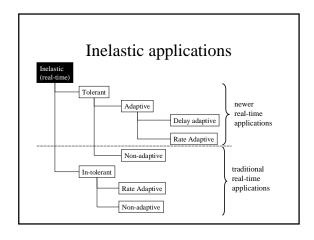

Describing network traffic

- Traffic patterns
- Application requirements
- · QoS parameters and descriptions


Mixed traffic in the network [1] • Different applications: - traffic (generation) profiles - traffic timing constraints • Routers use FCFS queues: - no knowledge of application - no knowledge of traffic patterms • Different traffic types share same network path • Consider three different applications ...

Examples of elastic applications • E-mail: · Network file service: - interactive service - asynchronous - similar to file transfer message is not real-time - fast response required delivery in several minutes - (usually over LAN) is acceptable • WWW: • File transfer: interactive - interactive service file access mechanism(!) - require "quick" transfer fast response required - "slow" transfer acceptable QoS sensitive content on WWW pages

Examples of inelastic applications

- Streaming voice:
 - not interactive
 - end-to-end delay not important
 - end-to-end jitter not important
 - data rate and loss very important
- · Real-time voice:
 - person-to-person
 - interactive
- Important to control:
 - end-to-end delay
 - end-to-end jitter
 - end-to-end loss
 - end-to-end data rate

QoS parameters for the Internet [1]

Delay

- Not possible to request maximum delay value
- No control over end-toend network path
- Possible to find actual values for:
 - maximum end-to-end delay,

Jitter

- · Not possible to request end-to-end jitter value
- Approximate maximum jitter:
 - $D_{MAX} D_{MIN}$
 - $\ \ evaluate \ D_{MIN} \ dynamically$
 - D_{MAX}? 99th percentile?
- Jitter value:
 - transport-level info
 - application-level info

QoS parameters for the Internet [2]

Loss

- Not really a QoS parameter for IP networks
- How does router honour request?
- Linked to data rate:
- hard guarantee?
- probabilistic?
- best effort?
- (Traffic management and congestion control)

Packet size

- · Restriction: path MTU
- · May be used by routers:
 - buffer allocation
 - delay evaluation

QoS parameters for the Internet [3]

- Data rate:
 - how to specify?
- · Data applications are bursty:

peak data rate mean data rate >> 1

- Specify mean data rate? peak traffic?
- Specify peak data rate?
 - waste resources?
- Real-time flows:
 - may be constant bit rate
 - can be variable bit rate
- Application-level flow:
- application data unit (ADU)
- Data rate specification:
 - application-friendly
 - technology neutral

Delay

End-to-end delay

- Propagation:
- speed-of-light
- Transmission:
- data rate
- Network elements:
- buffering (queuing) processing
- End-system processing:
- application specific

- Delay bounds? · Internet paths:
 - "unknown" paths
- dynamic routing
- Other traffic:
 - traffic patterns
 - localised traffic
- "time-of-day" effects · Deterministic delay:
 - impractical but not impossible

Jitter (delay jitter)

End-to-end jitter

- Variation in delay:
 - per-packet delay changes
- · Effects at receiver:
 - variable packet arrival rate
 variable data rate for flow
- Non-real-time:
- no problem
- Real-time:
 - need jitter compensation

- Causes of jitter
- · Media access (LAN)
- FIFO queuing:
- no notion of a flow
- (non-FIFO queuing)
- Traffic aggregation:
- different applications
- · Load on routers:
 - busy routers
 - localised load/congestion
- · Routing:
 - dynamic path changes

Loss

End-to-end loss

- Non-real-time:
- re-transmission, e.g.:
 TCP
- · Real-time:
 - forward error correction and redundant encoding
 - media specific "fill-in" at receiver
- · Adaptive applications:
 - adjust flow construction

Causes of loss

- Packet-drop at routers:
 - congestion
- · Traffic violations:
 - mis-behaving sources
 - source synchronisation
- · Excessive load due to:
 - failure in another part of the network
 - abnormal traffic patterns, e.g. "new download"
- Packet re-ordering may be seen as loss

Data rate

End-to-end data rate

- · Short-term changes:
- during the life-time of a flow, seconds
- Long-term changes:
 - during the course of a day, hours
- · Protocol behaviour:
 - e.g. TCP congestion control (and flow control)

Data-rate changes

- · Network path:
 - different connectivity
- Routing:
 - dynamic routing
- Congestion:
 - network load loss
 - correlation with loss and/or delay?
- Traffic aggregation:
 - other users
 - (time of day)

Network probing: a quick note

- Can use probes to detect:
 - delay
 - jitter
 - lossdata rate
- · Use of network probes:
 - ping
 - traceroute
 - pathchar
- Probes load the network, i.e the affect the system being measured
- Measurement is tricky!
- See:
 - www.caida.org
 - www.nlanr.net

Perceived QoS

- Consider applicationspecific (media-specific) features
- Real-time VoIP:
 - packet loss rate of 1/20 for voice
 - what if the first or last phoneme is lost?
 - losing the start of a word leads to lower perceived QoS!
 - other factors (jitter, delay)
- Streaming:
 - can cope with loss by
 - buffering at the receiver

 what about data rate?
- For example video:
 - low data rate
 - small picture size
 - low refresh (e.g. 3fps)
 - low colour depth
 OK for adverts, news reels
 - Not OK for entertainment

Interactive, real-time media flows

- Audio/video flows:
 - streaming audio/video
 - use buffering at receiver
- Interactive real-time:
 - only limited receiver buffering
 - delay + jitter <150ms(jitter <150ms)
- keep loss low
- Effects of loss:
- depend on application, media, and user
- Audio:
 - humans tolerant of "bad" audio for speech
 - humans like "good" audio for entertainment
- · Video:
 - humans tolerant of "low" quality video for business
 - humans like "high" quality video for entertainment
- Audio video sync:
 - separate flows?

Audio

QoS requirements

- Delay < 150ms:
 - including jitter
- · Low loss preferable:
 - loss tolerant encodings exist
- Data rates:
 - speech ≤ 64Kb/s
 - "good" music ≥ 128Kb/s
- · Time domain sampling
- Example packet voice:
 - 64Kb/s PCM encoding
 - 8-bit samples
 8000 samples per second

 - 40ms time slices of audio
 - 320 bytes audio per packet
 - 48 bytes overhead
 (20 bytes IP header)
 (8 bytes UDP header)
 (20 bytes RTP header)
 - 73.6Kb/s

Video

QoS requirements

- Delay < 150ms: including jitter
 - same as audio
- inter-flow sync
- Loss must be low
- Data rate depends on:
 - frame size
 - colour depth
 - frame rate
 - encoding

• Frequency domain:

 discrete cosine transform (DCT)

Summary

- Different applications have different needs
- Some QoS requirements are applicationspecific and media-specific:
 - perceived QoS
- Different requirements for real-time multimedia and streamed multimedia