

- Background: Internet Videoconferencing
- Quality Assessment
 - ☐ Task performance and subjective assessment
 - □ Physiological responses
- Users and QoS parameters

Background

- Internet research at UCL Computer Science since 1973
- IP Videoconferencing since 1992 (MICE, ReLaTe)
 - ☐ Suffering from broken-up audio, low framerates
- Much research work on conferencing tool development:
 - □ rat, vic, nte, sdr
- Humans don't always respond in predictable ways:
 - □ Need evaluation of which things *actually work*.

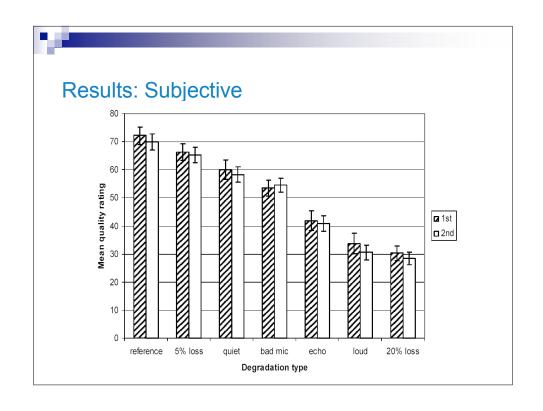
A/V Quality Assessment

- Telecommunications
 - ☐ ITU 5-point scales
 - ☐ Mean Opinion Score (MOS)
 - ☐ Short clips, no relation to task
 - ☐ "spot the degradation"
- Quality of the speech/ScoreExcellent5Good4Fair3Poor2Bad1
- HCI-based assessment approach
 - □ Real users in context
 - □ Real tasks/materials
 - □ Repeated trials
 - □ Is quality adequate/comfortable for the task?

PIPVIC-2 Trials

- Piloting IP Videoconferencing over UK Academic Network
- 13 partner sites
- Jan. Sept. 1999
- multicast (rat, vic, wb, nte)
- teaching, research, admin
- · lectures and tutorials :
 - languages
 - medical
 - sociology
 - business studies
 - history
 - computer science

Trial results

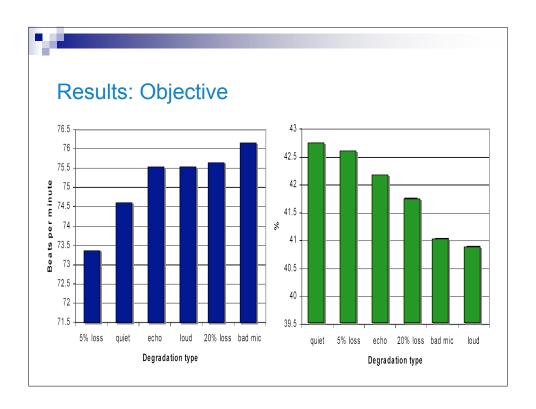

- Objective and subjective quality were collected for all the multimedia sessions
 - □ 1/3 of session reports rated that the audio quality was less than adequate
 - □ but *objective* quality (network and tool stats) good (< 5% packet loss) throughout sessions
- Qualitative data and recordings indicate that the session setup and usage are the main cause of dissatisfaction.

Experimental study

- Compare network with other packet loss (repaired with packet repetition)
 - □ Reference (no loss), 5% loss, 20% loss
- Volume differences
 - □ too loud, too quiet
- Acoustic problems
 - \square echo, bad mike

Watson & Sasse: Procs ACM Multimedia 2000

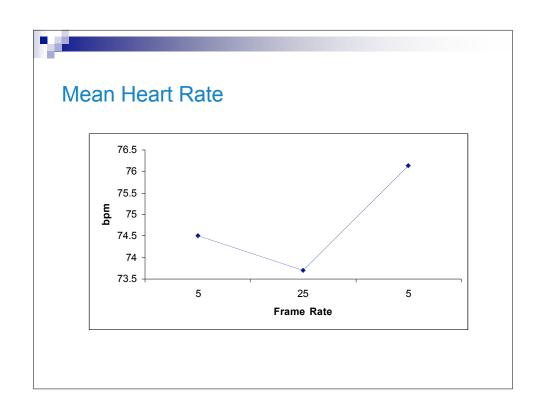
Results: subjective ratings


- Ratings were very consistent across repeated measures.
- No significant difference between the reference condition, *5% packet loss*, and *quiet*.
- Bad microphone significantly worse.
- No significant difference between echo, loud and 20% packet loss.

Capturing users' physiological responses

- Procomp measurement device on left hand
 - ☐ Blood Volume Pulse
 - ☐ Heart Rate
- Under stress, BVP decreases and HR increases.
- Objective measure of the "cost" to the user.

Results: physiological responses


- bad microphone, loud and 20% loss were significantly more stressful than quiet and 5% loss
- echo was more stressful than quiet and 5% loss
- bad microphone and loud more stressful than 20% loss

Video Experiment 1

- Effects of 5fps and 25fps.
- Participants watched recorded University admission interviews and answered questions.
- Physiological & subjective assessment.

Wilson & Sasse Procs HCI 2000

Results

- Significant increase in galvanic skin response (GSR) and heart rate (HR) at 5 fps for 78% of participants
- Subjectively, 16% noticed change in frame rate
- 18% felt under stress due to quality
- Subjective responses are cognitively mediated, subject to memory biases

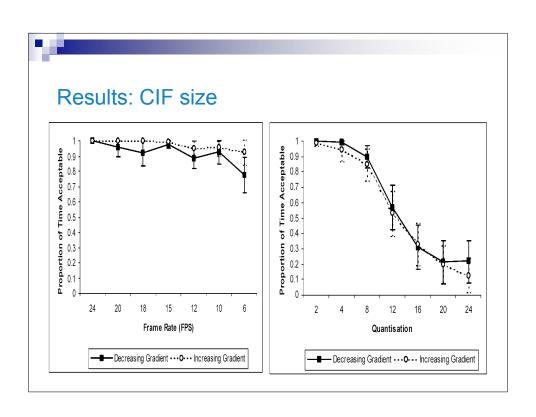
Physiology implications

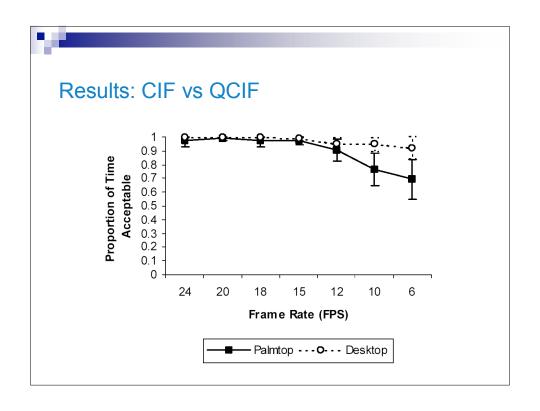
- Differences between subjective ratings and physiology
- Indication of strain, fatigue in longer-term use (stress, RSI)
- Danger of mis-attribution (e.g. in interviews)

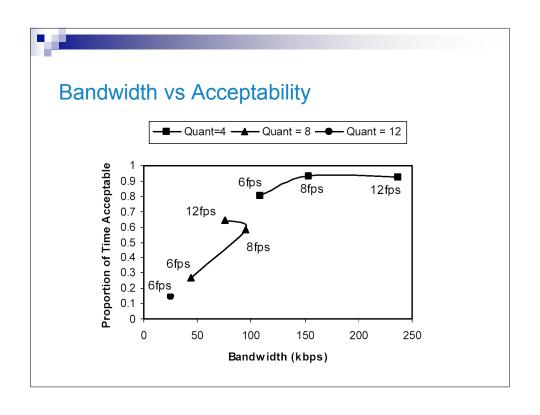
Summary (1)

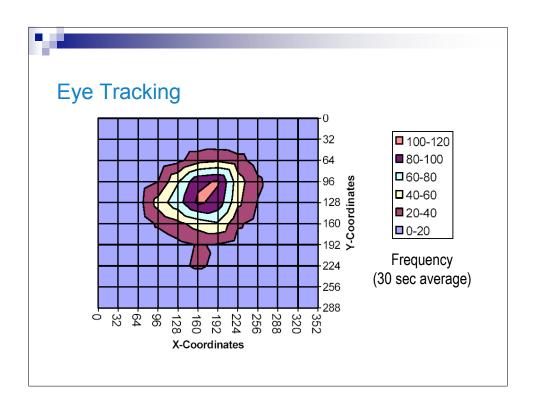
- Users evaluate quality in terms of perceived utility for a task performed (value)
- QoS parameters vary across tasks
 - ☐ Speed, resolution,
 - □ security, allowing focus on task
- Predictable, consistent quality valued more highly than variable, "best available".
- Each task has critical thresholds and critical period that determines perception of quality per session

Bouch et al., Procs IWQoS 2000


Video Experiment 2


- Watching football clips
 - □ particular emphasis on video on handheld devices, such as 3G phones, etc.
- Goal was to evaluate the tradeoff between frame rate and quantization.
 - ☐ Conventional guidelines recommend high frame rates for high-motion video such as sports events.




Details

- Two video streams:
 - ☐ CIF (352x288 pixels) on a LCD monitor.
 - □ QCIF (176x144 pixels) on an iPAQ palmtop.
- Vary framerate between 6fps and 25fps
- Vary quantization parameters.
- Verbal feedback from subjects
- Use eye-tracker
- Use heart measurements.

Summary

- Audio is difficult
 - ☐ External factors (echo, microphone position, volume) can seriously degrade quality.
- Video is a little more forgiving.
 - □ No single right answer for how to tradeoff frame size, frame rate, quantization.
 - $\hfill\Box$ Depends very much on the task in question.
- Cost of service influences expectations and how quality is evaluated.
- User evaluation is an important part of design
 - □ Results are not always what you expect!