
1

OS Scheduling/Buffering

• Scheduling
– Kernel/user space
– Processes/threads
– Interrupts
– Non-preemptive/Preemptive
– Realtime

• Buffering
– Block based
– Shared memory/Memory mapping
– Network smoothing
– Playback buffers

Kernel/user space

Kernel Drivers

User process
Restricted
access

Supervisor
access

Changing from
Kernel to user
mode called a
“context change”

System calls

Processes/Threads

• Process
– a task being run (often simultaneously) with other processes
– Must take turns on the CPU (timeslicing) unless there are multiple 

CPUs (multiprocessing – processes may be allocated to CPUs)
– Managed by the OS (scheduled)
– Kept apart to reduce chance of system failure (but may 

communicate by IPC – Inter Process Communication)

• Threads
– Process splits itself into two or more simultaneously running tasks
– Share process state (are more dependent)
– Share memory directly
– Faster context switching

Interrupts

• Signal (event) from a device to the processor
• Causes the processor to stop what it is doing and 

execute an “interrupt handler” (context switch)
• Can be from audio device, timer…
• Timer interrupt increments a clock, used by the 

kernel to switch processes
• Can be disabled (except “non-maskable 

interrupts”) to stop interrupts interrupting other 
interrupts!

• Interrupt routine should be fast (another interrupt 
could be on the way)

(Non-)preemptive scheduling

• Non-preemptive multitasking
– OS does not try to guess when a process has 

finished (does not pre-empt it)

• Pre-emptive multitasking
– OS “interrupts” a process (even if it is not 

complete) and gives control to another process
– Hardware interrupts can also pre-empt a 

process
– Eg Windows, Linux…

Realtime Scheduling

• A Real Time Operating System (RTOS), is an operating system that 
has been developed for real-time applications.

• Typically used for embedded applications they usually have the 
following characteristics: 

– Small footprint (doesn't use much memory) 

– Pre-emptable (any hardware event can cause a task to run) 

– Multi-architecture (code ports to another type of CPU) 

– Many have predictable response-times to electronic events

• Minimise interrupt disable period

• Application can request delay, jitter bounds. OS schedules processes 

according to requests, to meet application requirements.



2

Buffering

• Block based
– Device/driver handles data in blocks

– more efficient than, eg, single bytes: less 
interrupts/OS calls

– Bigger blocks = more efficient but more delay

– Smaller blocks = less efficient but less delay

– Codecs sometimes restrict choice (eg lpc, 
mp3…)

Shared memory/Memory mapping

• Shared memory
– Processes/threads communicate/exchange data 

via memory accessible to all processes
– Processes have to manage access (semaphores)

• Memory mapping
– An area of memory used by the kernel is 

mapped into user space (user process can 
access directly)

– Eg Audio buffer, Framebuffer (video)

Network smoothing

• Variable rate output from a codec (eg I-
frames, P-frames, B-frames)

• Constant bitrate output from a network 
interface

• Network buffers “smooth” the codec output 
to fit the network capacity

• Causes some delay

Playout buffers

• Receiver receives data with jitter (from 
network/OS scheduling…)

• Adding a short delay (holding the data in a buffer) 
may smooth the jitter

• Buffer size depends on type of application 
(interactive/non-interactive)

• Interactive buffer size=min(“worst case jitter seen 
so far”, 150ms) (may be too conservative)

• Non-interactive buffer size=0.5s (allows for 
reasonable speed channel hopping)


