



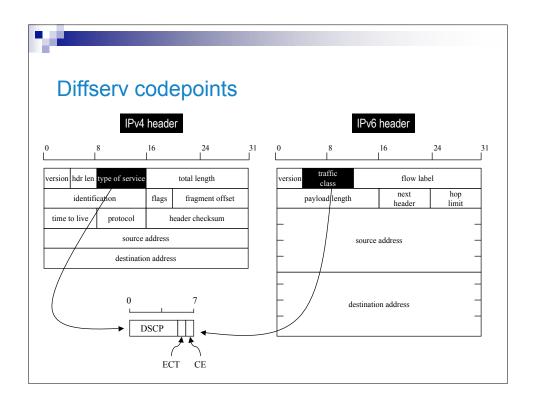

### **Differentiated Services**

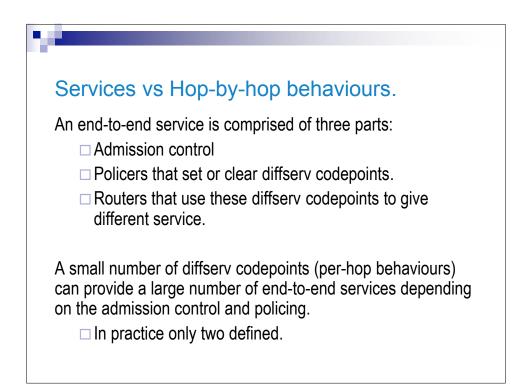
There are two ways to get different service for your packets:

- 1. Install filter state in routers.
- 2. Use the filter to recognize compliant packets.
- 3. Give them different service.
- 1. Set bits in the packets.
- 2. Use the bits to recognize compliant packets.
- 3. Give them different service.

Intserv does the former, Diffserv does the latter.




### **Traffic Limitations**


- Can't give all traffic better service!
  - ☐ Must limit the amount of traffic that gets better service
- Intserv: On demand request from end-system, travels hop-by-hop.
  - □ Can be refused if insufficient capacity available.
  - □ Difficult to bill.
- **Diffserv:** Service Level Agreements (SLA)
  - □ much coarse grain.
  - □ source agrees to limit amount of traffic in given class.
  - □ network agrees to give that traffic "better" service.
  - □ network bills more than they'd charge for best-effort connectivity.



### **Diffserv Bits**

- There are not many bits in an packet we can use.
  - □ 8 TOS bits, but 2 of those allocated to ECN
- If this is to go fast, the bits must specify the behaviour that the router should apply to the packet.
  - ☐ Thus there are not many behaviours we can specify.
  - ☐ Actually there aren't that many we want to specify either.
  - ☐ Allocating the bits as codepoints makes better use.



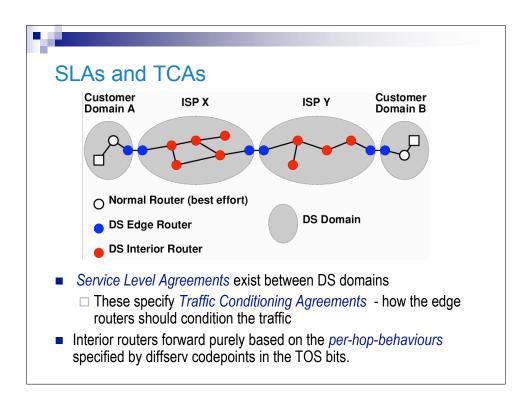


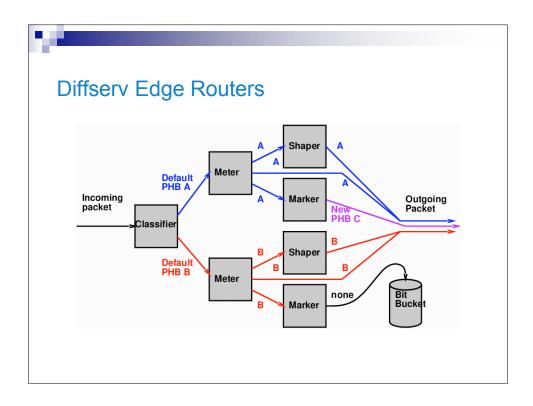


## "Expedited Forwarding" - RFC2598

- Virtual leased line service
  - ☐ Marked packets get minimal delay and very low loss
  - □ e.g., put EF packets in high priority queue
  - □ Data rate specified in SLS.
  - ☐ Traffic exceeding the SLS is dropped.
- To make this a true "absolute" service, all SLAs must sum to less than the link speed.
  - ☐ More likely, a way to assure relatively low delay




## "Assured Forwarding" - RFC2597


- Some packets are marked as low-drop probability and others as high-drop probability.
  - □ Packets are all serviced in order this makes TCP implementations perform well.
  - ☐ Traffic exceeding the SLS is re-marked (i.e., it loses its assurance)
- Can be implemented using variations of RED
  - ☐ different drop probabilities for different classes



### **Assured Forwarding Example**

- Suppose we have a congested link with 10% premium traffic and 90% best-effort. traffic.
  - ☐ The overall drop rate is 5%
  - □ We can give the premium traffic *no loss* if we increase the loss rate for the best-effort traffic to 5.56% (or 5.06% if it's TCP)
- Can get a large improvement in service for the small class of traffic without imposing much of a penalty on the other traffic.
  - ☐ This depends on the SLAs to control the premium traffic, as this is no longer getting a congestion control signal.







## **Diffserv Summary**

#### Advantages:

- Very simple to implement
  - Minimal router state.
- Can be applied to different granularities
  - □ flows
  - □ institutions
  - □ traffic types
- Realistic economic model
  - □ Bilateral SLAs

#### Disadvantages:

- Expedited Forwarding has low efficiency
  - ☐ Must be small fraction of traffic.
- Assured Forwarding is just better best effort
  - □ Not low delay.
  - □ No guarantees
- Bandwidth broker for dynamic SLAs is still fictional



# Comparison

|                | Intserv                                     | Diffserv                                 |
|----------------|---------------------------------------------|------------------------------------------|
| Signalling     | from application                            | network management, application          |
| Granularity    | flow                                        | flow, source, site (aggregate flows)     |
| Classification | destination address, protocol & port number | packet class (other mechanisms possible) |
| Scope          | end-to-end                                  | between networks,<br>end-to-end          |

Note: They are not necessarily mutually exclusive - eg Intserv reservation within a Diffserv flow



### Other QoS mechanisms

- ToS byte:
  - □ "historical" usage
  - □ not used on an Internet-wide basis
  - □ some usage in private networks
- MPLS Multi-protocol label switching:
  - □ a label-swapping mechanism
  - □ originally intended as a fast-forwarding technology
  - □ now being used for traffic engineering (TE) and QoS
  - □ signalling: RSVP-TE, CR-LDP



# **Summary**

- Probably do need QoS mechanisms for IP, though not universally.
- Per flow:
  - ☐ INTSERV/RSVP
  - □ does not scale well, hard to provision, hard to bill
- Customer/provider services:
  - □ DIFFSERV
  - □ still maturing
  - $\hfill \square$  sane economics, but few customers.
- Reality: not much QoS deployed.