15: OS Scheduling and
Buffering

Mark Handley

Typical Audio Pipeline (sender)

Sending Host
Audio Device
R Device Kernel App Encode ||| RTP
b\\/ A>D B B ffer Buffer -
o — r r

B...L!]fgered pend(ljng E:M'\A/lto hOSf: Enough space to Accumulate multiple
(~10ms acgo;. ng t° |c!'gso perform compression. frames per packet.
recommendations to avoi T maye Add redundant

excessive interrupts)

encoding.

Enough space to cope

with scheduling Less than
variability: 10-200ms is one frame
common default size time

Typical Audio Pipeline (receiver)

Receiving Host
Audio Device
RTP |{|Decode Playout De- Kernel || || Device ||
4 §
Less than Buffer receiving DMA from
one frame host (~10ms according to
time Microsoft recommendations to
avoid excessive interrupts)
Enough time to remove Enough space to cope
jitter, sync with video, with scheduling
decode redundancy, cope variability: 10-200ms is

with scheduling variability common default size

Interrupts

m Audio device captures sample-by-sample.

Writes to a buffer in the device.
m Every so often, needs to transfer a block of data to host.
m Two ways:

Send interrupt. Host copies data.

Use Direct Memory Access (DMA). Interrupt on
completion of DMA transfer.

DMA is more common for A/V devices.

Interrupts

m Signal from a device to the CPU.
Eg audio device, video capture card, disk, timer, etc

m Causes the CPU to stop what it was doing, switch into kernel mode,
preserve state, and then execute an interrupt handler.
Interrupts may be disabled to stop interrupts interrupting the
interrupt handler.
Handler must be quick to avoid other interrupts being processed
too late.
CPU copies data from device buffer across the bus to kernel
memory.
m Can'tinterrupt too many times per second without performance
problems.

DMA

Programmed 1/0 wastes the CPU'’s time copying data

DMA (Direct Memory Access) allows the device to copy data to main
memory before interrupting the CPU.

1. CPU sets up the DMA chip:
How many bytes to transfer, the device and memory addresses,
direction of transfer.
Says “go”.
2. Device reads/writes memory directly over the bus without bothering
the CPU.

3. When DMA chip is done, it causes an interrupt, which is handled as
before.

Kernel vs User Space

Host

User User User
Memory < Process Process Audio Device

(per process)

Kernel
Memory
Device Driver |
2: set up DMA
4: interrupt when new data needgd
" JEE

Processes and Threads

A process is just an executing program, together with the values of its
program counter, variables, registers, and memory.

Conceptual model is that multiple processes run in parallel.
In reality, the CPU switches between them rapidly.

A thread is the unit of scheduling for the OS.
One process can be comprised of many threads.
Threads within a process share memory.

When a thread issues a system call that can’t immediately
complete, it blocks. The OS then runs another thread.

Scheduling

Non-preemptive scheduling

OS lets a process run until it blocks or voluntarily gives up the
CPU.

Process gets predictable performance once its scheduled.
Misbehaving process can take all of CPU.
Preemptive scheduling
Clock interrupts occur every ~10ms (allows OS to run)
OS lets a process for a certain about of time (eg 100ms).
Then suspends it and switches to another process.
Goal is to make multiple processes seem to run simultaneously.
Eg Windows, Linux, MacOS X.

Preemption and Multimedia

If the OS lets something else run for 100ms, what happens to an audio
application?
Sender:

Kernel audio buffer fills. DMA stops. Audio device buffer fills, so
samples are discarded.

Receiver:

Kernel audio buffer empties. Silence is played out. Abrupt
transition to silence can result in loud clicks.

More audio packets arrive. Adds to perceived jitter - need to
remove this using playout buffer.

Either make sure kernel buffer is large enough, or make sure audio
application gets scheduled often enough.

Real-Time Systems

m Hard Real-Time:
there are guarantees that MUST be met.
m Soft Real-Time:
deadlines should be met, but no hard guarantee.

m Hard real-time processes generally short, predictable, and
run to completion quickly.

m Scheduler handles external events so as to ensure that all
guarantees are met.

" JE
Scheduling in Real-Time Systems

m Given a system with m periodic events, and where event i
occurs with a period of P; seconds and requires C; seconds
to process.

m The load can only be handled if:
m

C;
E — <1
o b
m Such a system is said to be schedulable.

m Periodic events might be audio data read/write, or video
frame capture.

Real Systems: Windows 2000

m Priority-based, preemptive scheduling of threads.
m 32-level priority scheme determines execution order.
Highest priority runnable task is run first.
Two classes:
real-time: priorities 16-32
variable: priorities 1-15
For variable class processes:
m Priority is reduced when a quantum expires.

m When unblocked, priority is boosted depending on why it was
blocked. Eg: keyboard event gives high boost when gives
good interactivity.

m Foreground process on screen gets higher priority.

Embedded Systems

Desktop OSes not originally designed for multimedia.
Can work well, but you need to be smart.
Lots of places to accidentally add to delay.
Simple Embedded Systems:
Single memory image, non-preemptive.
Much simpler to minimize delay.
m Fewer competing demands on CPU.
= No context switch overheads.
m Application doesn'’t need to hedge against scheduler.

m Schedule application every 20ms as soon as audio data is
ready. Let it run to completion.

Network Smoothing

m Codec output rate may be variable:
| frames > P frames > B frames.
Variable motion content.
m Network may demand constant bitrate output
Eg H.221 ISDN, DVB-T
m Need to smooth the variable codec output to fit the constant network
capacity.
Use a buffer on output.
If buffer starts to fill, adjust quantization, etc.

Buffering adds delay.
m May also need to smooth for packet net - bursty traffic may be

dropped.

Network Smoothing

Q
o
=
Variable bitrate MPEG stream Time
A
Q
o
=
Constant bitrate MPEG stream Time
Delay from frame capture to
end of|frame transmission.

Shared Memory

For video, copying uncompressed data multiple times will seriously
impact performance.

m Shared Memory

Processes communicate via a memory segment that is accessible
to more than one process.

Eg. Shared-memory X

= Memory Mapping

An area of memory used by the kernel and/or device can be
mapped directly into user space.

Eg video framebuffer.

