6: Video Basics

Mark Handley

Analog TV: Inside a CRT

A: Cathode
B: Conductive Coating
C: Anode
D: Phosphor Coated Screen
E: Electron Beams
F: Shadow Mask

From: howstuffworks.com
Basic Analog TV

- Scan Lines
- Vertical Retrace
- Horizontal retrace
Basic Analog TV: Masking

Not all monitors are ideal: can take a little while to retrace. Not all lines, and not all of every line is used.

How fast to refresh?

- Movies: 24 frames per second.
 - Really is 24 photographs per second.
 - Not scanned from top to bottom.
 - Flicker, but no motion of the flicker.
 - Cinemas are dark: eye not so sensitive to flicker when it’s dark.

- TV:
 - Scanned.
 - Fairly bright environment.
 - How to reduce flicker without requiring excessive bandwidth (for analog TV)?
Basic Analog TV: Interlacing

Each interlaced frame has two fields, captured at different times.
Colour

- Human Eye has receptors for brightness (in low light), and separate receptors for red, green, and blue.
- Can make any colour we can see by mixing red, green and blue light in different intensities.

![Colour Image]

Colour TV

- Original TV standards were black and white.
 - AM: Amplitude of signal determines brightness.
- How to add colour without changing TV transmitters, and in such a way that it's compatible with existing B&W TVs?
- Add a high frequency subcarrier in band within B&W TV signal.
 - Not noticeable on B&W TV - would show as high frequency pattern, but human eye can't really see this well.
- Modulate the phase of the sub carrier to indicate the colour.
 - Problem: how to calibrate the absolute phase.
 - Get this wrong, and the colours display incorrectly.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Phase degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td>15</td>
</tr>
<tr>
<td>Red</td>
<td>75</td>
</tr>
<tr>
<td>Magenta</td>
<td>135</td>
</tr>
<tr>
<td>Blue</td>
<td>195</td>
</tr>
<tr>
<td>Cyan</td>
<td>255</td>
</tr>
<tr>
<td>Green</td>
<td>315</td>
</tr>
</tbody>
</table>
NTSC
National Television Standard Committee

- Introduced in 1953 (in US)
- Used in US, Canada, Japan
- 30 frames per second (Actually 29.97)
 - Interlaced (even/odd field lines), so 60 fields per second.
 - Same as 60Hz AC power in these countries
- 525 lines
 - Picture only on 480 of these => 640x480 monitors
 - Rest are the vertical rescan.
- Aspect ratio is 4:3
- Needs colour calibration
 - Uses a colour burst signal at start of each line, but needs TV to be adjusted relative to this. “NTSC = Never Twice Same Colour”

PAL
Phase Alternating Line

- Introduced in 1967 (by Walter Bruch in Germany)
- PAL-I(UK), PAL-B/G (much of Europe), PAL-M (Brasil) …
 - Differ mainly in audio subcarrier frequency.
- 25 frames per second
 - Interlaced (even/odd field lines), so 50 fields per second.
 - Same as 50Hz AC power in these countries
- 625 lines
 - Only 576 lines used for picture.
 - Rest are vertical retrace, but often carry teletext information.
- Colour phase is reversed on every alternate line.
 - Originally human eye would average to derive correct colour.
 - Now TV sets autocalibrate to derive correct colour.
SÉCAM
Séquentiel Couleur Avec Mémoire

- Introduced in 1967 (in France)
 - “System Essentially Contrary to American Method”
- Used in France, Russia, Eastern Europe…
- 625 lines, 25 fps interlaced, like PAL
- Uses FM modulation of subcarrier.
 - Red-Luminance difference on one line
 - Blue-Luminance difference on next line
 - Uses a video linestore to recombine the two signals
 - Vertical colour resolution is halved relative to NTSC and PAL.
 - Human eye is not sensitive to lack of spatial colour information.

[Source: wikipedia]
Connectors and Formats

- **Coaxial or RF**
 - All audio/video components of all channels modulated onto the one wire (PAL, NTSC, etc) using a different VHF/UHF carrier for each channel.

- **Composite**
 - Video-only components of one channel on one wire (PAL, NTSC, etc)

- **S-Video**
 - Two wires: one for luminance, and one for colour (Y/C video)

- **Component Video**
 - 3 Separate wires: luminance + 2 colour difference signals (Y, P_b, P_r)
 - \(P_b = B - Y \)
 - \(P_r = R - Y \)

- **RGB, RGBS, RGBHV**
 - 3, 4, 5 wires carrying Red, Green, Blue and horizontal + vertical sync signals.

- **SCART**
 - May carry Composite, S-Video, or RGB video, with two channel audio + control signals (e.g. 4x3, 16x9 aspect ratio)

Colourspace Representations

- **RGB (Red, Green, Blue)**
 - Basic analog components (from camera/to TV tube)

- **YP_b P_r** (Y, B-Y, R-Y)
 - Colour space derived from RGB used in component video. \(Y = \) Luminance, \(B = \) Blue, \(R = \) Red

- **YUV**
 - Similar to YP_b P_r but scaled to be carried on a composite carrier.

- **YCbCr**
 - Digital representation of YP_b P_r colourspace (8 bit, two's complement)
RGB to YUV conversion

\[Y = 0.299R + 0.587G + 0.114B \]
\[U = (B-Y) \times 0.565 \]
\[V = (R-Y) \times 0.713 \]

Output is clamped to the ranges:
- \(Y=[16..235] \)
- \(U,V=[16..239] \)

RGB vs YUV
Gamma Correction

- A power law relationship that approximates the relationship between the encoded luminance and the actual brightness.
- The light intensity L is related to the encoded value (e.g., source voltage) V_s by the formula:

$$L \propto (V_s)^\gamma$$

[γ is the Greek letter gamma]

- Different monitors have different native gamma, and so a gamma correction may be needed to display correctly.

Digitisation (sampling)

- As TV signals are natively in luminance (from B&W days) and chrominance-difference form, when you capture video its native form is YUV.
- Question:
 - How may bits of chrominance for each bit of luminance?
 - Human eye is less spatially sensitive to chrominance.
 - Original TV signal had less chrominance information than luminance.
YUV Formats

- YUV 4:4:4
 - 8 bits per Y,U,V channel (no chroma downsampling)
- YUV 4:2:2
 - 4 Y pixels sample for every 2 U and 2V
 - 2:1 horizontal downsampling, no vertical downsampling
- YUV 4:2:0
 - 2:1 horizontal downsampling
 - 2:1 vertical downsampling
- YUV 4:1:1
 - 4 Y pixels sample for every 1 U and 1V
 - 4:1 horizontal downsampling, no vertical downsampling

YUV 4:4:4 Sample Positions
YUV 4:2:2 Sample Positions

YUV 4:2:0 (MPEG1/H.261/H.263)

Average from two lines
YUV 4:2:0 (MPEG 2, Progressive Source)

Average from two lines

YUV 4:2:0 (MPEG 2, Interlaced Source)

Lines from Odd Field

Lines from Even Field

Average from two lines
Video Resolutions (non-HDTV)

- **PAL**
 - Full resolution: 833x625 (4:3 aspect ratio)
 - Visible resolution: (Super CIF): 704x576
 - CIF (Common Image Format): 352x288
 - QCIF (Quarter CIF): 176x144
- **NTSC**
 - Full resolution: 700x525 (4:3 aspect ratio)
 - Visible resolution: 640x480
 - SIF (Standard Image Format): 352x240
 - SIF SP (Standard Image Format, Square Pixel): 320x240
 - QSIF (Quarter SIF): 176x120
 - QSIF SP (Quarter SIF, Square Pixel): 160x120

Video Resolutions (Digital HDTV)

- **720p** - 1280x720 progressive
- **1080i** - 1920x1080 interlaced
- **1080p** - 1920x1080 progressive

HDMI
(uncompressed digital serial data)
Aliasing

Just like audio, you need to be careful of high (spatial) frequency components in the video signal:

Video Stream Format

- YUV 4:2:2 formats:
 - YUV2: \[Y_0 U_0 V_0 \quad Y_1 U_1 V_1 \quad Y_4 U_2 V_2 \]
 - UYVY: \[U_0 Y_0 V_0 \quad U_1 Y_1 V_1 \quad U_2 Y_4 V_2 \]

- YUV 4:2:0 formats (12 bits per pixel packed format)
 - YV12:
 - All the Y samples precede all the U samples, then all the V samples
Colour Mapping

- True Colour
 - RGB values used directly for display.

- Indexed Colour
 - RGB 24 bit: 16.7 million colours.
 - Can maintain a palette of 256 most commonly used colours from the 16.7 million possible colours.
 - For each pixel, store index into palette (8 bits).
 - Store mapping from index to real colour only once.
 - Other colours are approximated, typically using dithering.

Uncompressed Video Data Rate

- Examples (CCIR 601)
 - 270Mb/s
 - 216Mb/s
 - 166Mb/s (~1GByte/min)
 - HD 1080p: 1920x1080, RGB 10bits/colour/pixel, 60fps.
 - 3.7Gb/s (~28GByte/min)

- Firewire: 400Mb/s (800Mb/s)
- USB 2.0: 480Mb/s