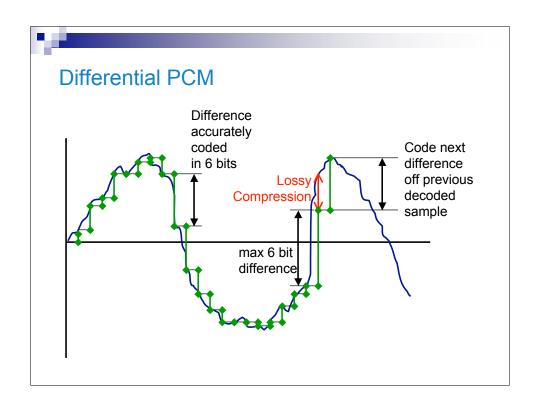


- Communications channels and storage cost money (although less than they used to)
 - ☐ What can we do to reduce the transmission and/or storage costs without sacrificing too much quality?

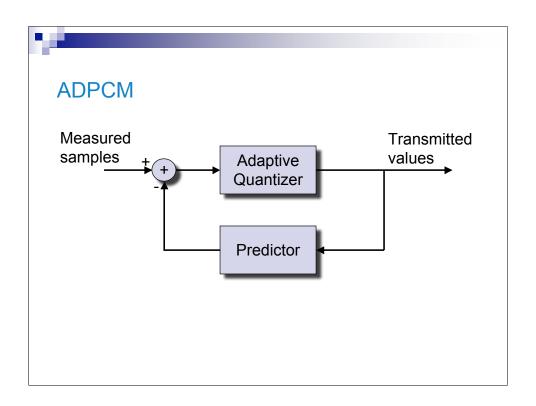
Speech Codec Overview

- PCM send every sample
- DPCM send differences between samples
- ADPCM send differences, but adapt how we code them
- SB-ADPCM wideband codec, use ADPCM twice, once for lower frequencies, again at lower bitrate for upper frequencies.
- LPC linear model of speech formation
- CELP use LPC as base, but also use some bits to code corrections for the things LPC gets wrong.


PCM

- $lacktriangleq \mu$ -law and a-law PCM have already reduced the data sent.
- Lost frequencies above 4KHz.
- Non-linear encoding to reduce bits per sample.
- However, each sample is still independently encoded.
 - ☐ In reality, samples are correlated.
 - ☐ Can utilize this correlation to reduce the data sent.

Differential PCM

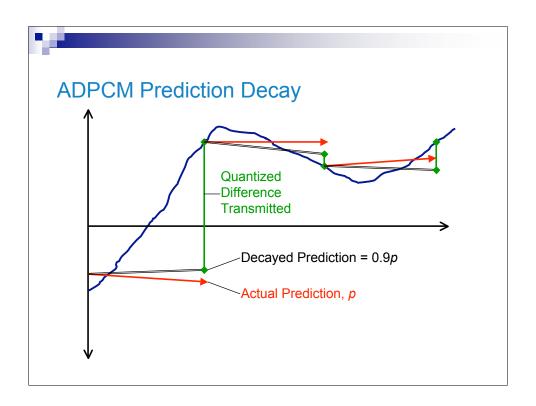

- Normally the difference between samples is relatively small and can be coded with less than 8 bits.
- Simplest codec sends only the differences between samples.
 - ☐ Typically use 6 bits for difference, rather than 8 bits for absolute value.
- Compression is lossy, as not all differences can be coded
 - □ Decoded signal is slightly degraded.
 - □ Next difference must then be encoded off the previous decoded sample, so losses don't accumulate.

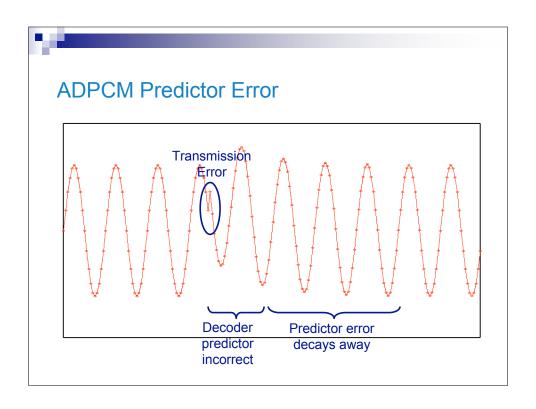
ADPCM (Adaptive Differential PCM)

- Makes a simple prediction of the next sample, based on weighted previous *n* samples.
 - ☐ For G.721, previous 8 weighted samples are added to make the prediction.
- Lossy coding of the difference between the actual sample and the prediction.
 - \square Difference is quantized into 4 bits \Rightarrow 32Kb/s sent.
 - Quantization levels are adaptive, based on the content of the audio.
- Receiver runs same prediction algorithm and adaptive quantization levels to reconstruct speech.

ADPCM

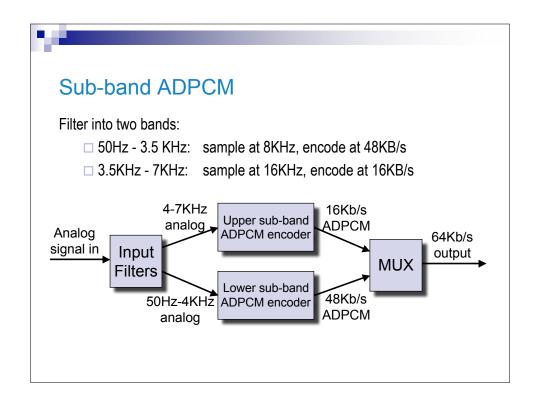
- Adaptive quantization cannot always exactly encode a difference.
 - ☐ Shows up as quantization noise.
- Modems and fax machines try to use the full channel capacity.
 - ☐ If they succeed, one sample is not predictable from the next.
 - ☐ ADPCM will cause them to fail or work poorly.
- ADPCM not normally used on national voice circuits, but commonly used internationally to save capacity on expensive satellite or undersea fibres.
 - ☐ May attempt to detect if it's a modem, and switch back to regular PCM.


Predictor Error


- What happens if the signal gets corrupted while being transmitted?
 - ☐ Wrong value will be decoded.
 - □ Predictor will be incorrect.
 - ☐ All future values will be decoded incorrectly!
- Modern voice circuits have low but non-zero error rates.
 - ☐ But ADPCM was used on older circuits with higher loss rates too. How?

ADPCM Predictor Error

- Want to design a codec so that errors do not persist.
- Build in an automatic decay towards zero.
 - ☐ If only differences of zero were sent, the predictor would decay the predicted (and hence decoded) value towards zero.
- Differences have a mean value of zero (there are as many positive differences as negative ones).
 - ☐ Thus predictor decay ensures that any error will also decrease over time until it disappears.

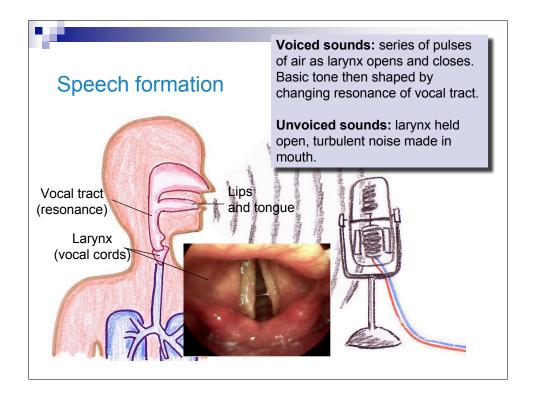


Sub-band ADPCM

- Regular ADPCM reduces the bitrate of 8KHz sampled audio (typically 32Kb/s).
- If we have a 64Kb/s channel (eg ISDN), we could use the same techniques to produce better that toll-quality.
- Could just use ADPCM with 16KHz sampled audio, but not all frequencies are of equal importance.
 - □ 0-3.5KHz important for intelligibility
 - □ 3.5-7KHz helps speaker recognition and conveys emotion
- Sub-band ADPCM codes these two ranges separately.

Sub-band ADPCM

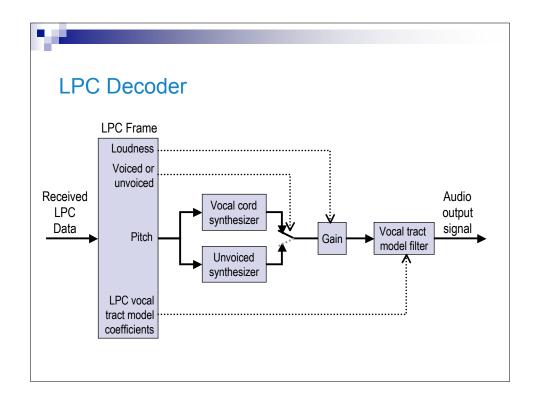
- Practical issue:
 - ☐ Unless you have dedicated hardware, probably can't sample two sub-bands separately at the same time.
 - □ Need to process digitally.
 - Sample at 16KHz.
 - Use digital filters to split sub-bands and downsample the lower sub-band to 8KHz.


Key point of Sub-band ADPCM:

- □ Not all frequencies are of equal importance (quantization noise is more disruptive to some parts of the signal than others)
- ☐ Allocate the bits where they do most good.

Model-based Coding

- PCM, DPCM and ADPCM directly code the received audio signal.
- An alternative approach is to build a parameterized model of the sound source (ie. Human voice).
- For each time slice (eg 20ms):
 - □ Analyse the audio signal to determine how the signal was produced.
 - □ Determine the model parameters that fit.
 - ☐ Send the model parameters.
- At the receiver, synthesize the voice from the model and received parameters.


Linear Predictive Coding (LPC)

- Introduced in 1960s.
- Low-bitrate encoder:
 - □ 1.2Kb/s 4Kb/s
- Sounds very synthetic
 - ☐ Basic LPC mostly used where bitrate really matters (eg in miltary applications)
 - ☐ Most modern voice codecs (eg GSM) are based on enhanced LPC encoders.

LPC

- Digitize signal, and split into segments (eg 20ms)
- For each segment, determine:
 - ☐ Pitch of the signal (ie basic formant frequency)
 - \square Loudness of the signal.
 - ☐ Whether sound is voiced or unvoiced
 - Voiced: vowels, "m", "v", "l"
 - Unvoiced: "f", "s"
 - □ Vocal tract excitation parameters (LPC coefficients)

LPC Decoder

- Vocal chord synthesizer generates a series of impulses.
- Unvoiced synthesizer is a white noise source.
- Vocal tract model uses a linear predictive filter.
 - $\ \square \ n^{\text{th}}$ sample is a linear combination of the previous p samples plus an error term:

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + ... + a_n x_{n-p} + e_n$$

- \square e_n comes from the synthesizer.
- \Box The coefficients a_1 .. a_p comprise the vocal tract model, and shape the synthesized sounds.

LPC Encoder

- Once pitch and voice/unvoiced are determined, encoding consists of deriving the optimal LPC coefficients $(a_1...a_p)$ for the vocal tract model so as to minimize the mean-square error between the predicted signal and the actual signal.
- Problem is straightforward in principle. In practice it involves:
 - 1. The computation of a matrix of coefficient values.
 - 2. The solution of a set of linear equations.
 - Several different ways exist to do this efficiently (autocorrelation, covariance, recursive latice formulation) to assure convergence to a unique solution.

Limitations of LPC Model

- LPC linear predictor is very simple.
 - ☐ For this to work, the vocal tract "tube" must not have any side branches (these would require a more complex model).
 - ☐ OK for vowels (tube is a reasonable model)
 - ☐ For nasal sounds, nose cavity forms a side branch.
- In practice this is ignored in pure LPC.
 - ☐ More complex codecs attempt to code the residue signal, which helps correct this.

Code Excited Linear Prediction (CELP)

- Goal is to efficiently encode the residue signal, improving speech quality over LPC, but without increasing the bit rate too much.
- CELP codecs use a codebook of typical residue values.
 - ☐ Analyzer compares residue to codebook values.
 - ☐ Chooses value which is closest.
 - ☐ Sends that value.
- Receiver looks up the code in its codebook, retrieves the residue, and uses this to excite the LPC formant filter.

CELP (2)

- Problem is that codebook would require different residue values for every possible voice pitch.
 - □ Codebook search would be slow, and code would require a lot of bits to send.
- One solution is to have two codebooks.
 - ☐ One fixed by codec designers, just large enough to represent one pitch period of residue.
 - ☐ One dynamically filled in with copies of the previous residue delayed by various amounts (delay provides the pitch)
- CELP algorithm using these techniques can provide pretty good quality at 4.8Kb/s.

Enhanced LPC Usage

- GSM (Groupe Speciale Mobile)
 - □ Residual Pulse Excited LPC
 - □ 13Kb/s
- LD-CELP
 - □ Low-delay Code-Excited Linear Prediction (G.728)
 - □ 16Kb/s
- CS-ACELP
 - □ Conjugate Structure Algebraic CELP (G.729)
 - □ 8Kb/s
- MP-MLQ
 - ☐ Multi-Pulse Maximum Likelihood Quantization (G.723.1)
 - □ 6.3Kb/s