OS Scheduling/Buffering

¢ Scheduling
— Kernel/user space
— Processes/threads
— Interrupts
— Non-preemptive/Preemptive
— Redltime
« Buffering
— Block based
— Shared memory/Memory mapping
— Network smoothing
— Playback buffers

Kernel/user space

Changing from
Kernel to user
Restricted mode called a
access “context change”
Supervisor System calls
access

Processes/ Threads

¢ Process
— atask being run (often simultaneously) with other processes
— Must take turns on the CPU (timeslicing) unless there are multiple
CPUs (multiprocessing — processes may be alocated to CPUs)
— Managed by the OS (schedul ed)
— Kept apart to reduce chance of system failure (but may
communicate by |PC — Inter Process Communication)
¢ Threads
— Process splitsitself into two or more simultaneoudy running tasks
— Share process state (are more dependent)
— Share memory directly
— Faster context switching

Interrupts

Signal (event) from a device to the processor
Causes the processor to stop what it is doing and
execute an “interrupt handler” (context switch)
Can be from audio device, timer...

Timer interrupt increments a clock, used by the
kernel to switch processes

Can be disabled (except “non-maskable
interrupts’) to stop interrupts interrupting other
interrupts!

Interrupt routine should be fast (another interrupt
could be on the way)

(Non-)preemptive scheduling

» Non-preemptive multitasking
— OS does not try to guess when a process has
finished (does not pre-empt it)
* Pre-emptive multitasking
— OS“interrupts’ aprocess (evenif itisnot
complete) and gives control to another process

— Hardware interrupts can also pre-empt a
process

— Eg Windows, Linux...

Realtime Scheduling

A Real Time Operating System (RTOS), is an operating system that
has been developed for real-time gpplications.

« Typicaly used for embedded applications they usually have the

following characteristics:

— Small footprint (doesn't use much memory)

— Pre-emptable (any hardware event can cause atask to run)

— Multi-architecture (code ports to another type of CPU)

— Many have predictable response-times to el ectronic events
Minimise interrupt disable period
Application can request delay, jitter bounds. OS schedul es processes
according to requests, to meet application requirements.




Buffering

» Block based

— Device/driver handles data in blocks

— more efficient than, eg, single bytes: less
interrupts/OS calls

— Bigger blocks = more efficient but more delay
— Smaller blocks = less efficient but less delay

— Codecs sometimes restrict choice (eg Ipc,
mp3...)

Shared memory/Memory mapping

 Shared memory

— Processes/threads communicate/exchange data
viamemory accessible to all processes

— Processes have to manage access (semaphores)

e Memory mapping

— An area of memory used by the kernel is
mapped into user space (user process can
access directly)

— Eg Audio buffer, Framebuffer (video)

Network smoothing

Variable rate output from a codec (eg I-
frames, P-frames, B-frames)

Constant bitrate output from a network
interface

Network buffers“smooth” the codec output
to fit the network capacity

Causes some delay

Playout buffers

Receiver receives data with jitter (from
network/OS scheduling...)

Adding a short delay (holding the datain a buffer)
may smooth the jitter

Buffer size depends on type of application
(interactive/non-interactive)

Interactive buffer size=min(“worst casejitter seen
sofar”, 150ms) (may be too conservative)
Non-interactive buffer size=0.5s (allows for
reasonable speed channel hopping)




