP address. There 

is also the issue of intrusion detection and automatic response system themselves 

being used as an attack tool against the system they are protecting. For example, an 

automatic response system that blocks all offending source IP addresses permanently 

or semi-permanently may be used by runaway hackers to cripple legitimate services 

by spoofing customer IP addresses during attack. This issue is beyond the scope of 

this project. Also but source IP addresses were not used as a classification parameter 

during response. 
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4.4 Traffic Generator  

 

4.4.1 Choice of user traffic 

 

We have decided to validate our DoS attack detection and response approaches under 

two types of user data source. The first type is a bursty one. In particular, we 

considered a data source which transmits a sequence of packets for a particular period, 

also known as “busy”  period,  and then becomes “silent” , a period which the source 

generate no network activity, for a relatively longer period. Typical example of a data 

source which exhibits such a traffic pattern is HTTP request generated by a user. 

Given web traffic remains the dominant traffic in the internet today, it is very 

important to include such profile into our study. The second type of data source is one 

which generates fix-sized packets at a fairly constant rate. Example of this type of 

data source includes, multi-media streaming and conferencing session (without any 

host-based conditioning techniques such as compression). Since there is a high 

interest in deploying voice and multi-media traffic over internet, we felt that it is 

useful to include this type of data source in our studies. 

 

 

4.4.2 Simulated User Network Traffic 

 

We have attempted to generate user network traffic using VideoLAN to stream a 

small video clip over our experimental overlay network. Indeed we have tried this 

setup for several times and each trail was haunted by three major technical problems.  

 

First, our network was build by connecting UML instances hosted on four separate 

physical Linux machines. Unfortunately, these Linux machines were powered by only 

a single Pentium II – 233 MHz CPU. Running four instances of UML while 

forwarding packets at the rate VideoLan generated proved to be much for the 

machines to handle.  Large number of packets were dropped by the intermediate 

routers. We have tried to use video clips with fairly low resolution and size, but this 
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problem persisted. We have considered using audio streaming applications, which use 

much lower bandwidth and generate packets at a relatively lower rate. However, such 

applications required access to the physical device (usually /dev/dsp in Linux) and 

virtualization of such device is not possible under the current UML implementation. 

 

Secondly, even if we managed to find a streaming application which generates 

packets at a rate acceptable to the experimental setup, we still face the problem of 

playing out the streamed packets. As mentioned before, audio has already been ruled 

out. In order to play out any video from inside an UML environment, we need to 

establish a connection between the X server on the physical host, which has exclusive 

access to the frame buffer device, and the X client application which tries to display 

the received packets. The only possible connection for such a purpose is to connect 

dummy X server (XNest, as described in Chapter 5) inside UML to the physical host 

via UDP. The side-effect of such a setup is that the X protocol would generate a 

significant amount of traffic at the ethernet interface of the UML hosts and this would 

affect our experiment which is based on measuring UDP traffic. 

 

Thirdly, while VideoLAN is extremely useful as a demonstration tools to show the 

effectiveness of the detection and response systems through the change in visual 

quality, it does not produce any measurable numeric values.  Without such numeric 

values, it is very difficult to analyse qualitatively the Receiver Operating 

Characteristics (ROC) of the detection system as well as the effectiveness of the 

response system.  

 

We realised that these two requirements can be easily satisfied by using a packet 

generator and a corresponding receiver. Using a packet generator, we were able to 

specify the size and the inter-transmission time of each packet. Hence, we can 

engineer the source such that the limit imposed by the physical machines is not 

exceeded. Furthermore, between the packet generator and receiver, it is possible to 

work out how many packets have been dropped in a particular session. This number 

would be helpful in evaluating the response system. 

 



MSc DCNDS  Group 4 - NAIRS 

 24 

4.4.3 Simulated Attack Traffic 

 

We have studied three ways to perform an actual DoS attack, either via simulation or 

otherwise.  First, we have tested two commonly used attack tools, tfn2k and 

stacheldraht.  While we failed to compile the version of stacheldraht we obtained, we 

were able to compile tfn2k after making some modifications to the source. With that, 

we had successfully launched a DoS attack against one of our test machines using 

tfn2k.  The effect was indeed devastating: the network segment became totally 

unusable. 

 

However, tfn2k requires direct interaction with the device driver, and we were not 

sure of how much interaction would affect our test environment.  Since Linux does 

not have process QoS by default, we were concerned that tfn2k may take up too much 

processing power of the physical and thus degrade the “performance”  of the test 

network. 

 

As an alternative, we explored the possibility of using the simple UNIX programme, 

ping, to simulate attack traffic. With the –f flag, ping would output packets as fast as 

they came back, via ICMP ECHO_REPLY, or one hundred times per second, 

whichever is more [23]. 

 

Consider the case of one hundred ICMP ECHO_REQUEST packets per second. Each 

packet was less then 80 bytes and thus the minimum traffic generated would be 8000 

bytes per second. This rate was too low to be useful to act as an attack source. For any 

rate above this, the actual ICMP packet generation rate would be directly related to 

how soon it received a reply. While this was good behaviour for normal usage, so that 

ping, even with –f supplied, would scale its rate according to the network condition, it 

was inconsistent with how a “good”  bandwidth-abuse DoS attack source should 

behave.  The objective of such a source is to flood the network by sending packets as 

fast as possible. Hence, we decided against using ping. 
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Finally, we also had the option to use our own packet generator to simulate an attack 

source.  Even though it did not generate packet as fast as attack tools like tfn2k, but 

the rate it could generate already surpassed the rate that the experimental network can 

handle.  Since we attempted to look at generic DoS attack which introduce abnormal 

level of network activity, we were indifferent on how the packets are generated. 

 

At the end, we decided to use our own packet generator because it gave us more 

control in defining what packet generation rate constituted a DoS attack.  
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5 Tools and Technologies 
 

This chapter describes the major tools and technologies used in the project. 

 

 

5.1 User  Mode L inux 

 

User Mode Linux (UML) was originally developed by Jeff Dike on i386 architecture 

as an implementation of a user space virtual machine.  UML consists of a Linux 

kernel that runs on a host Linux system, in a set of Linux processes.  

 

UML is a port of the Linux kernel to itself. That is, it considers the Linux system call 

interface to be a platform just as Intel x86 architecture and it is a port of Linux to that 

platform.  UML is just a Linux kernel that has been tweaked so that instead of talking 

to the bare metal, it talks to the services provided by a lower-level kernel.  UML 

kernel runs as a process under a parent Linux session: it uses a separate partition (a 

loopback-mounted filesystem, stored in a file) as its root file system, and it doesn't 

share any processes, memory or files with the parent Linux session. 

 

UML directly runs the host's unmodified user space. If processes run exactly the same 

way in a virtual machine as in the host, then their system calls need to be intercepted 

and executed in the virtual kernel.   Each process within a virtual machine gets its 

own process in the host kernel.  The host process is used solely as an execution 

context.  It will have completely different attributes from the UML process, including 

different name, different uid, and different pid.  Even threads sharing an address space 

in the user-mode kernel, get different address spaces in the host. 

 

UML can run essentially anything that will run on the host (the exceptions mainly 

being things that deal directly with hardware). This means that a UML can do 

anything that a physical Linux machine can, with the advantage that UMLs can be 
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created and destroyed as needed. The fact that a UML instance is virtual gives it 

capabilities that make even more applications possible. 

 

This project decided on using UML instead of a physical Linux machine because of 

limited number of machines available for the project and the flexibility it provides to 

configure a network tested with networking device functionalities e.g. a router 

without using the physical device.  UML provided a solution as many instances of 

UML host could run on a physical machine. 

 

 

5.2 OpenVPN 

 

OpenVPN is a robust and highly configurable IP tunnelling program.  It takes the 

approach of being a user-space daemon.  Its primary use is for linking networks 

together by constructing multiple tunnels to or from the same peer. 

 

UML supports no less than six different methods to provide networking to the virtual 

Linux system.  The most used network transport is through the TUN/TAP interface on 

the host, which is used by OpenVPN.  With a tap device, a virtual ethernet device can 

be created within UML, and all the traffic sent to UML instances will appear on the 

tap device on the host. 

 

 

5.3 Xnest 

 

UML does not have an X Windows and only runs on command line.  To transform the 

virtual machine into a full blown Linux box, it need to run an X server. X windows is 

needed to display video streams from the VideoLan application.   Xnest is the UML X 

server, it does not use a video card for its display but instead uses another X server. 
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5.4 Snort 

 

Snort, an open source network intrusion detection system, it is a packet sniffer that 

monitors network traffic in real time by scrutinizing each packet closely to detect a 

dangerous payload or suspicious anomalies.  It is based on libpcap (for library packet 

capture), a tool that is widely used in TCP/IP traffic sniffers and analyzers.  Snort 

detects attack methods such as DoS or buffer overflow through protocol analysis and 

payload searching/ matching. When it detects a suspicious packet, it sends a real-time 

alert to either syslog, a separate alert file, or to a pop-up window.  In this project, 

Snort is used in the token bucket based detection mechanism. 

 

 

5.4.1 Snor t Rules 

 

Snort uses a simple, lightweight rules description language that is very flexible. The 

rules are divided into two logical sections, the rule header and the rule options. The 

rule header contains the rule's action, protocol, source and destination IP addresses 

and netmasks, and the source and destination ports information. The rule option 

section contains alert messages and an arbitrary-sized list of information on which 

parts of the packet should be inspected to determine if the rule action should be taken. 

This list of information was made up of either built-in snort directives or plugins. One 

simple rule is illustrated here: 

 

al er t  i cmp any any - > 192. 168. 1. 17/ 32 any ( msg: ” ECHO 

r equest ” ;  i t ype=8;  dsi ze:  “ 400<>500” ; )  

 

The text up to the first parenthesis is the rule header and the section enclosed in 

parenthesis is the rule options. In this case, it described “an alert would be raise if 

there is any ICMP packet destining to a host with IP address 192.168.1.17 which 

matches every criteria described in the option section”. The options, in this case, were 

that the ICMP packet header indicates the packet is type 8 (i.e. ICMP echo request); 

and the payload of the datagram is between 400 and 500 bytes. While each rule 
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contains elements which had a logical and relationship, snort can perform inspection 

on any number of such rules for each packet. 

 

 

5.5 tc and L inux DIFFSERV  

 

A tool used in the token bucket based response mechanism is tc.  As part of Linux 

DIFFSERV [24] implementation, it is a utility used to interacte with the Linux kernel 

to configure different network quality-of-service (QoS) settings in the running kernel.  

It provided features such as traffic policing, shaping and DIFFSERV marking. 

 

 

5.6 Iptables 

 

UML comes with advanced tools for packet filtering which is the process of 

controlling network packets as they enter, move through, and exit the network stack 

within the kernel.  The firewall program, called iptables, can restrict access by IP 

address, port number, interfaces or by the properties of the packets. 

 

 

5.6.1 Packet Filter ing 

 

Traffic moves through a network in packets.  A network packet, which is a collection 

of data in a specific size and format, contains information that helps it navigate the 

network and move towards the destination.  The information includes the source 

address, the destination machine, the interface it should be going through or the 

packet type. 

 

The UML kernel has the built-in ability to filter packets.  Its IPTables consists of a 

series of tables.  A default IPTables setup comes with three tables as shown in Table 

5.1. 
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Table 5.1: Default Table for  IPTables  

 

Table Usage 

Filter The default table that filters out packets, preventing them 

from coming in or going out.  This is the most used table. 

Nat This table is used to alter packets that create a new 

connection 

Mangle This table has the capability of actually modifying packets 

according to various criteria. 

 

 

Each of these tables has a group of built-in chains that correspond to the actions 

performed on the packet by IPTables.  We will focus on the filter table because it is 

the table used to write rules for firewall reprogramming in the IDS and also counting 

packets for the learning engine.  The built-in chains for the filter table are shown in 

Table 5.1 below. 

 

 

Table 5.2: Built-in Chains For Filter  Table 

 

Chain Usage 

INPUT This chain applies to packets received via a network 

interface. 

OUTPUT This chain applies to packets send out via the same network 

interface that received the packets. 

FORWARD This chain applies to packets received on one network 

interface and sent out on another. 
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5.6.2 IPTables Rules 

 

Each chain consists of a sequence of rules.  Each rule consists of a condition that may 

or may not be met, and a target to which the packet is sent if the condition is matched.  

If the condition is not matched, the packet is passed to the next rule in the chain.  

Regardless of the destination, when packets match a particular rule on one of the 

tables, they are designated for a particular target or action to be applied to them.  

Every chain has a default policy to ACCEPT, DROP, REJECT, or QUEUE the packet 

to be passed to user-space. 

 

The common iptables commands have the following structure: 

 

Iptables [-t <table-name> ] <command> <chain-name> <parameter-1>  

<option-1>  <parameter-n> <option-n>  

 

The <command> option is the centre of the command.  It dictates a specific action to 

perform, such as appending or deleting a rule from a particular chain, which is 

specified by the <chain-name> option.  <parameter> define the way the rule will work 

and <option> will tell what will happen when a packet matches the rule. 

 

 

5.7 Videolan 

 

VideoLAN is designed to stream MPEG videos on high bandwidth networks.  It has 

two parts: 

 

• VLS (VideoLAN Server), which can stream MPEG-1, MPEG-2 and MPEG-4 

files and live videos on the network in unicast or multicast. 

 

• VLC (VideoLAN Client), which can be used as a server to stream MPEG-1, 

MPEG-2 and MPEG-4 files and live videos on the network in unicast or 
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multicast; or used as a client to receive, decode and display MPEG streams 

under multiple operating systems. 

 

In the project demonstration, video will be streamed from the server to the intended 

client.  Another machine will flood the network with packets to reduce the available 

bandwidth for the video stream. 

 

An illustration of the complete VideoLAN solution is shown in Figure 5.1. 

 

 

 

Figure 5.1: Global VideoLan Solution 
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6 Detailed Implementation 
 

6.1 Rate-based Approach 

 

6.1.1 Overview 

 

This section describes the specifics of the implementation details for the components 

of the NIRS system. As shown in figure 6.1, the NIRS system is made up of a 

network profiling agent, an intrusion detection agent, and an active response agent 

using the pushback semantics for message propagation. The stages in the system 

operation are therefore divided to the network profiling stage, the intrusion detection 

stage and the active response stages. 

 

 

 

Figure 6.1: Network Profiling, Intrusion Detection and Active Response Agent 
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6.1.2 Network Profiling 

 

In chapter four, the mathematical basis for intrusion detection was shown. This 

involved gathering network statistics against TCP, UDP and ICMP protocols by the 

profiling agent. These protocols are the most often used during network DoS attacks. 

This was done by setting up IP-accounting rules for the target or victim network and 

periodically reading the account data using the Linux iptables infrastructure described 

earlier in the report. For our tests in the project, the target network had address 

192.168.1.0/24. In order to be able to capture all traffic information for this target 

network, the accounting function was placed at the ingress router serving this network 

segment. To set up the accounting tables for the target network against the TCP, UDP, 

and ICMP protocols, the following sequence of iptables rules were specified: 

 

i pt abl es - N ALLTCP 

i pt abl es - N ALLUDP 

i pt abl es - N ALLI CMP 

 

The iptables statements above would create new iptables chains required to store 

accounting information against the specified protocols. 

 

Given that all packets destined for the target network and passing through the ingress 

router are passed through the netfilter OUTPUT or FORWARD chain of the ingress 

router, accounting information had to be gathered on these chains: 

 

i pt abl es - A FORWARD - p t cp - j  ALLTCP 

i pt abl es - A OUTPUT - p t cp - j  ALLTCP 

i pt abl es - A ALLTCP - d 192. 168. 1. 0/ 24 - p t cp 

 

The statements above tells the netfilter code to jump to the ALLTCP chain whenever 

a tcp protocol packet traverses the FORWARD or the OUTPUT chain of the router. 

The last statement isolates packets matching the separation criteria of either of the two 

statements above and with a destination 192.168.1.0/24 (the target network). 
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Similarly for the UDP and the ICMP protocols the following rules were used: 

 

i pt abl es - A FORWARD - p udp - j  ALLUDP 

i pt abl es - A OUTPUT - p udp - j  ALLUDP 

i pt abl es - A ALLUDP - d 192. 168. 1. 0/ 24 - p udp 

 

i pt abl es - A FORWARD - p i cmp - j  ALLI CMP 

i pt abl es - A OUTPUT - p i cmp - j  ALLI CMP 

i pt abl es - A ALLI CMP - d 192. 168. 1. 0/ 24 - p i cmp 

 

To extract the accounting information from the netfilter system, the iptables list (-L  

option) command in the verbose (-v) will generate the packet and byte count that 

matches a rule specified to the netfilter kernel code. For example the command below 

shows accounting information for the ALLICMP chain specified above. 

 

i pt abl es –L ALLI CMP–vnx 

 

Output: 

 

 

Chai n ALLI CMP ( 2 r ef er ences)  

 

 pkt s byt es t ar get   pr ot  opt  i n out   sour ce    dest i nat i on 

 1634 137256        i cmp - -   *    *    0. 0. 0. 0/ 0 192. 168. 1. 0/ 24 

 

 

The output shows 1634 packets matching the rules have traversed the chain with a 

total size of 137256 bytes. To extract just this information, the command could be 

piped through grep, tr (translate character) and cut as follows: 

 

D_I P=“ 192. 168. 1. 0/ 24”  

st at I CMP=` i pt abl es - L ALLI CMP - vnx - Z |  gr ep " $D_I P"  |  t r  - s '  

'  ' : '  |  cut  - d:  - f 2- 3`  
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The result in the statICMP variable is packet count in field one and byte count in the 

second filed. 

 

The –Z option in the iptables command zeroes the table for the next reading, such that 

accounting information of new packets that match all the rules specification only are 

read at the next sample.  

 

This is done for all the protocols as shown below: 

 

st at TCP=` i pt abl es - L ALLTCP - vnx - Z |  gr ep " $D_I P"  |  t r  - s '  '  

' : '  |  cut  - d:  - f 2- 3`  

st at UDP=` i pt abl es - L ALLUDP - vnx - Z |  gr ep " $D_I P"  |  t r  - s '  '  

' : '  |  cut  - d:  - f 2- 3`  

st at I CMP=` i pt abl es - L ALLI CMP - vnx - Z |  gr ep " $D_I P"  |  t r  - s '  

'  ' : '  |  cut  - d:  - f 2- 3`  

 

TCP_PKT_COUNT=` echo $st at TCP |  cut  - d:  - f 1`  

UDP_PKT_COUNT=` echo $st at UDP |  cut  - d:  - f 1`  

I CMP_PKT_COUNT=` echo $st at I CMP |  cut  - d:  - f 1`  

 

TCP_BYTE_COUNT=` echo $st at TCP |  cut  - d:  - f 2`  

UDP_BYTE_COUNT=` echo $st at UDP |  cut  - d:  - f 2`  

I CMP_BYTE_COUNT=` echo $st at I CMP |  cut  - d:  - f 2`  

 

These statements were put in a script, which executes continuously and prints out the 

results with a sequence number and the timestamp as shown below: 

 

echo " t cp:  $T $TCP_BYTE_COUNT $DATE $TCP_PKT_COUNT"  |  t r  - s '  

'  " \ t "     

echo " udp:  $T $UDP_BYTE_COUNT $DATE $UDP_PKT_COUNT"  |  t r  - s '  

'  " \ t "     

 echo " i cmp:  $T $I CMP_BYTE_COUNT $DATE $I CMP_PKT_COUNT"  |  t r  -

s '  '  " \ t "   
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The output stream of this script was captured by the profiling agent, parsed and sent to 

its statistical analysis engine for processing. This is shown in Figure 6.2 below: 

 

 

 

 

Figure 6.2: Operation of the Profiling Agent 

 

 

The agent simply computes the mean and the standard deviation of the result over the 

profiling period. Given that the tests carried out in the in the project are to provide 

proof of concept for network profile based intrusion detection and response systems, 

the information fed to the profiling system has been greatly simplified. The 

categorization has been done at the protocol level, and the statistical analysis has been 

limited to the mean and the standard deviation of the training set. In a production 

system, it remains to be shown that further categorisation up to the protocol options 

level, isolation by source network, application layer information, and further 

statistical properties examination would greatly improve the quality of the intrusion 

detection system. 

 

 

6.1.3 Intrusion Detection 

 

Within the constraints of the standard deviation of the profiling data set from the 

mean, the intrusion detection agent is able to classify a network sample as an attack 

traffic or not.  Several factors may make a legitimate traffic look suspicious, but 
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within the limits of information available, i.e. the mean and standard deviation, the 

level of confidence associated with a classification is affected by its value and the 

standard deviation of the training set. In set notation, this is shown diagrammatically 

below: 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Normal and Attack Traffic Showing Region of Intersection 

 

 

The area of intersection of the two sets shows the region of uncertainty for the 

intrusion detection system. We want to minimise this region as much as possible.  The 

size D of the intersection region in the figure above is a factor of the variance of the 

data set. Further narrowing down the classification criteria of the training set could 

reduce this. However, within this constraint, the detection agent has to classify a 

network sample with an associated confidence level expressed as a probability P(X) 

given by the sigmoid function as described in Chapter four: 
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Intuitively, a = f (D) = f (σ) as previously shown in Chapter four. It remains to be 

shown the exact relationship between these variables. For the purpose of our tests, a 

was chosen to be 0.2. 
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Scaling our data sample to the region [-10,10] with our [ymin,ymax] = [0,480000], then 

 

10
24000

−= y
x  

 

Given that our maximum inbound link capacity is 60 kBps = 480 kbps. 

With a = 0.2 and x = [-10,10] then P(x) = [0.1192,0.8808] 

 

The intrusion detection system accepts the current sample, if it is less than the mean 

value from the profiling agent, it returns a P(x)=0 otherwise it passes the value 

through the sigmoid function and returns the associated probability. The detection 

engine also uses a parameter called confidence threshold C; whenever P(x) > C it 

sends an alert to the response system described shortly. A figure of the detection agent 

is shown below. 

 

 

 

Figure 6.4: Schematic Of The Intrusion Detection System 
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6.2 Token Bucket Based Approach 
 

The focus of this approach is not to develop a system different from that outlined in 

the previous chapter.  Rather, we aimed to use a token bucket descriptor instead of 

aggregated rate as the basis for profiling, detection and response. We have 

implemented the detection system and experimented with the response system. 

 

 

6.2.1 Detection System 

 

6.2.1.1 System Design 

 

 

 

Figure 6.5: Token Bucket Policer 

 

 

To detect if the incoming traffic conforms to the normal we had characterised, we 

implemented a token bucket policer with some modification.  The design was 

depicted in Figure 6.5.  The maximum number of tokens that the token bucket could 

hold was defined via the bucket size argument but no lower limit was defined. In fact, 
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we allowed the number of tokens in the bucket to be negative. The bucket is 

initialised to full and the token refill rates determined how many token would be 

refilled to the bucket per second. Packets from the traffic flow we would like to 

monitor entered our policer sequentially. 

 

For each entering packet, it would need to ‘consume’  some number of tokens from the 

bucket. This ‘consumption’  was reflected by reducing the number of tokens in the 

token bucket by the number of tokens to be consumed by that packet. After this 

‘consumption’ , if the number of tokens in the bucket was non-negative, no alert 

would be raised as the flow conforms to the normal we had characterised. Otherwise, 

an alert would be raised with the number (negative) of tokens in the bucket also 

reported. If each packet “consumes”  exactly one token regardless of its size, this 

conformance engine then checked for packet arrival rate conformance. On the other 

hand, if each packet “consumes”  the same amount of token as its size, the engine then 

polices bandwidth usage. 

 

 

6.2.1.2 Implementation 

 

From our design, it seems the refill mechanism requires accurate asynchronous 

notifications such that tokens are refilled at the interval specified.  One naïve 

approach could possibly be using SIGALRM to generate alarms at regular intervals to 

fill the bucket. However, such approach may not achieve very high accuracy given 

that Linux did not provide Real-Time guarantee. Even worse, the code would become 

unnecessarily complex to deal with potential problems of concurrency control. 

 

In our implementation, we used inter-packet arrival time to determine the state of the 

token bucket. The advantage of such approach is that it does not require any external 

asynchronous notification. The insight of our implementation is that we only needed 

to know the state of the token bucket when a packet had arrived. Hence, we could use 

the event of packet arrival as a trigger. Here we present our argument.  

 



MSc DCNDS  Group 4 - NAIRS 

 42 

Consider the token refill interval to be, i, and three consecutive packets to arrive at t0, 

t1, and t2 respectively. If we assume that a refill has occurred at same moment as the 

first packet arrived. It is obvious that 

 

 t1 – t0 = n1 *  i + x1        (6.1) 

 

where n1 (n1 > 0) is the number of refilled should have happened between t1, and t0, 

and x1 (x1 < i) is the amount of time to next refill at t1. As observed from Figure 6.5, 

we have, 

 

(t2 – t1) = (n2 + n1 ) * i + x2 – (n1 *  i+ x1) 

(t2 – t1) = n2 *  i+ x2 – x1 

n2 *  i+ x2 = (t2 – t1) + x1 

 

where n2 (n1 > 0) is the number of refilled should have happened between t2, and t1, 

and x2 (x2 < i) is the amount of time to next refill at t2. 

 

Therefore, the general form is: 

 

nj *  i+ xj = (tj – tj-1) + xj-1       (6.2) 

 

where nj (n1 > 0) is the number of refilled should have happened between tj, and tj-1, 

and xj (xj < i) is the amount of time to next refill at tj. From our assumption, it was 

obvious that xo = 0 by definition. 

 

Assume that the number of tokens in the bucket immediately after consumption by the 

(j+1)th packet is Nj+1, which could be given by 

 

 Nj+1 = Nj + nj+1 – (number of token consumed by the (j+1)th packet)(6.3) 

 

where No = maximum token bucket size. 
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From section 6.2, n1 and x1 are the quotient and the remainder of {  (t1 – t0) / i }  

respectively.  Since (tj – tj-1) was in fact the inter-packet arrival time, and i is a known 

constant. The state of the token bucket after each packet has arrived solely depends on 

the inter-packet arrival time. 

 

Since iptables does not provide any timing information on a per packet basis. We 

turned to packet capturing utility for such data.  Libpcap is the de facto library for 

packet capturing under UNIX and Linux environment. For each packet captured, it 

provided information about the packets such as headers, length, etc. More 

importantly, each packet is time-stamped and thus allows us to compute the inter-

packet arrival time. However, this timestamp reflected the time the kernel first saw 

the packet and it made no attempt to account for the time lag between when the 

ethernet interface removed the packet from  the  wire and when the kernel serviced 

the `new packet' interrupt [25]. 

 

 

 

Figure 6.6: Inter-packet Arrival Time 
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variation in delay, when compared to td1, during the capturing process, �1 �   �2. We 

now had, 

 

td2 = (t1+ �2) – (t0+ �1) = (t1 – t0 ) + (�2 - �1) �  t1 – t0 = td1  

 

As a result, the inter-packet capturing time would be a good approximation to the 

inter-packet arrival time and we established the rational to use libpcap in this 

detection system. 

 

 

 

Figure 6.7: Packet Capture Time And Packet Arrival Time 

 

 

We implemented, in C, our real-time token bucket-based detection as an extension 

module to Snort, the open-source intrusion detection system (IDS) built on top of 
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First, libpcap is a powerful library, but to use it directly would require substantial 

expertise in UNIX/Linux system with regards to signals, low level devices, etc. The 

snort extension framework, called “plugin”  in their documentation, hid all these 

complexity. Thus, we could concentrate in developing our detection module without 

having to spend weeks, if not months, to beef-up our UNIX system skills. 

 

Secondly, the flexibility of snort was very helpful. Since we would like to build a set 

of network profile based on different header settings (indeed, protocol type could be 

considered as one form of header setting), we could leverage on the extensive header, 

and even payload, signature matching plugins to perform the task of protocol 

classification. In fact, by taking advantage of such capability, we needed to implement 

only a token bucket verifier plugin. 

 

Third, snort is widely deployed thus it is a credible platform of choice. 

 

 

6.2.1.3 Snort Plugin 

 

The plugin we developed has three arguments: token-refill rate, bucket size, and 

packet rate flag.  Token-refill rate configured the rate at which the token bucket 

would be refilled. It was expressed as token per second. Bucket size configured the 

maximum number of tokens that the token bucket could hold. Packet rate flag 

specified if the plugin should check for bandwidth or arrival rate attack. If this plugin 

was to check for bandwidth usage, it was assumed that each byte in a packet would 

consume one token. A sample snort rule that uses this plugin is as follow: 

 

Udp any any - > 192. 168. 1. 17/ 32 any (  t oken_bucket : ” 20000,  

50000, 1” ;  )  

 

This rule instructed snort to check if all UDP traffic destining for 192.168.1.17 would 

conform to the bandwidth usage of an average rate of 20000 bytes per second and the 

largest burst allowed is 50000 bytes. 
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Side notes 

 

It was also important to point out that this plugin we developed can be used 

‘standalone’  outside of the system we proposed. Currently, snort offered only 

signature-based intrusion detection. As pointed out in Chapter 3, such an approach 

was insufficient to counter the increasingly sophisticated and quickly evolving DOS 

attack. At the meantime, people started to demand to be able to describe attack, in 

snort, using signature in conjunction with rate in several newsgroup postings. 

Consider TCP sync-flooding.  Currently snort was entirely ineffective such attack. It 

was because snort can only detect if such packets are matched on a packet-by-packet 

basis only. But the presence of any single TCP-sync packet did not constitute such an 

attack. It was the fact that such packets arrived at an abnormally high rate that 

constitute an attack. Using the token bucket plugin, system administrator could 

configure snort to raise an alert when a type of traffic was arriving at a token bucket 

rate higher then their historical value.  Thus, they can then have a sound way to detect 

flooding-based attack without having to know the signature of the attack packet 

before hand. 

 

 

6.3 Active Response System 

 

The active response system is made up of a collaborating community of software 

agents. The master agent is the one closest to the resource being monitored. On 

detection of a DoS attack at the victim network, the intrusion detection system sends 

an alert to the response agent with information about the level of confidence it has on 

the attack and the information about the attack based on the two-tuple S={ c, 

NET_INFO}  described in chapter four.  

 

Where NET_INFO contains network specific information like the offending protocol, 

IP addresses, interface etc required by the response system.  The response system uses 

this information to react to the DoS attack. The response agent may still ask the 
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intrusion system to carry out further forensic analysis on the offending traffic to 

further isolate it from other legitimate traffic. 

 

For our tests we used the netfilter rate-limiting functionality to throttle the data rate of 

the offending traffic. A limit is applied to the data rate of the offending protocol, and 

using the pushback messaging mechanism, the master agent sends signals to the 

upstream pushback messenger, which applies the rate-limiting function to traffic 

matching the profile specified by the master agent. 

 

For the purpose of our test, the pushback message include the three-tuple 

{ PROTOCOL, DESTINATION_IP, RATE}  which the upstream agent interprets as: 

apply rate limiting to a maximum of RATE for all traffic destined for the downstream 

network with IP address DESTINATION_IP whose protocol is PROTOCOL. For 

example a message received by any pushback messenger { icmp,192.168.1.0/24,5}  

would mean rate-limit all icmp packets with destination IP in the range 

192.168.1.0/24 to a maximum of 5 packets per second. In iptables parlance, this 

would be implemented as: 

 

# create a new iptable chain to enforce maximum rate 

 

CHAI N_NAME= I CMPLI MI T 

DEST_I P=” 192. 168. 1. 0/ 24”  

RATE=” 5”  

 

i pt abl es - N $CHAI N_NAME 2>/ dev/ nul l  

 

#flush the chain in case there was an existing rate 

#specification 

 

i pt abl es - F $CHAI N_NAME 

 

i pt abl es - A $CHAI N_NAME - p i cmp - d $DEST_I P - m l i mi t  - - l i mi t  

$RATE/ s - j  ACCEPT 
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Legend: 

 

Figure 6.8: Pushback Message Propagation 
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This will apply the rate-limiting function to all ICMP traffic destined for the victim 

network. A further isolation parameter could be to use the source IP addresses of the 

offending traffic, but knowing that the source address may be spoofed, it is not a 

reliable method.   Pushback message propagation is shown in Figure 6.5.  The 

pushback messengers use lightweight UDP communication protocol. 

 

We also experimented with the Linux traffic control utility, tc.  It was developed as 

the control utility for Linux DIFFSERV (differentiated-service [26]) implementation 

and it interacted with the Linux kernel to setup network quality-of-service (QoS), 

such as traffic shaping (both ingress and egress) and traffic policing among others. In 

our setting, we used the traffic shaping feature.  

 

In our experiment, we used tc to setup one “class-based” queue for each Ethernet 

interface. Queue here referred to queuing disciplines which were algorithms which 

control how packets are queued to the network interface card were treated. The 

concept of “class-based”  queues would be demonstrated in Figure 6.8. Here we had a 

“class-based”  queue which contains two “classes”  and each “class”  was associated 

with its own queuing discipline. “Filters”  were used to match different packet 

property, such as header information”, and classified each of them into different 

“class” . 

 

 

 

Figure 6.9: Logical Structure of Class-base Queue 
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We defined different “ filters”  to separate the traffic from the different traffic classes, 

as defined during the profiling phrase, into different classes in this “class-based”  

queue. 

 

For each “class” , we then linked to each class a separate “ token bucket filter”  (TBF) 

queuing discipline to limit the bandwidth consumption to the level described by the 

token bucket parameters. 

 

While tc performed excellently in bandwidth limiting, one disadvantage was that it 

did not support rate limiting. At least, we have not found out how it could be done 

with tc. Furthermore, the documentation and usage of the programme was rather poor 

and we had to rely on third-party documentation to understand the syntax and 

semantics of its “class-based” queues [27]. 

 

 

6.4 Packet Generator  

 

We have three major requirements for the packet generator to be used. First, it must 

be simple to use. Secondly, we would like to be able to control the size of the packet it 

generates and the rate at which the packets are injected into the network at rate well 

below that is accepted by the virtual network infrastructure. Thirdly, it must be able to 

work with the Linux traffic control mechanism in order to constrain the traffic to be 

injected into the experimental network at rate configured.  

 

There are many packet generators available on the internet, but we found most of 

them to be unsuitable for our purpose. While some of them, such as [28], have very 

complex configuration parameters due to their powerful nature, others, such as [29, 

30] are designed to stress test network equipment such that they intend to send 

packets as fast as possible by interacting directly with the low level Ethernet device 

driver. It is not clear if packets generated this way would work with the queues 
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defined via the Linux traffic control mechanism and more importantly inside the 

UML environment. 

 

Hence, we have developed our packet generator. It is a simple user-space C 

programme that sends fix-sized packet UDP to a given host at roughly a given time 

interval. There are three variants of the packet generators: one to generate “steady”  

traffic, one to generate “bursty”  traffic, and one to generate packet as fast as possible. 

 

 

6.4.1 Steady Traffic Generator  

 

This generator takes the following arguments: destination host IP address and port 

number, UDP packet payload size (in bytes), inter-packet generation time (in seconds 

and microsecond). The minimum payload size accepted is four bytes (the rational will 

be clear) and the generation interval must be greater than zero. Upon start-up, it setups 

the UDP socket and then generates a buffer with size at least as big as that specified 

as the payload size and then. The first four bytes of the payload is used to 

accommodate a 32-bit integer. This integer, which is initialized as 0 and incremented 

by one for each packet sent, is used as a sequence number, in conjunction the packet 

receiver, to detect the number of packets dropped. It uses sendto system calls to inject 

packet into the network and then uses the select system to put the process into “sleep” 

for the duration specific before the next call to sendto. Since the system call actually 

takes time to complete, an inter-packet generation time of zero would certainly not be 

able to archive through this mechanism. In fact, we have developed another generator 

simply for this purpose. 

 

 

6.4.2 Bursty Traffic Generator  

 

One type of bursty traffic can be generated by a data source which transmits a 

sequence of packets for a particular period, also known as “busy”  period,  and then 
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becomes “silent” , a period which the source generate no network activity, for a 

relatively longer period. Typical example of a data source which exhibits such a 

traffic pattern is HTTP request generated by a user.  

 

Our bursty generator attempts to emulate such data source and takes in the following 

argument: destination host IP address and port number, UDP packet payload size (in 

bytes), number of packets generated during the “busy”  period, inter-packet generation 

time during “busy”  period (in microsecond only), and the length of the “silent”  period 

(in second and microsecond). While the length of the “silent”  period is explicitly 

specified, the length of the “busy”  is determined by the number of packet to be 

generated and the inter-packet generation time. 

 

Similar to the steady one, payload size must be greater four bytes, and the time 

duration must be greater zero. Upon start-up, the generator setups the UDP socket and 

payload buffer similar to that of the steady generator. It then starts to generate packets 

with the inter-packet interval set to that specified for the “busy”  period using select 

similar to the way described above. Indeed, the major difference is that after sending 

the number of packets during “busy”  period as specified from the command line, the 

generator then enters a “silent”  period. This is archived by using select to put the 

process into “sleep” for the duration of the “silent”  period. Afterwards, it re-enters the 

“busy”  period. 

 

 

6.4.3 As-Fast-as-Possible Generator  

 

We have attempted to develop a user-spec programme that generates UDP packets as 

fast as possible. The naïve implementation we have is to skimpily put sendto in a 

while loop which does not do much otherwise. However, we decided to abandon such 

approach because the UML environment cannot even keep up with packets generated 

through this approach. 
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6.4.4 Packet Receiver  

 

This is a simple UDP daemon that accepts the packet sent to it by the generator. It 

checks the sequence number, inserted by the generator, of each packet against what it 

has received so far. Assuming no packet re-ordering has occurred, it then decides if 

any, and by roughly how many, packets have been lost during the transmission. This 

is particularly helpful when we engineered the link capacity of the experimental 

environment. This will be further discussed in the next chapter. 
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7 Test Environment 
 

It is essential to have a testing environment to analyse and validate the proposition put 

forth in the previous chapters. The chapter is structured as follows: first is a 

description of the high-level design of the test environment, followed by details of 

how it was implemented and finally a discussion of the problems faced and their 

solution. 

 

 

7.1 Design Overview 

 

Figure 7.1 shows a detached section of the test environment to illustrate the network’s 

multi-hop design consisting of routers and end-host. All end hosts are regular UML 

host but for 7the purpose of identification, we refer to host on the Victim subnet as 

Victim host, those on the attacking subnet are Attack host while others are called User 

host. The victim and user hosts were configured to be in different subnets. 

 

The test scenario is laid out as follows: Under normal network operating conditions, 

good network traffic originates from the user subnet destined for a host in the Victim 

subnet as shown in the figure. Under attack condition, attack traffic is generated from 

a host in the attack subnet and also destined for the Victim subnet. This produces a 

situation where both the good and attack traffic compete for the same network 

resources.  Thus emulating a Denial of Service (DoS) situation. 

 

A tree like topology with a minimum tree depth of two was used for the core network 

with the victim located at the root of the tree and user /attack host are at the leaf nodes 

This tree-like topology was inspired by the one in [1] paper 

 

There are several reasons for the choice of such a topology. First, in the view of the 

victim host or more specifically the server running on that host, the internet has a tree-
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like topology with itself being the root. This is because it sees requests coming from 

different hosts flowing towards it. Such requests which may originates in different 

internet segment are all eventually aggregated into the one link connecting the victim 

host to the gateway router of that host (assuming the victim itself is not multi-homed). 

Second, such network allows us to study the effect of our response mechanism on 

different legitimate traffic on various level of aggregation with DoS attack traffic. 

 

 

 

Figure 7.1: Design Of Our  Test Network 
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7.2 Implementation 

 

We would have loved to use real routers to implement our design. However, we had 

resource constrains. Indeed, we had only five Intel Pentium II – 233 Mhz PCs, one 

shared medium Ethernet hub and five straight ethernet cables to carry out our project. 

More importantly, the machines were only equipped with one network interface card 

and an extra card could not be added to any of the machines. This completely ruled 

out the possibility of changing how these machines were to be inter-connected to 

implement our design. Thus, the only solution available was to build an overlay 

network so that we could implement the topology designed.  

 

The use of UML came as a natural choice to build such a network. Firstly, it allowed 

us to implement the network we had designed because each UML instance could be 

configured to have as many network interfaces as we desired. Secondly, since UML 

provided a full Linux environment, tools we developed for intrusion detection and 

response could be easily deployed in a real Linux environment without any significant 

changes. Thirdly, similar projects had been done with UML, e.g. the honeynet project 

[31]. So this technology was indeed a proven one. 

 

 

7.2.1 Network Configurations 

 

Fig. 7.2 shows the virtual network built using four ‘ real’  Linux machines. This 

network consists of UML hosts configured as routers or end systems. These hosts 

were organized into three separate subnets (or networks) and a transit network such 

that each of these “components”  resided in one “ real”  Linux machine. Each subnet 

was connected to the transit network via a virtual link with no direct connectivity 

between them. Inside each subnet, there was a gateway router which connected that 

subnet to the transit network and there were also a number of end systems. The 

gateway router and end systems were connected using uml_switch, a networking 

daemon that run inside “ real”  Linux machines to acts as an Ethernet switch to provide 
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connectivity among the UML instances running inside that machine. Similar to a real 

Ethernet switch, it can be configured to work in switch or hub mode.  

 

For the subnets, we configured uml_switch to work as a hub. We named the transit 

network the “ core”  network. It consisted of only routers. These routers were 

connected using uml_switch, configured in switch mode, to emulate the nature of 

dedicated links among the routers. Finally, we connected the gateway router of each 

subnet and the “core”  network through the physical LAN. We would like to point out 

that the choice of deploying this test network over more then one Linux machines was 

absolutely essential. From our live usage experience, the machines available for the 

project could not handle more than five UML instances running concurrently. As a 

result, we had no choice but to deploy the network over several physical machines. 

The topology is shown in figure 7.2 below 

 

We named the three subnets: attack network, user network, and victim network 

respectively. The victim network was where the victim host, as described in section 

7.1, resided. The user network is the network segment in the test environment where 

the legitimate user traffic is generated. The nomenclature used is indicative of the 

functionality in the test environment and is not related to its operational semantics. 

The operational semantics of the attack network is similar to that of the user network. 

But as its name indicates, DoS-type attack traffic originates from this network 

segment. 

 

The IP addresses used for each node in this overlay network were selected from the 

non-routable address space (192.168.0.0/16) to prevent external traffic from 

interfering with our test environment and vice-versa.  The victim, user and attack 

network segment in the test environment used classless inter-domain routing (CIDR) 

with a 28-bit network mask (255.255.255.240).  This sets a theoretical limit of 14 

hosts per subnet in each segment. The segments could have a theoretical limit of 14 

subnets per router. 
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Figure 7.2: Topology Of The Vir tual UML Network 
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The victim network had one router, the user network had two routers, and the attack 

network also had two routers.  All outbound traffic from the subnets traversed the 

router through the core network to the destination and vice versa. The configuration 

was such that inter-subnet communication never traversed the physical host boundary 

to the physical network. 

 

Given that the subnets and the “core”  networks were connected using IP tunnelling 

over a shared-medium ethernet segment, which used CSMA-CD as the under-lying 

multiple-access scheme, care was needed in planning the data rate the virtual links 

would carry.  As pointed out in [19], while load on an Ethernet increased, collisions 

became more common and thus increased the mean delay for each sender. In the 

extreme case if load tends to infinity, the actual throughput of the network drops to 

nearly zero. 

 

Another rational for limiting the bandwidth of each cross-machine links was that these 

links were designed to be dedicated, such that traffic level on one link should not 

affect another. Since Ethernet, the underlying Layer-2 medium, does not support such 

notion, we had to “protect”  each link from one another so that each of these links 

“behaved” similarly to a dedicated one.  

 

To mitigate both problems, a maximum of 60% utilization was agreed on for the 

LAN. We limited the bandwidth of each cross-machine link to 1/n of the desired 

maximum offered load on the Ethernet, where n is the total number of cross-machine 

links (In this implementation, n = 6). Since Ethernet had a theoretical maximum of 10 

Mbps data rate, this would amount to a total of 6 Mbps as the maximum desired 

offered load. Each of such links was capable of asymmetric data rate on the outbound 

and inbound links, but for the purpose of the experimental setup a symmetric data rate 

was assumed. Altogether, there were six cross-machine links each with symmetric 

data rate on the links; this left 6/12 Mbps for each link. This is equivalent to 62.5 

Kbytes per second, and we further rounded it down to 60 Kbytes per second. 
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7.2.2 UML Configurations 

 

UML being an implementation of the Linux kernel has similar networking semantics 

as a physical Linux box. During kernel compilation, networking options for routing, 

packet filtering, traffic control, IP tunnelling etc were enabled to facilitate the 

operation of different layers and components in the experimental setup that required 

the functionalities. For example, IP forwarding was required for UML hosts operating 

as router, and IP tunnelling was required for traffic isolation and proper routing of 

packets in the overlay network.  These options were either compiled into the kernel or 

loaded on demand as modules during network setup. The following table shows the 

most important options and their contribution to satisfying the requirements for the 

overlay network specifications. 

 

 

Table 7.1: Impor tant UML Kernel Options For  The Network 

Networking Option Kernel Option(s) Descr iption 

UML Networking CONFIG_UML_NET=y Enable UML Networking 

TUN/TAP Driver CONFIG_UML_NET_TUNTAP=

y 

CONFIG_TUN=y 

TUN/TAP transport allows 

communication between 

UML host and the physical 

host 

TCP/IP Networking  CONFIG_INET=y Enable IP Networking 

IP Forwarding CONFIG_IP_ADVANCED_ROU

TER=y 

Enable UML host to 

operate as a router 

IP Tunnelling CONFIG_NET_IPIP=y Support for IP in IP 

tunnelling 

Packet Filtering CONFIG_IP_NF_FILTER=y 

CONFIG_IP_NF_IPTABLES=y 

Packet filtering and 

iptables support 
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All the traffic generated from the UML network were routed through an IP tunnel on 

the Ethernet LAN.  

 

 

7.2.3 UML Environment 

 

Since UML, by itself, is merely a Linux kernel running as a user-process in Linux, we 

needed to provide the filesystem in which the kernel will boot with and, in our case, 

the networking configurations of each instance. 

 

We evaluated with several filesystem for UML available on the internet [32] and 

decided to use the one based on Debian woody distribution. The rational was that, 

even though RedHat based Linux distribution and its variants were widely used, those 

RedHat-derived file systems available from [32] did not suite our need. They were 

either too big in size, or lacked the tools we desperately needed, such as make, perl, 

etc. In fact, with the exception of the largest one, which is more then 600 MB in size, 

none of them came with rpm, the RedHat package management programme. This 

meant additional software could not be installed easily. On the contrary, the Debian-

based filesystem was much very much smaller in size (25MB) and it had the Debian 

package management system installed. Hence, we were able to install all the 

additional software we required without much problem using apt-get, a Debian-

specific utility to download and install software. 

 

As laid out in section 7.2.1, we configured the UML instances as either end-hosts or 

routers. While they shared some common configuration, it was apparent that their 

networking configuration would be vastly different. In order to facilitate the 

deployment of this test network, we developed a set of scripts, which resides inside 

the UML filesystem. These scripts, during UML boot-up time via System V init 

process, would detect if it should be configured as a router or end-host and configure 

the Ethernet drivers, bring up the network interfaces, create the appropriate routing 
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table according to our topology, and, in the case of “border”  router, setting up virtual 

IP tunnels appropriately. 

 

While it was obvious to understand why we need to configure ethernet drivers, 

network interfaces, etc., it is less so with the need to setup virtual IP tunnels. Indeed, 

the need of such tunnels would be clear after we described the setup of the physical 

Linux boxes we had adopted. 

 

 

7.2.4 ‘Physical’  L inux Host Environment 

 

Even though a simple command was sufficient to start the booting of a single UML 

instance under Linux, it was no simple task to start a group of UMLs which were 

inter-connected in the way we devised. In our bid to make the UML environment as 

generic and flexible as possible, we put the intelligence of the topology in the physical 

Linux box environment instead. However, in doing so, we needed to “ tell”  each UML 

instance how to configure themselves when they are started. This was achieved by 

passing appropriate command line options to the UML instance such that it knows 

how it should configure itself and what values to use for the init scripts during boot-

up as described in the previous section. 

 

The requirement of the overlay network for the physical Linux host is that it must 

perform IP forwarding for the ‘private’  address space and address-resolution-protocol 

(ARP) request-reply on behalf of the UML instances running inside that particular 

host. Thus, it was necessary to configure the routing table of the physical host, as well 

as enable ARP proxy for those UML instance running that host.  

 

However, this setting introduced a problem with the networking configuration 

between the gateway routers of the UML subnet and the core UML network. Consider 

the case of sending an IP packet from an end-host in the user subnet via the core 

network to another end-host, v1, in the victim subnet. The packet first got routed to the 

gateway router of the user subnet. Then, this gateway router would attempt to forward 
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this packet over the Ethernet to the corresponding router in the core network. In order 

to do so, the gateway router first forwarded this packet to the physical Linux box via 

the TUN/TAP device. At this point, the routing daemon of the physical Linux box 

would examine the header of the packet which would have the IP address of v1 in this 

case. The routing table of the physical box would essentially contain a route to route 

this packet to the Ethernet device (eth0 in this case). As the physical box prepared to 

transmit this IP packet over eth0 device, it would have to discover the MAC address 

of v1 through ARP. At this point, the physical host on which the victim subnet is 

running would certainly reply due to the ARP proxy configured as stated earlier. 

Thus, this packet would be delivered directly from the user subnet to the victim subnet 

without passing though the core network. 

 

We solved this problem by using IP-in-IP (IP-n-IP) tunnel to connect gateway routers 

in each subnet to their peer router in the core network. Consider the above scenario 

again. When the IP packets arrived at the gateway router of the user network, the 

packet would be encapsulated into another IP packet destined for the peer router, c1, 

in the core network and this new IP-in-IP packet would then be forwarded to the 

physical host. When the routing daemon on the physical host examines this IP-in-IP 

packet, it would try to forward this packet to the address in the header of outer packet 

which is c1. This IP-in-IP packet would then be delivered to c1 using the mechanism 

described in the last paragraph. On arrival at c1, this packet would be de-encapsulated 

and the original IP packet sent would now emerge. This packet would then be routed 

through the core network to the final destination v1. 

 

We wrote a number of bash scripts to automate these tasks. These scripts, together 

with those residing inside the UML filesystem, were further brought together by a 

superset script that starts the whole network environment given a set of parameters 

that specify the topology of the desired network test environment. To make things 

simple, these scripts were written with the topology we described in mind, however, 

they were made fairly generic so that they could form a basis for creating a generic 

UML-based network test-bed for scientific experiments which require an emulated 

network environment.  
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7.3 System Evaluation 

 

We have tested the setup with ping, our own packet generator and video streaming 

using VideoLAN. The result were satisfactory. We found no connectivity problem. 

However, we did observe several short-comings. For example, when an UML 

instance was transmitting too much traffic, the uml_switch seemed to be unable to 

keep up with the rate. This was mentioned in section 7.2.1. Another problem was 

observed with VideoLAN. The packet loss rate when streaming some selected video 

clip over this virtual network was very high. We attributed this problem to the fact 

that our equipment was not powerful enough for this particular task. As a control 

experiment, we repeated this experiment across the Linux machines themselves. Still, 

we observed a very large packet loss rate. 

 

 

 

 

Figure 7.3: Observed Throughput Of The Network Against Offered Load By 

One Data Source 
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As laid out in section 7.2.1, we made provision to prevent a throughput collapse of the 

underlying Ethernet under high load offered by the UML end-hosts. Under stress test 

using our own packet generator to send packets from one host in the user network to 

another host in the victim network, we observed that the peak data rate remained 

constant even when the generator was generating packets at a much higher rate. This 

result, as shown in Fig 7.3, verified that the ethernet did not collapse even though 

under high offered load by an UML end-host. 

 

We also verified all the cross-machine links were “protected”  by running an instance 

of the packet generator in a host in both the user network and the attack network to 

send packets towards one host in the victim network. 

 

 

Figure 7.4: Observed Throughput Of The Network Against Offered Load With 

Constant Background Traffic 
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8 Measurement and Analysis 
 

8.1 Background 

 

In her paper Testing Intrusion Detection Systems [33] , Elizabeth B. Lennon identified 

a list of quantitative measures that relate to the performance accuracy of an intrusion 

detection system. An extract from her paper indicates the following measures: 

 

 

Coverage 

 

This measurement determines which attacks an IDS can detect under ideal conditions. 

For signature-based systems, this would simply consist of counting the number of 

signatures and mapping them to a standard naming scheme. For non-signature-based 

systems, one would need to determine which attacks out of the set of all known 

attacks could be detected by a particular methodology. The number of dimensions that 

make up each attack makes this measurement difficult. 

 

Probability of False Alarms 

 

This measurement determines the rate of false positives produced by an IDS in a 

given environment during a particular time frame. A false positive or false alarm is an 

alert caused by normal non-malicious background traffic. It is difficult to measure 

false alarms because an IDS may have a different false positive rate in each network 

environment, and there is no such thing as a standard network. Also important to IDS 

testing is the receiver operating characteristic (ROC) curve, which is an aggregate of 

the probability of false alarms and the probability of detection measurements. This 

curve summarizes the relationship between two of the most important IDS 

characteristics: false positive and detection probability. 

 



MSc DCNDS  Group 4 - NAIRS 

 67 

Probability of Detection 

 

This measurement determines the rate of attacks detected correctly by an IDS in a 

given environment during a particular time frame. The difficulty in measuring the 

detection rate is that the success of an IDS is largely dependent upon the set of attacks 

used during the test. Also, the probability of detection varies with the false positive 

rate, and an IDS can be configured or tuned to favour either the ability to detect 

attacks or to minimize false positives. One must be careful to use the same 

configuration during testing for false positives and hit rates. 

 

Resistance to Attacks Directed at the IDS 

 

Directed at the IDS. This measurement demonstrates how resistant an IDS is to an 

attacker's attempt to disrupt the correct operation of the IDS. One example is sending 

a large amount of non-attack traffic with volume exceeding the processing capability 

of the IDS. With too much traffic to process, an IDS may drop packets and be unable 

to detect attacks. 

 

Ability to Handle High Bandwidth Traffic 

 

This measurement demonstrates how well an IDS will function when presented with a 

large volume of traffic. Most network-based IDSs will begin to drop packets as the 

traffic volume increases, thereby causing the IDS to miss a percentage of the attacks. 

At a certain threshold, most IDSs will stop detecting any attacks.  

 

 

8.2 Receiver  Operating Character istic 

 

For an intrusion detection system, there is a relationship between the level of security 

that can be provided by the system and the attendant false alarm generated in 
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providing that level of security: i.e. the level of false alarm generated varies with the 

level of detection.  

 

The trade-off between these two factors is governed by the alert threshold set for the 

intrusion detection system. By lowering the threshold, an administrator can discover 

more attacks, but will very likely have to content with more false alarms. Likewise, an 

administrator can raise the threshold to reduce false alarms, but this will also very 

likely cause the detection system to miss some attacks. Thus in evaluating an intrusion 

detection system, it is pertinent to know both the probability of detecting an attack 

and the probability of generating a false alarm.  By knowing these two values and 

how they are affected by changes in the detection threshold, a Receiver Operating 

Characteristic (ROC) curve can be plotted. The ROC curve provides an administrator 

with requisite information that will enable him set a detection threshold that matches 

the level of security cum available effort required in his operating environment.  

 

The ROC curve is an important characterisation used in the IDS testing community. 

The ROC curve for the NIRS system was generated to show the best operating point 

for the detection system. This led to the choice of the confidence threshold used 

during the full detection and response mode. The steps used in characterising the 

NIRS using ROC technique is outlined in the next sections. 

 

 

8.3 Performance Objectives 

 

While the parameters enumerated above could be used to provide quantitative 

measures that relate to the performance accuracy of an intrusion detection system, the 

focus of this work is to develop an active response system to DoS attacks. However, 

the effectiveness of the response system depends on the quality of the intrusion 

detection system. Therefore, the best operating condition for the detection system had 

to be determined using the ROC characterization technique.  
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8.4 Measurement Techniques 

 

8.4.1 Measurement Conditions 

 

In order to be able to take unbiased measurements of network data samples in the test 

environment, the physical network segment on which the virtual network was 

deployed was separated from the departmental network. This eliminated the 

possibilities of traffic from other sources interfering with our measurements. 

Furthermore, our test traffic could not stray outside our network segment or affect 

what other users are doing in other parts of the network 

. 

All network traffic used in the experiments were either generated using our custom 

made traffic generators or the ping utility. A “Good Traffic”  source was defined, this 

was the traffic used to create the network profile. The “Attack Traffic”  was defined 

also as an unruly traffic source, usually characterised by a high data rate.  

 

 

8.4.2 Network Profiling 

 

In order to characterise what is “good traffic”  in the test environment, a traffic source 

of known behaviour was instantiated. The traffic source was either the packet 

generator we developed which is capable of sending steady rate or bursty UDP traffic 

to a specified destination, or the common ping utility. These accounted for two of the 

protocols we were investigating in the NIRS system. A stream of good traffic was 

deployed on the isolated network test bed from the user subnet to the victim subnet. 

The profile of this traffic stream was generated by the profiling agent on the ingress 

router of the victim network and serialized as a Java object to be used by the detection 

system during the detection mode. The following parameters constituted the traffic 

profile: average data rate and its standard deviation, average packet size and the 

average packet rate. The average data rate and its standard deviation were used as 
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inputs to the detection engine to be used in its decision logic during intrusion 

detection. 

 

 

8.4.3 Confidence Level Plot 

 

The data rates of packet streams on the overlay network are subject to variations due 

to the effect of network jitter, non-deterministic packet processing time in the overlay 

UML network and other sources,  it was important to take care of these variations in 

our measurement and factor them into the selection of the appropriate confidence 

threshold of the detection engine. Given a network traffic sample, the intrusion 

detection system generates an output which is a confidence level that specifies the 

probability of that sample being an attack or not. The approach we adopted was to use 

the intrusion detection engine to sample the traffic at fixed time intervals. The 

observed sample values resulted in a range of probability values which is a map of 

confidence levels the detection system generated. 

 

The result of a sampling session is shown in Figure 8.1 below.  The information 

provided by this plot indicates the allowance to be given to the confidence threshold 

value due to the non-deterministic variation in good user traffic. This implies that 

good network traffic could occupy this range of values, and thus should not be 

signalled as an attack during the real network monitoring and intrusion response. 
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Figure 8.1: Confidence Level Plot For  Good Traffic 

 

 

Figure 8.2 is the confidence level plot of the intrusion detection engine when the 

traffic consisted of the good user traffic and attack traffic. With the overlap in the 

range of values in the good and the attack traffic plot, shown in Figure 8.3, care is 

required in the choice of the operating confidence threshold that would minimize the 

percentage of false positive while maximizing the detection rate. Figure 8.4 shows the 

ROC curve that determines the optimum operating point for the system. 
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Figure 8.2: Confidence Level Plot With Attack Traffic 
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Figure 8.3: Confidence Level Plot Of Good And Attack Traffic Showing 

Over laps 
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Figure 8.4: ROC Curve Showing Detection Probability With The Associated 

Level Of False Positives 

 

 

Figure 8.1 shows the variation in confidence level generated by the intrusion detection 

system. Given that the parameters on which the IDS based its decision was the 

average rate and the associated standard deviation, it is difficult to be absolutely 

certain if a sample at any given period constitutes an attack or not.  As a result, there 

is an associated confidence level the IDS generates with its output. The confidence 

level is zero if the sample is less than or equal to the average rate measured over the 

profiling period, otherwise it would be a value between zero and one. Obviously, 

samples with greater values than the average would generate a confidence level 

greater than zero, but should be small enough not to trigger the response system. 

 

In our tests, the normal traffic confidence level were between [0.0000, 0.1586], while 

the attack traffic confidence plot shows confidence levels between [0.1343, 0.1510]. 
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The overlap between the confidence ranges of the good and attack traffic makes the 

selection of the operating confidence level interesting. 

 

As could be seen in Figure 8.3, the choice would affect the detection rate and an 

associated rate of false positives generated by the IDS.  This is reflected by the ROC 

curve. The ROC curve shows that at 100% detection ratio, the minimum achievable 

probability of false positive is 0.28. That is, for 100% detection there would be a 

minimum of 28% false alarm rate. It could also be seen from the graph that there 

corresponds three different detection rate that correspond to the 28% false alarm rate. 

The meaning of this is that there are different confidence threshold levels that will 

result in the same false alarm rate, but one of them has the maximum detection 

probability.  

 

For a system implementer expecting a 100% detection rate, the logical choice would 

be the confidence threshold that minimises the false positives. This ROC chart will 

generally help system implementers to select the best operating confidence threshold 

that suits their system. 

 

 

8.5 Measurement Technique for  Active Response 

 

8.5.1 Active Response Mechanism 

 

The effectiveness of the active response system depends on the quality and the 

accuracy of the detection system. An Analysis of the effectiveness of the detection 

system has been presented. This section describes the result of the active response 

system with the throughput variation of the good traffic before, during, and after the 

attack on the network. The response agent listens for alerts from the detection agent 

and responds using the pushback messengers that are located at strategic points within 

the network. 
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8.5.2 Measurement Technique 

 

In order to observe the effect of the active response system on good and attack traffic, 

we set up a measurement script that monitors data rate of the good and the attack 

traffic at the attack target. To differentiate the two traffic types for the purpose of 

measurement, the attack was generated from a source different from the good traffic. 

As such, we could look at the source IP address to differentiate packets from the two 

streams. The amount of bytes of data measured from the different sources were 

logged for each network sample and plotted. This is shown in Figure 8.5. The good 

traffic source consisted of ICMP echo request packets, while the attack traffic was a 

ping flood.  Another way to represent the effect of the ping flood on the good ping 

request traffic is to find the percentage of good traffic that arrives at the target over 

the sequence of network samples. This is shown in Figure 8.6.  

 

 

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sample

D
at

a 
R

at
e

Attack traffic

Good traffic

 

Figure 8.5: Data Rate Var iation Of Good And Attack Traffic 
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Figure 8.6: Percentage Of Good Traffic On The Network 

 

 

Figure 8.5 showed the attack traffic flooding the network after the fourth sample. This 

had the effect of degrading the data rate of the normal ping request on the network. 

After the sixth sample the response system kicked in and applied rate-limiting 

function on the network against icmp traffic destined for the target network. The 

graph shows the attack could not get through as a result of the restriction on the traffic 

profile placed on in-coming icmp traffic which was on average of one packet per 

second with a maximum burst of 5 packets. This effect could also be seen on the good 

ping traffic in its burstiness that was constrained. 

 

Figure 8.6 showed a plot of the percentage of good traffic arriving at the destination 

network. The percentage declined during the ping flood attack starting at sample four 

but came back up again after the active response. 
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9 Evaluation 
 

This project started with the project title “mobile agent intrusion response system”.  

With many IDS developed focusing on the detection of DoS attack on a network, our 

group wanted to enhance the IDS by focusing on the development of a response 

system as critical add-ons for current IDS.  The idea was to use mobile agent for 

intrusion detection and response in active networks.  However as the project 

progressed and more materials were gathered on previous and current research on 

IDS, coupled with lack of certain functionalities in Snort, our IDS of choice, the 

group shifted its direction towards developing its own IDS together with a new 

response mechanism using the pushback mechanism.  

 

There are several kinds of network attacks and it is impossible for one system to be 

able to detect everything.  One of the popular attacks, DoS attack is a very critical 

threat and has been a big thorn to the flesh of many network administrators.  The 

attacker uses DoS to abuse network bandwidth resulting in denial of users to network 

services.  With the time constraints that the group had,  and its security importance we 

decided to concentrate on DoS attack. 

 

Many of the limitation in many current IDS is because they are misuse-based systems.  

This is true with Snort which detects intrusion by matching signature attacks that have 

been programmed into it.  Also, we found out that Snort does not do rate detection or 

rate limiting on network traffic.  This made it unsuitable for the purpose of rate 

detection which was a key feature in our approach to using rate detection and limiting 

as our response mechanism. 

 

We have been able to develop two IDS using anomaly detection approach.  One was a 

rate-based IDS that detected intrusion by analysing deviations from the normal traffic 

profile.  Another IDS used Token Bucket implementation to detect intrusion.  The 

project tackled the DoS attack by treating them as traffic violation problem.  
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We started with the Token Bucket implementation as our IDS.  Token Bucket worked 

together with Snort to create an IDS that detected intrusions given a traffic 

characterisation derived from a linear bound arrival process algorithm.  Token Bucket 

operated with a burst rate and traffic arrival rate.  In the duration of our project, 

significant time was spent in getting the leaky bucket parameters.  However, given the 

time constraint that we had, the group decided to continue the project with a different 

approach.  Hence, the work on rate-based IDS.  

 

After the two IDS works were finished, the group started working on the response 

aspect of the NIRS and decided to use the pushback mechanism.  We found many 

benefits to using this mechanism.  One of them was that pushback would be most 

effective when there are routers at a position near to the target from where most of the 

offending traffic will be arriving from.  This suited our small test environment very 

well.  

 

Out of the four months allocated for this project, the group spent a month to figure out 

the UML Networking and having it stabilized in our environment.   UML is a new 

subject to all four of the group members and we spent a great deal of our time trying 

to understand the workings of it.  We relished the opportunity to work on a new area 

and in the end managed to overcome the challenges presented to us. 

 

In the end, we believe that the Network Intrusion Detection and Response System that 

we have developed is a very useful project.   When used together with a pattern 

matching IDS, it can become a more powerful tool to combat DoS attack. 

 

 

9.1 Project Management 

 

Group 4 was formed by four DCNDS students whose interests lie in the computer 

security area.  We are all from different cultural and education backgrounds which 

ensures a good diversity of technical perspectives and approaches to problem-solving.  
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From the very beginning, all four of us understood the aim of this project and decided 

to divide the tasks equally among all four of us depending of the strengths and the 

weaknesses of the individuals.  We would take advantage of the strengths we had and 

assists others with their weaknesses.  At the start, the group agreed to adopt a flat 

team structure in which one person will champion an area of responsibility in the 

project but have others involve in every aspect of the project. 

 

Table 9.1: Group Structure 

 

Adedayo Adetoye Technical 

Andy Choi Organization 

Marina Md. Arshad Documentation 

Olufemi Soretire External Liaisons 

 

 

The group worked in the department’s lab everyday.  The day started with daily 

meetings at 11:00 am.  Also, we met weekly with our supervisor Dr. Steve Hailes to 

inform him of our progress and get input from him. It is given that with four persons 

in a group with their own ideas and way of doing things, there would be small 

conflicts and disagreement.  During our lengthy discussions, each and everyone had 

the right to voice out their ideas and concern but in the end, everyone will agree upon 

one idea. 

 

Because we work together all the time and everyday in the lab, we managed to resolve 

all setbacks quickly without major glitches.  Integration and final testing was 

organised and done together and the group managed to finish the work satisfactorily. 
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10 Future Work 
 

To build on the success we had so far, we had already identified several directions 

that would warrant further investigation. 

 

 

10.1 Rate-based Detection 
 

First, we believe that we would improve the granularity during the profiling phrase. 

Our current implementation polled for information roughly every 10 seconds. 

Consider a 10 Mbps link. At peak capacity, about 12.5 Mbytes could have passed 

through the network during that time interval. The aggregation here is quite large. 

Also, timing in Linux/Unix was not very accurate. 

 

To improve this aspect, we could look into using some form of asynchronous 

notification of packet arrival. Perhaps, we could take advantage of the iptables 

extension framework to do so. Furthermore, any burst occurred during that interval 

would not be characterised towards to traffic profile because it had been aggregated 

into the aggregated rate.  Already, we had started to study the possibility of replacing 

aggregated rate with a LBAP/token bucket descriptor. 

 

However, we could look even further for other more advanced, and probably 

experimental, form of traffic descriptor. Another dimension of granularity we would 

improve would be that of different traffic classes. Currently, we profile network 

traffic at protocol level. It might be useful, for some protocol, to further classify 

traffic within that protocol. For example, it would be useful to isolate TCP-SYN, from 

other TCP traffic to better detect TCP-SYN flood. 

 

Secondly, it is not unusual for network traffic to fluctuate with time of day or week 

due to human habits and procedures.  We could improve our detection system by 
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using time-variant parameters to reflect such fluctuation. Using principles of artificial 

intelligence, the profiling agent could learn about such time dependent variables and 

factor it in to the detection system for better resolution of its detection mechanism. 

 

 

10.2 Response 
 

As we improve the granularity of the detection system, the response components must 

also keep up to the improvements made. Given our response mechanism was based on 

message between routers, there would be security implications. For example, how 

would routers authenticate with one another? How would the routers check the 

integrity of the messages it received? IP Security (IPSec) might provide some 

solution, but it also introduced the problem of implementing a secure domain for 

every router. Furthermore, how should the certificates be configured? Should that be 

on a host-by-host basis or interface-by-interface basis?  If security issues fully 

addressed, this automatic response mechanism, we proposed, would in fact be a big 

security liability. Quite the opposite we would like to see. 

 

The automated response system involved changes the way traffic flowed in the 

network through automated provisioning. While this would be helpful in defence 

against DOS attack in our experimental environment, we need to further study if such 

scheme could be scaled up.  Equally importantly is how the traffic dynamics would be 

affected by such changes.  Would the routers attempt the re-route the traffic along 

another path so that our “defence”  for network was, in fact, circumcised by the 

network itself? 

 

Another issue would should this automated response be managed. In order to be 

deployed in a live system, administrator would like to be able to have some control 

over this scheme. For example, he may decide that some routers not to be part of the 

automatic response infrastructure. A management plane was lacking. 
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10.3 Token Bucket 

 

First, we need to implement the profiler and linked it with the components we have 

developed. Then, we need to test it under the same environment to observe if it would 

offer any advantage to the aggregated rate approach. We could consider implementing 

the profiler within the snort framework again. Furthermore, as we pointed out in 

chapter 4, token bucket descriptor was not capable to describe very bursty traffic. 

Similar to our proposal for rate-based profiler, we could adopt some AI techniques 

here to characterise network traffic as several profiles where the burst within each 

profile was relatively small. 

 

Since the token bucket verifier, implemented as a snort plugin, involved floating 

pointing mathematics, we would study the effect of such rather complicated logics on 

performance. We would like to measure the number of CPU cycles required to 

process each packet. It would also be our interest to benchmark what the maximum 

incoming packet this implementation could cope with. 

 

As we pointed in chapter 6, tc currently does not provide rate limiting functionality, 

we should explore how rate limiting, based on token bucket descriptor, could be 

archived.  
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11 Conclusion 
 

Traffic profile-based approach could be used as a defensive measure against DoS-type 

network attack. In this report, we have proposed two different candidates traffic 

characterisation techniques: aggregate rate, and token bucket descriptor. We 

successfully implemented an IDS based on the aggregated rate, and made some 

progress towards supporting token bucket descriptor. This system was tested and 

validated in an overlay network which we built using UML. While a lot of remains to 

be investigated, the results from our analysis pointed us towards a very promising 

direction. 

 

The project result aside, we gained enormous experience in the internal work of the 

networking subsystem on Linux systems, as well as different aspects of network 

intrusions detection. Finally, we were able to applied we have learned from the 

different course modules in the course of the project. 
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AAPPPPEENNDDII XX  AA::  CCoommppii ll iinngg  tthhee  UUsseerr   MM ooddee  LL iinnuuxx  
kkeerr nneell   aanndd  mmoodduulleess  

  

Compiling the Kernel 
 
Compiling the user mode kernel is just like compiling any other kernel. Let's go 
through the steps, using 2.4.0-prerelease (current as of this writing) as an example:  

1. Download the latest UML patch from the download page (http://user-
mode-linux.sourceforge.net/dl-sf.html). In this example, the file is uml-
patch-2.4.0-prerelease.bz2. 

2. Download the matching kernel from your favourite kernel mirror, such 
as: http://ftp.ca.kernel.org/linux/kernel/ 
http://ftp.ca.kernel.org/linux/kernel/ .  

3. Make a directory and unpack the kernel into it.  

host% mkdir ~/uml  

host% cd ~/uml  

host% tar -xjvf linux-2.4.0-prerelease.tar.bz2  

4. Apply the patch using  

host% cd ~/uml/linux  

host% bzcat uml-patch-2.4.0-prerelease.bz2 | patch -p1  

5. Run your favorite config; `make xconfig ARCH=um' is the most 
convenient. `make config ARCH=um' and 'make menuconfig 
ARCH=um' will work as well. The defaults will give you a useful 
kernel. If you want to change something, go ahead, it probably won't 
hurt anything.  

Note: If the host is configured with a 2G/2G address space split rather 
than the usual 3G/1G split, then the packaged UML binaries will not 
run. They will immediately segfault.  

Finish with `make linux ARCH=um': the result is a file called `linux' in 
the top directory of your source tree. You may notice that the final 
binary is pretty large (many 10's of megabytes for a debuggable UML). 
This is almost entirely symbol information. The actual binary is 
comparable in size to a native kernel. You can run that huge binary, 
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and only the actual code and data will be loaded into memory, so the 
symbols only consume disk space unless you are running UML under 
gdb. You can strip UML:  

host% strip linux  

to see the true size of the UML kernel.  

Make sure that you don't build this kernel in /usr/src/linux. On some distributions, 
/usr/include/asm is a link into this pool. The user-mode build changes the other end of 
that link, and things that include <asm/anything.h> stop compiling.  

The sources are also available from cvs at the project's cvs page , which has directions 
on getting the sources. You can also browse the CVS pool from there.  

If you get the CVS sources, you will have to check them out into an empty directory. 
You will then have to copy each file into the corresponding directory in the 
appropriate kernel pool.  

If you don't have the latest kernel pool, you can get the corresponding user-mode 
sources with  

host % cvs co - r  v_2_3_x l i nux  
 
where 'x' is the version in your pool. Note that you will not get the bug fixes and 
enhancements that have gone into subsequent releases.  

If you build your own kernel, and want to boot it from one of the filesystems 
distributed from this site, then, in nearly all cases, devfs must be compiled into the 
kernel and mounted at boot time. The exception is the tomsrtbt filesystem. For this, 
devfs must either not be in the kernel at all, or "devfs=nomount" must be on the 
kernel command line. Any disagreement between the kernel and the filesystem being 
booted about whether devfs is being used will result in the boot getting no further than 
single-user mode.  

If you don't want to use devfs, you can remove the need for it from a filesystem by 
copying /dev from someplace, making a bunch of /dev/ubd devices:  

UML# for i in 0 1 2 3 4 5 6 7; do mknod ubd$i b 98 $[ $i *  16 ]; done  
and changing /etc/fstab and /etc/inittab to refer to the non-devfs devices.  
 
 
Compiling and Installing kernel Modules 
 
UML modules are built in the same way as the native kernel (with the exception of 
the 'ARCH=um' that you always need for UML):  
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host % make modul es ARCH=um 
Any modules that you want to load into this kernel need to be built in the user-mode 
pool. Modules from the native kernel won't work. If you notice that the modules you 
get are much larger than they are on the host, see the note above about the size of the 
final UML binary. You can install them by using ftp or something to copy them into 
the virtual machine and dropping them into /lib/modules/`uname -r`.  You can also get 
the kernel build process to install them as follows:  

1. with the kernel not booted, mount the root filesystem in the top level of 
the kernel pool:  

host% mount root_fs mnt -o loop  

2. run  

host% make modules_install INSTALL_MOD_PATH=`pwd`/mnt 
ARCH=um  

3. unmount the filesystem  

host% umount mnt  

4. boot the kernel on it  

If you can't mount the root filesystem on the host for some reason (like it's a COW 
file), then an alternate approach is to mount the UML kernel tree from the host into 
the UML with hostfs and run the modules_install inside UML:  

1. With UML booted, mount the host kernel tree inside UML at the same 
location as on the host:  

UML# mount none -t hostfs path to UML pool -o path to UML pool  

2. Run make modules_install:  

UML# cd path to UML pool ; make modules_install  

The depmod at the end may complain about unresolved symbols because there is an 
incorrect or missing System.map installed in the UML filesystem. This appears to be 
harmless. insmod or modprobe should work fine at this point.  

When the system is booted, you can use insmod as usual to get the modules into the 
kernel. A number of things have been loaded into UML as modules, especially 
filesystems and network protocols and filters, so most symbols which need to be 
exported probably already are. However, if you do find symbols that need exporting, 
let us know, and they'll be "taken care of".  
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If you try building an external module against a UML tree, you will find that it doesn't 
compile because of missing includes. There are less obvious problems with the 
CFLAGS that the module Makefile or script provides which would make it not run 
even if it did build. To get around this, you need to provide the same CFLAGS that 
the UML kernel build uses.  

A reasonably slick way of getting the UML CFLAGS is  

cd uml-tree ; make script 'SCRIPT=@echo $(CFLAGS)' ARCH=um  
If the module build process has something that looks like  
$(CC) $(CFLAGS) file  
then you can define CFLAGS in a script like this  
CFLAGS=`cd uml-tree ; make script 'SCRIPT=@echo $(CFLAGS)' ARCH=um`  
and like this in a Makefile  
CFLAGS=$(shell cd uml-tree ; make script 'SCRIPT=@echo $$(CFLAGS)' 
ARCH=um)  
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AAPPPPEENNDDII XX  BB::   UUMM LL   NNeettwwoorr kkiinngg  

Setting up the network 

This page describes how to set up the various transports and to provide a UML 
instance with network access to the host, other machines on the local net, and the rest 
of the net.  

As of 2.4.5, UML networking has been completely redone to make it much easier to 
set up, fix bugs, and add new features.  

There is a new helper, uml_net, which does the host setup that requires root 
privileges.  

There are currently five transport types available for a UML virtual machine to 
exchange packets with other hosts:  

• ethertap  
• TUN/TAP  
• Multicast  
• a switch daemon  
• slip  
• slirp  
• pcap  

The TUN/TAP, ethertap, slip, and slirp transports allow a UML instance to exchange 
packets with the host. They may be directed to the host or the host may just act as a 
router to provide access to other physical or virtual machines.  

The pcap transport is a synthetic read-only interface, using the libpcap binary to 
collect packets from interfaces on the host and filter them. This is useful for building 
preconfigured traffic monitors or sniffers.  

The daemon and multicast transports provide a completely virtual network to other 
virtual machines. This network is completely disconnected from the physical network 
unless one of the virtual machines on it is acting as a gateway.  

With so many host transports, which one should you use? Here's when you should use 
each one:  

• ethertap - if you want access to the host networking and it is running 2.2  
• TUN/TAP - if you want access to the host networking and it is running 2.4. 

Also, the TUN/TAP transport is able to use a preconfigured device, allowing it 
to avoid using the setuid uml_net helper, which is a security advantage.  

• Multicast - if you want a purely virtual network and you don't want to set up 
anything but the UML  
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• a switch daemon - if you want a purely virtual network and you don't mind 
running the daemon in order to get somewhat better performance  

• slip - there is no particular reason to run the slip backend unless ethertap and 
TUN/TAP are just not available for some reason  

• slirp - if you don't have root access on the host to setup networking, or if you 
don't want to allocate an IP to your UML  

• pcap - not much use for actual network connectivity, but great for monitoring 
traffic on the host  

Ethertap is available on 2.4 and works fine. TUN/TAP is preferred to it because it has 
better performance and ethertap is officially considered obsolete in 2.4. Also, the root 
helper only needs to run occasionally for TUN/TAP, rather than handling every 
packet, as it does with ethertap. This is a slight security advantage since it provides 
fewer opportunities for a nasty UML user to somehow exploit the helper's root 
privileges.  
 
General setup 
 
First, you must have the virtual network enabled in your UML. If are running a 
prebuilt kernel from this site, everything is already enabled. If you build the kernel 
yourself, under the "Network device support" menu, enable "Network device 
support", and then the three transports.  

The next step is to provide a network device to the virtual machine. This is done by 
describing it on the kernel command line. The general format is  

eth<n>=<transpor t>,<transpor t args>  
For example, a virtual ethernet device may be attached to a host ethertap device as 
follows:  
eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254  
This sets up eth0 inside the virtual machine to attach itself to the host /dev/tap0, 
assigns it an ethernet address, and assigns the host tap0 interface an IP address.  

Note that the IP address you assign to the host end of the tap device must be different 
than the IP you assign to the eth device inside UML. If you are short on IPs and don't 
want to comsume two per UML, then you can reuse the host's eth IP address for the 
host ends of the tap devices. Internally, the UMLs must still get unique IPs for their 
eth devices. You can also give the UMLs non-routable IPs (192.168.x.x or 10.x.x.x) 
and have the host masquerade them. This will let outgoing connections work, but 
incoming connections won't without more work, such as port forwarding from the 
host.  

Also note that when you configure the host side of an interface, it is only acting as a 
gateway. It will respond to pings sent to it locally, but is not useful to do that since it's 
a host interface. You are not talking to the UML when you ping that interface and get 
a response.  
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You can also add devices to a UML and remove them at runtime. See the mconsole 
page for details.  

The sections below describe this in more detail.  

Once you've decided how you're going to set up the devices, you boot UML, log in, 
configure the UML side of the devices, and set up routes to the outside world. At that 
point, you will be able to talk to any other machines, physical or virtual, on the net.  

If ifconfig inside UML fails and the network refuses to come up, run 'dmesg' to see 
what ended up in the kernel log. That will usually tell you what went wrong.  

Userspace daemons 

You will likely need the setuid helper, or the switch daemon, or both. They are both 
installed with the RPM and deb, so if you've installed either, you can skip the rest of 
this section.  

If not, then you need to check them out of CVS , build them, and install them. The 
helper is uml_net, in CVS /tools/uml_net, and the daemon is uml_switch, in CVS 
/tools/uml_router. They are both built with a plain 'make'. Both need to be installed in 
a directory that's in your path - /usr/bin is recommend. On top of that, uml_net needs 
to be setuid root.  

Specifying ethernet addresses 

Below, you will see that the TUN/TAP, ethertap, and daemon interfaces allow you to 
specify hardware addresses for the virtual ethernet devices. This is generally not 
necessary. If you don't have a specific reason to do it, you probably shouldn't. If one is 
not specified on the command line, the driver will assign one based on the device IP 
address. It will provide the address fe:fd:nn:nn:nn:nn where nn.nn.nn.nn is the device 
IP address. This is nearly always sufficient to guarantee a unique hardware address for 
the device. A couple of exceptions are:  

• Another set of virtual ethernet devices are on the same network and 
they are assigned hardware addresses using a different scheme which 
may conflict with the UML IP address-based scheme  

• You aren't going to use the device for IP networking, so you don't 
assign the device an IP address  

If you let the driver provide the hardware address, you should make sure that the 
device IP address is known before the interface is brought up. So, inside UML, this 
will guarantee that:  
UML# ifconfig eth0 192.168.0.250 up  
If you decide to assign the hardware address yourself, make sure that the first byte of 
the address is even. Addresses with an odd first byte are broadcast addresses, which 
you don't want assigned to a device.  
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UML inter face setup 
Once the network devices have been described on the command line, you should boot 
UML and log in.  

The first thing to do is bring the interface up:  

UML# ifconfig ethn ip-address up  
You should be able to ping the host at this point.  

To reach the rest of the world, you should set a default route to the host:  

UML# route add default gw host ip  
Again, with host ip of 192.168.0.4:  
UML# route add default gw 192.168.0.4  
This page used to recommend setting a network route to your local net. This is wrong, 
because it will cause UML to try to figure out hardware addresses of the local 
machines by arping on the interface to the host. Since that interface is basically a 
single strand of ethernet with two nodes on it (UML and the host) and arp requests 
don't cross networks, they will fail to elicit any responses. So, what you want is for 
UML to just blindly throw all packets at the host and let it figure out what to do with 
them, which is what leaving out the network route and adding the default route does.  

Note: If you can't communicate with other hosts on your physical ethernet, it's 
probably because of a network route that's automatically set up. If you run 'route -n' 
and see a route that looks like this:  

                 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
192.168.0.0     0.0.0.0         255.255.255.0   U     0      0     0   eth0 
 
               
with a mask that's not 255.255.255.255, then replace it with a route to your host:  
UML# route del -net 192.168.0.0 dev eth0 netmask 255.255.255.0  
UML# route add -host 192.168.0.4 dev eth0  
This, plus the default route to the host, will allow UML to exchange packets with any 
machine on your ethernet.  
 
Multicast 
The simplest way to set up a virtual network between multiple UMLs is to use the 
mcast transport. This was written by Harald Welte and is present in UML version 
2.4.5-5um and later. Your system must have multicast enabled in the kernel and there 
must be a multicast-capable network device on the host. Normally, this is eth0, but if 
there is no ethernet card on the host, then you will likely get strange error messages 
when you bring the device up inside UML.  

To use it, run two UMLs with  
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eth0=mcast  
on their command lines. Log in, configure the ethernet device in each machine with 
different IP addresses:  
UML1# ifconfig eth0 192.168.0.254  
UML2# ifconfig eth0 192.168.0.253  
and they should be able to talk to each other.  

The full set of command line options for this transport are  

ethn=mcast,ethernet address,multicast address,multicast port,ttl  
Harald's original README is here and explains these in detail, as well as some other 
issues.  
 
TUN/TAP with the uml_net helper  
 
TUN/TAP is the preferred mechanism on 2.4 to exchange packets with the host. The 

TUN/TAP backend has been in UML since 2.4.9-3um.  

The easiest way to get up and running is to let the setuid uml_net helper do the host 

setup for you. This involves insmod-ing the tun.o module if necessary, configuring 

the device, and setting up IP forwarding, routing, and proxy arp. If you are new to 

UML networking, do this first. If you're concerned about the security implications of 

the setuid helper, use it to get up and running, then read the next section to see how to 

have UML use a preconfigured tap device, which avoids the use of uml_net.  

If you specify an IP address for the host side of the device, the uml_net helper will do 

all necessary setup on the host - the only requirement is that TUN/TAP be available, 

either built in to the host kernel or as the tun.o module. The format of the command 

line switch to attach a device to a TUN/TAP device is  

eth<n>=tuntap,,,<host IP address>  

For example, this argument will attach the UML's eth0 to the next available tap 

device, assign the IP address 192.168.0.254 to the host side of the tap device, and 

assign an ethernet address to it based on the IP address assigned to it by ifconfig 

inside UML.  

eth0=tuntap,,,192.168.0.254  
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If you using the uml_net helper to set up the host side of the networking, as in this 

example, note that changing the UML IP address will cause uml_net to change the 

host routing and arping to match. This is one reason you should not be using uml_net 

if there is any possibility that the user inside the UML may be unfriendly. This feature 

is convenient, but can be used to make the UML pretend to be something like your 

name server or mail server, and the host will steal packets intended for those servers 

and forward them to the UML. See the next section for setting up networking in a 

secure manner.  

There are a couple potential problems with running the TUN/TAP transport on a 2.4 

host kernel  

• TUN/TAP seems not to work on 2.4.3 and earlier. Upgrade the host 
kernel or use the ethertap transport.  

• With an upgraded kernel, TUN/TAP may fail with  
•                     File descriptor in bad state 

                   

This is due to a header mismatch between the upgraded kernel and the 
kernel that was originally installed on the machine. The fix is to make 
sure that /usr/src/linux points to the headers for the running kernel.  

These were pointed out by Tim Robinson in this uml-user post .  
 
TUN/TAP with a preconfigured tap device 
 
If you prefer not to have UML use uml_net (which is somewhat insecure), with UML 
2.4.17-11, you can set up a TUN/TAP device beforehand. The setup needs to be done 
as root, but once that's done, there is no need for root assistance. Setting up the device 
is done as follows:  

• Create the device with tunctl (available from the UML utilities tarball)  

host# tunctl -u uid  

where uid is the user id or username that UML will be run as. This will 
tell you what device was created.  

• Configure the device IP (change IP addresses and device name to suit)  
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host# ifconfig tap0 192.168.0.254 up  

• Set up routing and arping if desired - this is my recipe, there are other 
ways of doing the same thing  

host# bash -c 'echo 1 > /proc/sys/net/ipv4/ip_forward' 

host# route add -host 192.168.0.253 dev tap0 

host# bash -c 'echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp' 

host# arp -Ds 192.168.0.253 eth0 pub  

Note that this must be done every time the host boots - this 
configuration is not stored across host reboots. So, it's probably a good 
idea to stick it in an rc file. An even better idea would be a little utility 
which reads the information from a config file and sets up devices at 
boot time.  

• Rather than using up two IPs and ARPing for one of them, you can 
also provide direct access to your LAN by the UML by using a bridge.  

host# brctl addbr br0  

host# ifconfig eth0 0.0.0.0 promisc up  

host# ifconfig tap0 0.0.0.0 promisc up  

host# ifconfig br0 192.168.0.1 netmask 255.255.255.0 up  

host# brctl stp br0 off  

host# brctl setfd br0 1  

host# brctl sethello br0 1  

host# brctl addif br0 eth0  

host# brctl addif br0 tap0  

Note that 'br0' should be setup using ifconfig with the existing IP 
address of eth0, as eth0 no longer has its own IP.  

• Also, the /dev/net/tun device must be writable by the user running 
UML in order for the UML to use the device that's been configured for 
it. The simplest thing to do is  
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host# chmod 666 /dev/net/tun  

Making it world-writeable looks bad, but it seems not to be exploitable 
as a security hole. However, it does allow anyone to create useless tap 
devices (useless because they can't configure them), which is a DOS 
attack. A somewhat more secure alternative would to be to create a 
group containing all the users who have preconfigured tap devices and 
chgrp /dev/net/tun to that group with mode 664 or 660.  

• Once the device is set up, run UML with 'eth0=tuntap,device name' 
(i.e. 'eth0=tuntap,tap0') on the command line (or do it with the 
mconsole config command).  

• Bring the eth device up in UML and you're in business.  

If you don't want that tap device any more, you can make it non-persistent with  
host# tunctl -d tap device  
Finally, tunctl has a -b (for brief mode) switch which causes it to output only the 
name of the tap device it created. This makes it suitable for capture by a script:  
host# TAP=`tunctl -u 1000 -b`  
 
Ether tap 
 
Ethertap is the general mechanism on 2.2 for userspace processes to exchange packets 
with the kernel.  

To use this transport, you need to describe the virtual network device on the UML 
command line. The general format for this is  

eth<n>=ethertap,<device>,<ethernet address>,<host IP address>  
So, the previous example  
eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.0.254  
attaches the UML eth0 device to the host /dev/tap0, assigns it the ethernet address 
fe:fd:0:0:0:1, and assigns the IP address 192.168.0.254 to the host side of the tap 
device.  

The tap device is mandatory, but the others are optional. If the ethernet address is 
omitted, one will be assigned to it.  

The presence of the tap IP address will cause the helper to run and do whatever host 
setup is needed to allow the virtual machine to communicate with the outside world. 
If you're not sure you know what you're doing, this is the way to go.  

If it is absent, then you must configure the tap device and whatever arping and routing 
you will need on the host. However, even in this case, the uml_net helper still needs 
to be in your path and it must be setuid root if you're not running UML as root. This is 
because the tap device doesn't support SIGIO, which UML needs in order to use 
something as a source of input. So, the helper is used as a convenient asynchronous 
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IO thread. If you're using the uml_net helper, you can ignore the following host setup 
- uml_net will do it for you. You just need to make sure you have ethertap available, 
either built in to the host kernel or available as a module.  

If you want to set things up yourself, you need to make sure that the appropriate /dev 
entry exists. If it doesn't, become root and create it as follows:  

mknod /dev/tap<minor> c 36 <minor> + 16  
For example, this is how to create /dev/tap0:  
mknod /dev/tap0 c 36 0 + 16  
You also need to make sure that the host kernel has ethertap support. If ethertap is 
enabled as a module, you apparently need to insmod ethertap once for each ethertap 
device you want to enable. So,  
host# insmod ethertap  
will give you the tap0 interface. To get the tap1 interface, you need to run  
host# insmod ethertap unit=1 -o ethertap1  
 
The switch daemon 
Note: This is the daemon formerly known as uml_router, but which was renamed so 
the network weenies of the world would stop growling at me.  

The switch daemon, uml_switch, provides a mechanism for creating a totally virtual 
network. By default, it provides no connection to the host network (but see -tap, 
below).  

The first thing you need to do is run the daemon. Running it with no arguments will 
make it listen on a default pair of unix domain sockets.  

If you want it to listen on a different pair of sockets, use  

-unix control socket data socket  
 
If you want it to act as a hub rather than a switch, use  
-hub  

If you want the switch to be connected to host networking (allowing the umls to get 
access to the outside world through the host), use  

-tap tap0  

Note that the tap device must be preconfigured (see "TUN/TAP with a preconfigured 
tap device", above). If you're using a different tap device than tap0, specify that 
instead of tap0.  

uml_switch can be backgrounded as follows  

host% uml_switch [ options ] < /dev/null > /dev/null  
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The reason it doesn't background by default is that it listens to stdin for EOF. When it 
sees that, it exits.  

The general format of the kernel command line switch is  

ethn=daemon,ethernet address,socket type,control socket,data socket  
You can leave off everything except the 'daemon'. You only need to specify the 
ethernet address if the one that will be assigned to it isn't acceptable for some reason. 
The rest of the arguments describe how to communicate with the daemon. You should 
only specify them if you told the daemon to use different sockets than the default. So, 
if you ran the daemon with no arguments, running the UML on the same machine 
with  
eth0=daemon  
will cause the eth0 driver to attach itself to the daemon correctly.  
 
Slip 
 
Slip is another, less general, mechanism for a process to communicate with the host 
networking. In contrast to the ethertap interface, which exchanges ethernet frames 
with the host and can be used to transport any higher-level protocol, it can only be 
used to transport IP.  

The general format of the command line switch is  

ethn=slip,slip IP  
The slip IP argument is the IP address that will be assigned to the host end of the slip 
device. If it is specified, the helper will run and will set up the host so that the virtual 
machine can reach it and the rest of the network.  

There are some oddities with this interface that you should be aware of. You should 
only specify one slip device on a given virtual machine, and its name inside UML will 
be 'umn', not 'eth0' or whatever you specified on the command line. These problems 
will be fixed at some point.  

Slirp 

slirp uses an external program, usually /usr/bin/slirp, to provide IP only networking 
connectivity through the host. This is similar to IP masquerading with a firewall, 
although the translation is performed in user-space, rather than by the kernel. As slirp 
does not set up any interfaces on the host, or changes routing, slirp does not require 
root access or setuid binaries on the host.  

The general format of the command line switch for slirp is:  

ethn=slirp,ethernet address,slirp path  
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The ethernet address is optional, as UML will set up the interface with an ethernet 
address based upon the initial IP address of the interface. The slirp path is generally 
/usr/bin/slirp, although it will depend on distribution.  

The slirp program can have a number of options passed to the command line and we 
can't add them to the UML command line, as they will be parsed incorrectly. Instead, 
a wrapper shell script can be written or the options inserted into the ~/.slirprc file. 
More information on all of the slirp options can be found in its man pages.  

The eth0 interface on UML should be set up with the IP 10.2.0.15, although you can 
use anything as long as it is not used by a network you will be connecting to. The 
default route on UML should be set to use 'eth0' without a gateway IP:  

UML# route add default dev eth0  
slirp provides a number of useful IP addresses which can be used by UML, such as 
10.0.2.3 which is an alias for the DNS server specified in /etc/resolv.conf on the host 
or the IP given in the 'dns' option for slirp.  

Even with a baudrate setting higher than 115200, the slirp connection is limited to 
115200. If you need it to go faster, the slirp binary needs to be compiled with 
FULL_BOLT defined in config.h.  

pcap 

The pcap transport is attached to a UML ethernet device on the command line or with 
uml_mconsole with the following syntax:  

ethn=pcap,host interface,filter expression,option1,option2  
The expression and options are optional.  

The interface is whatever network device on the host you want to sniff. The 
expression is a pcap filter expression, which is also what tcpdump uses, so if you 
know how to specify tcpdump filters, you will use the same expressions here. The 
options are up to two of 'promisc', 'nopromisc', 'optimize', 'nooptimize'. 'promisc' and 
'nopromisc' control whether pcap puts the host interface into promiscuous mode. 
'optimize' and 'nooptimize' control whether the pcap expression optimizer is used.  

Example:  

eth0=pcap,eth0,tcp 
eth1=pcap,eth0,!tcp  
will cause the UML eth0 to emit all tcp packets on the host eth0 and the UML eth1 to 
emit all non-tcp packets on the host eth0.  
 
Setting up the host yourself 
If you don't specify an address for the host side of the ethertap or slip device, UML 
won't do any setup on the host. So this is what is needed to get things working (the 
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examples use a host-side IP of 192.168.0.251 and a UML-side IP of 192.168.0.250 - 
adjust to suit your own network):  

• The device needs to be configured with its IP address. Tap devices are 
also configured with an mtu of 1484. Slip devices are configured with 
a point-to-point address pointing at the UML ip address.  

host# ifconfig tap0 arp mtu 1484 192.168.0.251 up  

host# ifconfig sl0 192.168.0.251 pointopoint 192.168.0.250 up  

• If a tap device is being set up, a route is set to the UML IP.  

UML# route add -host 192.168.0.250 gw 192.168.0.251  

• To allow other hosts on your network to see the virtual machine, proxy 
arp is set up for it.  

host# arp -Ds 192.168.0.250 eth0 pub  

• Finally, the host is set up to route packets.  

host# echo 1 > /proc/sys/net/ipv4/ip_forward  
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AAPPPPEENNDDII XX  CC::   UUMM LL   UUtt ii ll ii tt iieess  
 
 
Compiling and installing UML utilities 
 
Many features of the UML kernel require a user-space helper program, so a 
uml_utilities package is distributed separately from the kernel patch which provides 
these helpers. Included within this is:  

• port-helper - Used by consoles which connect to xterms or ports  
• tunctl - Configuration tool to create and delete tap devices  
• uml_net - Setuid binary for automatic tap device configuration  
• uml_switch - User-space virtual switch required for daemon transport  

The uml_utilities tree is compiled with:  
host# make && make install  
Note that UML kernel patches may require a specific version of the uml_utilities 
distribution. If you don't keep up with the mailing lists, ensure that you have the latest 
release of uml_utilities if you are experiencing problems with your UML kernel, 
particularly when dealing with consoles or command-line switches to the helper 
programs  
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AAPPPPEENNDDII XX  DD::   VVii rr ttuuaall   NNeettwwoorr kk  SShheell ll   SSccrr iippttss  
  
  

11..  PPhhyyssiiccaall   LL iinnuuxx  HHoosstt  SSccrr iippttss  
  

  
  

 
 
################################################################ 
# Super-script used to create the overlay UML network     #  
#              # 
#             # 
#                                                              # 
################################################################                     
 
#!/bin/bash 
 
uml_start_usage() 
{  
   echo "Usage: ./uml_start [ -c | -h] [-a | -u | -v <subnet_count> <nodes_per_subnet>] 
" 
   echo "   -a for attacker network" 
   echo "   -c for the core network" 
   echo "   -u for user network"  
   echo "   -v for victim network" 
   echo "   -h to print this help message"    
}  
 
start_attack_network() 
{     
   SUBNET_IP="$1" 
   SUBNET_COUNT="$2" 
   NODE_COUNT="$3" 
    
   clear 
   echo 'setting up attack network' 
   sleep 2 
   ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT attack 
}  
 
start_core_network() 
{  
   clear 
   echo 'starting netcore_builder' 
   sleep 2 
   ./netcore_builder 

uml_start 
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}  
 
start_user_network() 
{  
   SUBNET_IP="$1" 
   SUBNET_COUNT="$2" 
   NODE_COUNT="$3" 
    
   clear 
   echo 'setting up user network'    
   sleep 2 
   ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT user 
}  
 
start_victim_network() 
{  
   SUBNET_IP="$1" 
   SUBNET_COUNT="$2" 
   NODE_COUNT="$3" 
    
   clear 
   echo 'setting up victim network'    
   sleep 2 
   ./subnet_builder $SUBNET_IP $SUBNET_COUNT $NODE_COUNT victim 
}  
 
if [ $# -eq 0 ]  
then 
  uml_start_usage 
  return 1 
fi 
 
   SUBNET_COUNT="$2" 
   NODE_COUNT="$3" 
   SUBNET_IP="192.168"    
    
# set up route for SUBNET_IP on physical network 
route add -net "$SUBNET_IP.0.0/16" dev eth0 2> /dev/null 
  
getopts a:cu:v: options 
 
   case "$options" in 
    
      a)    start_attack_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT ;; 
      c)    start_core_network;; 
      u)    start_user_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT ;; 
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      v)    start_victim_network $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
;; 
      \?)   uml_start_usage;;       
   esac    
 
 
 
                    
 
#!/bin/bash 
 
if [ $# -ne 4 ] 
then  
 echo wrong number of arguments 
 echo usage: subnet_builder subnet_IP no_of_subnets no_of_host_per_subnet 
network_type 
 echo example: subnet_builder 192.168.0 1 2 attack 
 echo The example sets up 1 subnet per router with 2 hosts where 192.168.0 is 
the subnet address 
 echo 'network_type = { victim|attack|user} ' 
 return 1 
fi 
 
 
#create a router and its subnet(s) 
#arguments: router_ID subnet_ip subnet_count node_count switch_port  
build_subnet() 
{  
 if [ $# -ne 5 ] 
 then  
  echo wrong number of arguments 
  echo usage: build_subnet router_ID subnet_IP no_of_subnets 
node_count switch_port 
  echo example: build_subnet 1 192.168 1 2 22000   
  exit 1 
 fi  
 
ID="$1" 
SUBNET_IP="$2" 
SUBNET_COUNT="$3" 
NODE_COUNT="$4" 
PORT="$5" 
ROUTER_IP="$SUBNET_IP.$ID.1" 
HOST_IP=`ifconfig eth0 | grep 'inet addr' | cut -d: -f2 | cut -d' ' -f1` 
 
 
i=1 

subnet_builder 
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j=0 
k=1 
 
#set router tap device drivers  
eth_devices="eth0=tuntap,,,$ROUTER_IP"  
 
#set up the switches 
while [ $k -le $SUBNET_COUNT ] 
 
do 
 uml_switch -unix $((PORT+i)) $((PORT+1+i)) -hub < /dev/null & 
 #the next line is for the router's other eth devices 
 eth_devices=${ eth_devices} ' 
eth'$((j+1))=daemon,,unix,"$((PORT+i)),$((PORT+1+i))"  
 i=$((i+2)) 
 j=$((j+1)) 
 k=$((k+1)) 
done 
echo setting up the switches ... 
sleep 2 #allow things to stabilize 
echo 'finished' 
 
 # set up the router/firewall (with 2 consoles) 
 linux umid="Router:$ROUTER_IP" 
":$ID:$SUBNET_COUNT:$NODE_COUNT:$HOST_IP:" 
ubd0=${ file_systems} "/router/root_fs_cow$ID",${ file_systems} '/root_fs' 
${ eth_devices}  ssl=pty con=pty con0=xterm con1=xterm mem=64M & 
 
 # set up the hosts 
 i=1 
 while [ $i -le $SUBNET_COUNT ] 
 do 
   j=0 
  while [ $j -lt $NODE_COUNT ] 
   do 
    k=$[16*(i-1)+17+j]  
    . vhost_setup "$SUBNET_IP.$ID.$k" & 
   j=$((j+1)) 
   done 
   i=$((i+1))  
 done 
}  
 
uml_home='/home/uml' 
cd ${ uml_home}  
file_systems=${ uml_home} '/filesystem' 
#cleanup previous uml junks that might still be lurking around 



MSc DCNDS  Group 4 - NAIRS 

 108 

./cleanup 
 
SUBNET_IP="$1" 
SUBNET_COUNT="$2" 
NODE_COUNT="$3" 
NET_TYPE="$4" 
 
#set up the subdirectories for cow files properly 
#start with the router cow file directory 
 if ! test -e ${ file_systems} '/router' -a -d ${ file_systems} '/router' 
 then 
  echo "${ file_systems} '/router' does not exist, creating ..." 
  mkdir ${ file_systems} '/router' 
  chmod a+rw ${ file_systems} '/router' 
 fi 
  
#check whether there is a subdirectory for all the specified sub-subnet 
#if not create one 
subnet_home=${ file_systems} '/subnet' 
i=1 
while [ $i -le $SUBNET_COUNT ] 
do 
 if ! test -e ${ subnet_home} ${ i}  -a -d ${ subnet_home} ${ i}  
 then 
  echo "${ subnet_home} ${ i}  does not exist, creating ..." 
  mkdir ${ subnet_home} ${ i}  
  chmod a+rw ${subnet_home} ${ i}  
 fi 
 i=$((i+1)) 
done 
 
# enable ip forwarding proxy arping etc on the physical host 
sysctl -w net.ipv4.ip_forward="1" 
sysctl -w net.ipv4.conf.all.proxy_arp="1" 
route add -net 192.168.0.0/16 dev eth0 
 
ID=0 
if [ $NET_TYPE = victim ] 
then 
 
 ID=1 
 PORT=22000 
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
$PORT 
  
elif [ $NET_TYPE = user ] 
then 
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 ID=9 
 PORT=22000 
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
$PORT 
 
 ID=10 
 PORT=23000 
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
$PORT 
  
elif [ $NET_TYPE = attack ] 
then 
 
 ID=11 
 PORT=22000 
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
$PORT 
 
 ID=12 
 PORT=23000 
 build_subnet $ID $SUBNET_IP $SUBNET_COUNT $NODE_COUNT 
$PORT 
  
fi 
 

 
 
#!/bin/bash 
# set up the virtual uml host 
 
if [ $# != 1 ] 
then  
 echo 
 echo wrong number of arguments 
 echo usage: vhost_setup ip_address 
 echo example: vhost_setup 192.168.0.33  
 echo 
 return 
fi 
#extract the ip 
full_ip="$1" 
subnet_ip=`echo "$1" | cut -d'.' -f1-3` 
ip_add=`echo "$1" | cut -d'.' -f4` 
HOST_IP=`ifconfig eth0 | grep 'inet addr' | cut -d: -f2 | cut -d' ' -f1` 
ROUTER_ID=`echo "$1" | cut -d'.' -f3` 

Vhost_setup 
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P=2 
case "$ROUTER_ID" in 
 1|2|9|11)  P=2;; 
 10|12)  P=3;; 
esac 
 
case "$ip_add" in 
 
 1[7-9]|2[0-9]|30)  
 subsubnet='subnet1';switch="2"$P"001,2"$P"002";; 
 3[3-9]|4[0-6])   
 subsubnet='subnet2';switch="2"$P"003,2"$P"004";; 
 49|5[0-9]|6[0-2])  
 subsubnet='subnet3';switch="2"$P"005,2"$P"006";; 
 6[5-9]|7[0-8])   
 subsubnet='subnet4';switch="2"$P"007,2"$P"008";; 
 8[1-9]|9[1-4])   
 subsubnet='subnet5';switch="2"$P"009,2"$P"010";; 
 9[7-9]|10[0-9]|110) 
 subsubnet='subnet6';switch="2"$P"011,2"$P"012";; 
 11[3-9]|12[0-6])  
 subsubnet='subnet7';switch="2"$P"013,2"$P"014";; 
 129|13[0-9]|14[1-2]) 
 subsubnet='subnet8';switch="2"$P"015,2"$P"016";; 
 14[5-9]|15[0-8])  
 subsubnet='subnet9';switch="2"$P"017,2"$P"018";; 
 16[1-9]|17[0-4])  
 subsubnet='subnet10';switch="2"$P"019,2"$P"020";; 
 17[7-9]|18[0-9]|190) 
 subsubnet='subnet11';switch="2"$P"021,2"$P"022";; 
 19[3-9]|20[0-6])  
 subsubnet='subnet12';switch="2"$P"023,2"$P"024";; 
 209|21[0-9]|22[0-2]) 
 subsubnet='subnet13';switch="2"$P"025,2"$P"026";; 
 22[5-9]|23[0-8])  
 subsubnet='subnet14';switch="2"$P"027,2"$P"028";; #note tap and router are 
on this subnet 
  
 * ) echo 
  echo 'the ip address you entered is not in the valid range' 
  echo 'usage: vhost_setup ip_address' 
  echo 'example: vhost_setup 192.168.0.33 ' 
  return 
  ;; 
esac 
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#start the virtual umlinux hosts 
root_file_location='/home/uml/filesystem/root_fs' 
cow_file_location='/home/uml/filesystem/'${ subsubnet} '/cow_fs_for_ip_'${ full_ip}  
linux umid="VHost:${ subnet_ip} .${ ip_add} " "::::$HOST_IP:" 
ubd0=${ cow_file_location} ,${ root_file_location}  eth0=daemon,,unix,${ switch}  
ssl=pty con=pty con0=xterm mem=64M & 
 
 

 
 
#!/bin/bash 
 
################################################################ 
# builds the core of the network with 6 routers                #  
# each router has 3 interfaces one connected to                # 
# a tunnel and the others a (UML) switch                       # 
#                                                              # 
################################################################                     
 
Netcore_Builder_Usage() {  
 
    echo "Usage: netcore_builder"      
}  
 
clear 
 
 
SUBNET_IP="192.168" 
#get ip of localhost 
UML_HOME='/home/uml' 
FILE_SYSTEMS=$UML_HOME'/filesystem' 
cd $UML_HOME 
 
 
./cleanup 
 
if ! test -e ${ FILE_SYSTEMS} '/router' -a -d ${ FILE_SYSTEMS} '/router' 
 then 
  echo "${ FILE_SYSTEMS} '/router' does not exist, creating ..." 
  mkdir ${ FILE_SYSTEMS} '/router' 
  chmod a+rw ${ FILE_SYSTEMS} '/router' 
fi 
  
# switches to connect routers 
uml_switch -unix 23001 23002 < /dev/null & 
uml_switch -unix 23003 23004 < /dev/null & 

Netcore-builder 
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for i in 3 4 5 6 7 8 
#for i in 6 7 8 
do    
   case $i in 
      3|4|5) SWITCH="daemon,,unix,23001,23002";; 
      6|7|8) SWITCH="daemon,,unix,23003,23004";; 
   esac 
    
   case $i in 
      3|6) SWITCH="$SWITCH eth2=$SWITCH";;  
   esac 
  
 ID="$i" 
 TAP_IP="$SUBNET_IP.$ID.1" 
    
 ETH_DEVICES="eth0=tuntap,,,$TAP_IP eth1=$SWITCH"  
    
   #start up core router 
   linux umid="CRouter:$TAP_IP" ":$ID:" 
ubd0="$FILE_SYSTEMS/router/root_fs_cowCRouter$i,$FILE_SYSTEMS/root_fs" 
$ETH_DEVICES ssl=pty con=pty con0=xterm mem=64M & 
    
done 
 

 
 
#!/bin/bash 
#utility to clean up all the "mess" associated with uml 
 
#sweep off all umlinux instances 
echo 'removing umlinux instances' 
kill -9 `ps aux | grep linux | cut -c10-14` 2>/dev/null 
rm -rf /tmp/uml/*  
 
echo 'removing the switches' 
#remove the uml switches 
kill -9 `ps aux | grep uml_switch | cut -c10-14` 2>/dev/null 
rm -rf /home/uml/22*  
rm -rf /home/uml/23* #and the associated files 
 
#and the tap devices if they exist 
echo 'bringing down the tap devices' 
i=0 
while [ $i -lt 20 ] 
do 

cleanup 
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 ifconfig eth0:$i down 2>/dev/null  
 tunctl -d tap$i >/dev/null 2>/dev/null 
 ip t d tunl$i 2>/dev/null  
 i=$((i+1)) 
done 
 
echo 'finished' 
UUMM LL   hhoosstt   ssccrr iippttss  
  
 

 
#!  / bi n/ sh 
 
# / et c/ i ni t . d/ uml boot :  i ni t i al  s t ar t up conf i gur at i on f or  uml  
########################################################### 
#                                                         # 
# Thi s i s  t he st ar t - up scr i pt  used i nsi de UML t o          # 
# aut omat i cal l y  conf i gur e uml  host  dur i ng boot  up.         # 
#                                                         # 
# I NSTALL:                                                 # 
# A syml i nk t o t hi s f i l e shoul d be put  under  / et c/ i ni t . d  # 
# wi t h per mi ssi on 0755.                             #  
# Al l  scr i pt s ar e kept  i n / et c/ scr i pt s                    # 
# Al so,  set up syml i nks under  / et c/ r cN. d ( r un: )             # 
#   updat e- r c. d - f  uml boot  st ar t  5 2 3 4 5 .        # 
#                                                         # 
########################################################### 
 
 
HOSTNAME=` cut  - d:  - f 1 / pr oc/ cmdl i ne |  cut  - d" ="  - f 2`  
UML_I P=` cut  - d:  - f 2 / pr oc/ cmdl i ne`  
HOST_I P=` cut  - d:  - f 6 / pr oc/ cmdl i ne`  
 
# Conf i gur abl e opt i ons 
 
 
case " $1"  i n 
 st ar t )  
   #set  up host name and domai n name and command pr ompt  
   echo " set t i ng host name t o $HOSTNAME at  domai n 
cs. ucl . ac. uk"  
   / sbi n/ sysct l  - w ker nel . host name=$HOSTNAME 
   / sbi n/ sysct l  - w ker nel . domai nname=' cs. ucl . ac. uk '  
   
   i f  [  - e / et c/ pr of i l e_backup ]  
   t hen 
      cp / et c/ pr of i l e_backup / et c/ pr of i l e  
     
   el se 
            cp  / et c/ pr of i l e / et c/ pr of i l e_backup                   
   f i  
   echo " expor t  PS1=$HOSTNAME"  >> / et c/ pr of i l e 
   echo " expor t  HOST_I P=$HOST_I P UML_I P=$UML_I P 
HOSTNAME=$HOSTNAME"  >> / et c/ pr of i l e 

umlboot 
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   ; ;  
     
 
 s t op)  
   ; ;  
 r el oad| f or ce- r el oad)  
   ; ;  
 r est ar t )  
   ; ;  
    
 * )  
   echo " Usage:  / et c/ i ni t . d/ uml boot  
{ st ar t | s t op| r el oad| f or ce- r el oad| r est ar t } "  
   ex i t  1 
  
esac 
 
exi t  0   
 

 
 
#! / bi n/ bash 
 
# / et c/ i ni t . d/ uml net :  net wor k conf i gur at i on f or  uml  
########################################################### 
#                                                         # 
# Thi s i s  t he st ar t - up scr i pt  used i nsi de UML t o          # 
# aut omat i cal l y  conf i gur e net wor ki ng dur i ng boot  up.       # 
#                                                         # 
# I NSTALL:                                                 # 
# A syml i nk t o t hi s f i l e shoul d be put  under  / et c/ i ni t . d  # 
# wi t h per mi ssi on 0755.                        
  #  
# Al l  scr i pt s ar e kept  i n / et c/ scr i pt s                    # 
# Al so,  set up syml i nks under  / et c/ r cN. d ( r un: )             # 
#   updat e- r c. d - f  uml net  st ar t  40 2 3 4 5 .         # 
#                                                         # 
########################################################### 
 
#UML_CONFI G_STR 
UML_VHOST_STR=" VHost "  
UML_ROUTER_STR=" Rout er "  
UML_CROUTER_STR=" CRout er "  
 
 
 
# f i nd out  t he t ype of  t hi s i nst ance 
get _host _t ype( )  {  
   TYPE=` cut  - d:  - f 1 / pr oc/ cmdl i ne |  cut  - d" ="  - f 2`  
   echo $TYPE 
}  
 
     
conf i g_host ( )  {  
    pr i nt l n " UML det ect ed as $UML_VHOST_STR"  

umlnet 
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  / et c/ scr i pt s/ vhost . conf   
}  
 
conf i g_r out er ( )  {  
  pr i nt l n " UML det ect ed as $UML_ROUTER_STR"  
  / et c/ scr i pt s/ r out er . conf    
}  
 
conf i g_cor e( )  
{  
    pr i nt l n " UML det ect ed as Cor e Rout er "  
    / et c/ scr i pt s/ c_r out er . conf  
}  
pr i nt l n( )  {  
    echo " uml net :  $* "  
}  
 
s t ar t _uml _net _conf i g( )  {  
 
    # ext r act  t ype f r om umi d 
    uml _t ype=` get _host _t ype`  
 
   case " $uml _t ype"  i n 
  $UML_ROUTER_STR)  
      conf i g_r out er  
      ; ;  
  $UML_VHOST_STR)  
      conf i g_host  
      ; ;  
  $UML_CROUTER_STR)  
    conf i g_cor e 
    ; ;      
 * )  
     echo " unknown host  t ype $uml _t ype"  
     ex i t  1 
     ; ;  
    esac 
}  
 
case " $1"  i n 
    s t ar t )  
 s t ar t _uml _net _conf i g 
        ; ;  
    * )  
 ; ;  
esac 
 

 
 
 
#! / bi n/ bash  
 
# / et c/ scr i pt s/ cr eat e_t unnel  :  t unnel  cr eat i on ut i l i t y  
##################################### 
#      # 
# Sampl e:      #  

Create_tunnel 
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#      #  
# TUNNEL_NAME=" t unl 1"    # 
# REMOTE_GW= " 192. 168. 1. 2"   # 
# REMOTE_TUN_I P= " 192. 168. 2. 2"  # 
# LOCAL_TUN_I P=" 192. 168. 1. 3"         # 
#      # 
##################################### 
 
 
TUNNEL_NAME=$1 
REMOTE_GW=$2 
REMOTE_TUN_I P=$3 
LOCAL_TUN_I P=$4 
PORT=$5 
 
openvpn - - r emot e $REMOTE_GW - - dev $TUNNEL_NAME - - i f conf i g 
$LOCAL_TUN_I P $REMOTE_TUN_I P - - por t  $PORT - - shaper  60000 & 
 
 

 
 
 
#! / bi n/ bash 
#Vi r t ual  host  conf i gur at i on f i l e 
 
#ext r act  i p addr ess 
i p_add=` cut  - d:  - f 2 / pr oc/ cmdl i ne`  #of  t hi s host  
subnet _i p=` echo $i p_add |  cut  - d' . '  - f 1- 3`  
l ast _oct et =` echo $i p_add |  cut  - d' . '  - f 4`  
br oadcast _i p=$( ( ( l ast _oct et  & 240) | 15) )  # net mask 240 
gat eway_i p=$( ( br oadcast _i p- 1) )  
 
#conf i gur e et h0 
i f conf i g et h0 ${ i p_add}  net mask 255. 255. 255. 240 br oadcast  
${ subnet _i p} . ${ br oadcast _i p}  up 
 
#cr eat e r out e t o t he r out er  
r out e add def aul t  gw ${ subnet _i p} . ${ gat eway_i p}  
 
#net wor ki ng compl et e 
 
 

 
 
#! / bi n/ bash 
# / et c/ scr i pt s/ r out er . conf :  r out er  conf i gur at i on ut i l i t y  
 
WD=` pwd`  
cd / et c/ scr i pt s 
 
#ext r act  I P addr esses 
i p_add=` cut  - d:  - f 2 / pr oc/ cmdl i ne`  #of  t he r out er  
I D=` cut  - d:  - f 3 / pr oc/ cmdl i ne`  #Rout er  I D 

router.conf 

vhost.conf 
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subnet _count =` cut  - d:  - f 4 / pr oc/ cmdl i ne`  
node_count =` cut  - d:  - f 5 / pr oc/ cmdl i ne`  
subnet _addr ess=` echo $i p_add |  cut  - d' . '  - f 1- 3`  
l ast _oct et =` echo $i p_add |  cut  - d' . '  - f 4`  
br oadcast _i p=$( ( ( l ast _oct et  & 240) | 15) )  # net mask 240 
SUB_16ADD=` echo $i p_add |  cut  - d' . '  - f 1- 2`  
I P_ADD=" $SUB_16ADD. $I D. 2"  
 
#br i ng up t he et h0 dr i ver  
i f conf i g et h0 $I P_ADD up  
 
i =1 
j =1 
i f  [  $I D - eq 1 ]  
t hen 
 #j =2 
 #i f conf i g et h1 " $SUB_16ADD. 2. 2"  up 
 . / cr eat e_t unnel  t unl 1 $SUB_16ADD. 3. 2 $SUB_16ADD. 100. 3 
$SUB_16ADD. 100. 1 5000  
  
 s l eep 5 
 f or  I ND i n 3 4 5 9 10  
 do 
     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 1 
 done  
 . / cr eat e_t unnel  t unl 2 $SUB_16ADD. 6. 2 $SUB_16ADD. 100. 6 
$SUB_16ADD. 100. 2 5100  
 s l eep 5 
 f or  I ND i n 6 7 8 11 12  
 do 
     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 2 
 done  
  
el i f  [  $I D - eq 9 ]  
t hen 
 . / cr eat e_t unnel  t unl 1 $SUB_16ADD. 4. 2 $SUB_16ADD. 100. 4 
$SUB_16ADD. 100. 9 5000   
 s l eep 5 
 f or  I ND i n 1 2 3 4 5 10  
 do 
     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 1 
 done  
el i f  [  $I D - eq 10 ]  
t hen 
 . / cr eat e_t unnel  t unl 1 $SUB_16ADD. 5. 2 $SUB_16ADD. 100. 5 
$SUB_16ADD. 100. 10 5000   
 s l eep 5 
 f or  I ND i n 1 2 3 4 5 9  
 do 
     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 1 
 done  
el i f  [  $I D - eq 11 ]  
t hen 
 . / cr eat e_t unnel  t unl 1 $SUB_16ADD. 7. 2 $SUB_16ADD. 100. 7 
$SUB_16ADD. 100. 11 5000   
 s l eep 5 
 f or  I ND i n 1 2 6 7 8 12  
 do 
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     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 1 
 done  
el i f  [  $I D - eq 12 ]  
t hen  
 . / cr eat e_t unnel  t unl 1 $SUB_16ADD. 8. 2 $SUB_16ADD. 100. 8 
$SUB_16ADD. 100. 12 5000   
 s l eep 5 
 f or  I ND i n 1 2 6 7 8 11  
 do 
     r out e add - net  " $SUB_16ADD. $I ND. 0/ 24"  dev t unl 1 
 done 
f i  
 
whi l e [  $i  - l e $subnet _count  ]  
do 
 r out er _i p=$( (  16* ( i - 1)  + 30 ) )  #addr esses we r eser ved f or  t he 
r out er ,  j ust  bel ow br oadcast  addr ess 
 i f conf i g et h${ j }  ${ subnet _addr ess} . ${ r out er _i p}  net mask 
255. 255. 255. 240 br oadcast  ${ subnet _addr ess} . $( ( r out er _i p + 1) )  up 
 i =$( ( i +1) )  
 j =$( ( j +1) )  
done 
 
#add t he r out e t o nei ghbour i ng r out er ( s)  t hr ough et h0 
case $I D i n 
    1)  
    r out e add - host   " $SUB_16ADD. 3. 2"  dev et h0 
    r out e add - host   " $SUB_16ADD. 6. 2"  dev et h0 
    ; ;  
    9)  
    r out e add - host   " $SUB_16ADD. 4. 2"  dev et h0 
    ; ;  
    10)  
    r out e add - host   " $SUB_16ADD. 5. 2"  dev et h0 
    ; ;  
    11)  
    r out e add - host   " $SUB_16ADD. 7. 2"  dev et h0 
    ; ;  
    12)  
    r out e add - host   " $SUB_16ADD. 8. 2"  dev et h0 
    ; ; * ) echo ' i nval i d I D'  
  
esac 
 
# enabl e i p f or war di ng 
sysct l  - w net . i pv4. i p_f or war d=" 1"  
# set  up pr oxy ar p f or  t he subnet s 
sysct l  - w net . i pv4. conf . al l . pr oxy_ar p=" 1"  
 
# cr eat e a r out e t o t he physi cal  host  
HOST_I P=` cut  - d:  - f 6 / pr oc/ cmdl i ne`  
HOST_NET=` echo $HOST_I P |  cut  - d' . '  - f 1- 3`  
r out e add - net  $HOST_NET. 0/ 24 dev et h0 
cd " $WD"  
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#! / bi n/ bash 
# / et c/ scr i pt s/ c_r out er . conf :  cor e r out er  conf i gur at i on ut i l i t y  
 
I D=` cut  - d:  - f 3 / pr oc/ cmdl i ne`  
WD=` pwd`  
 
cd / et c/ scr i pt s 
 
case $I D i n 
 
   3)  i f conf i g et h0 192. 168. 3. 2 up 
      i f conf i g et h1 192. 168. 34. 1 up 
      i f conf i g et h2 192. 168. 35. 1 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 1. 2 192. 168. 100. 1 192. 168. 100. 3 
5000 
      s l eep 5 
      r out e add - net  192. 168. 1. 0/ 24 dev t unl 1 
      r out e add - net  192. 168. 2. 0/ 24 dev t unl 1 
      r out e add - net  192. 168. 4. 0/ 24 gw 192. 168. 34. 1   
      r out e add - net  192. 168. 5. 0/ 24 gw 192. 168. 35. 1 
      r out e add - net  192. 168. 9. 0/ 24 gw 192. 168. 34. 1 
      r out e add - net  192. 168. 10. 0/ 24 gw 192. 168. 35. 1 
      r out e add - host  192. 168. 1. 2 dev et h0; ;  
       
   4)  i f conf i g et h0 192. 168. 4. 2 up 
      i f conf i g et h1 192. 168. 34. 2 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 9. 2 192. 168. 100. 9 192. 168. 100. 4 
5000  
      s l eep 5 
      r out e add - net  192. 168. 9. 0/ 24 dev t unl 1  
      r out e add - net  192. 168. 1. 0/ 24 gw 192. 168. 34. 2 
      r out e add - net  192. 168. 3. 0/ 24 gw 192. 168. 34. 2   
      r out e add - net  192. 168. 5. 0/ 24 gw 192. 168. 34. 2   
      r out e add - net  192. 168. 2. 0/ 24 gw 192. 168. 34. 2 
      r out e add - host  192. 168. 9. 2 dev et h0; ;  
       
   5)  i f conf i g et h0 192. 168. 5. 2 up 
      i f conf i g et h1 192. 168. 35. 2 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 10. 2 192. 168. 100. 10 192. 168. 100. 5 
5000  
      s l eep 5  
      r out e add - net  192. 168. 10. 0/ 24 dev t unl 1  
      r out e add - net  192. 168. 1. 0/ 24 gw 192. 168. 35. 2 
      r out e add - net  192. 168. 3. 0/ 24 gw 192. 168. 35. 2   
      r out e add - net  192. 168. 4. 0/ 24 gw 192. 168. 35. 2   
      r out e add - net  192. 168. 2. 0/ 24 gw 192. 168. 35. 2       
      r out e add - host  192. 168. 10. 2 dev et h0; ;  
       
   6)  i f conf i g et h0 192. 168. 6. 2 up 
      i f conf i g et h1 192. 168. 67. 1 up 
      i f conf i g et h2 192. 168. 68. 1 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 1. 2 192. 168. 100. 2 192. 168. 100. 6 
5100  

c_router.conf 



MSc DCNDS  Group 4 - NAIRS 

 120 

      s l eep 5 
      r out e add - net  192. 168. 1. 0/ 24 dev t unl 1 
      r out e add - net  192. 168. 2. 0/ 24 dev t unl 1      
      r out e add - net  192. 168. 7. 0/ 24 gw 192. 168. 67. 1       
      r out e add - net  192. 168. 8. 0/ 24 gw 192. 168. 68. 1       
      r out e add - net  192. 168. 11. 0/ 24 gw 192. 168. 67. 1 
      r out e add - net  192. 168. 12. 0/ 24 gw 192. 168. 68. 1 
      r out e add - host  192. 168. 1. 2 dev et h0; ;  
       
   7)  i f conf i g et h0 192. 168. 7. 2 up 
      i f conf i g et h1 192. 168. 67. 2 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 11. 2 192. 168. 100. 11 192. 168. 100. 7 
5000  
      s l eep 5  
      r out e add - net  192. 168. 11. 0/ 24 dev t unl 1 
      r out e add - net  192. 168. 1. 0/ 24 gw 192. 168. 67. 2 
      r out e add - net  192. 168. 2. 0/ 24 gw 192. 168. 67. 2       
      r out e add - net  192. 168. 6. 0/ 24 gw 192. 168. 67. 2       
      r out e add - net  192. 168. 8. 0/ 24 gw 192. 168. 67. 2       
      r out e add - host  192. 168. 11. 2 dev et h0; ;  
       
   8)  i f conf i g et h0 192. 168. 8. 2 up 
      i f conf i g et h1 192. 168. 68. 2 up 
      . / cr eat e_t unnel  t unl 1 192. 168. 12. 2 192. 168. 100. 12 192. 168. 100. 8 
5000  
      s l eep 5 
      r out e add - net  192. 168. 12. 0/ 24 dev t unl 1       
      r out e add - net  192. 168. 1. 0/ 24 gw 192. 168. 68. 2 
      r out e add - net  192. 168. 2. 0/ 24 gw 192. 168. 68. 2 
      r out e add - net  192. 168. 6. 0/ 24 gw 192. 168. 68. 2       
      r out e add - net  192. 168. 7. 0/ 24 gw 192. 168. 68. 2       
      r out e add - host  192. 168. 12. 2 dev et h0; ;     
       
   * )  echo ' er r or  i n net wor k conf i gur at i on' ; exi t  1; ;  
esac 
 
#enabl e i p f or war di ng 
sysct l  - w net . i pv4. i p_f or war d=" 1"  
 
#enabl e pr oxy ar pi ng 
sysct l  - w net . i pv4. conf . al l . pr oxy_ar p=" 1"  
cd " $WD"  
 

 
 


