Music Coding

- LPC-based codecs model the sound source to achieve good compression.
 - Works well for voice.
 - Terrible for music.
- What if you can't model the source?
 - Model the limitations of the human ear.
 - Not all sounds in the sampled audio can actually be heard.
 - Analyze the audio and send only the sounds that can be heard.
 - Quantize more coarsely where noise will be less audible.
Human Ear

- Cochlea does a mechanical fourier transform

From http://www.hitl.washington.edu/publications/hollander/2.html

Amplitude Sensitivity

- Dynamic range is ratio of maximum signal amplitude to minimum signal amplitude (measured in decibels).
 - $D = 20 \log \left(\frac{A_{\text{max}}}{A_{\text{min}}} \right) \text{ dB}$
 - Human hearing has dynamic range of ~ 96dB
- Sensitivity of the ear is dependent on frequency.
 - Most sensitive in range of 2-5KHz.
Amplitude Sensitivity

Frequencies only heard if they exceed a sensitivity threshold:

Frequency Masking

- The sensitivity threshold curve is distorted by the presence of loud sounds.
 - Frequencies just above and below the frequency of a loud sound need to be louder than the normal minimum amplitude before they can be heard.

Source: Halsall, p184
Frequency Masking

Masking Curves for Loud Sounds

1KHz 4KHz 8KHz
Temporal Masking

- After hearing a loud sound, the ear is deaf to quieter sounds in the same frequency range for a short time.

MPEG Audio

<table>
<thead>
<tr>
<th>Layer</th>
<th>Application</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Audio Cassette</td>
<td>Hi-fi quality at 192Kb/s per channel</td>
</tr>
<tr>
<td>2</td>
<td>Digital Audio and Digital Video Broadcasting</td>
<td>Near CD-quality at 128Kb/s per channel</td>
</tr>
<tr>
<td>3</td>
<td>CD-quality audio over low bitrate channels</td>
<td>CD-quality at 64Kb/s per channel</td>
</tr>
</tbody>
</table>
MPEG Audio Encoding

- Sample audio as PCM (typically 16 bit linear). 12 sets of 32 samples.
- Use filter bank to divide signal into 32 frequency bands
 - Maps time-domain samples into 12 values for each of 32 frequency subbands.
- Determine power in each subband.
- Use psychoacoustic model to predict masking for each subband.
 - If power in a subband is below masking threshold, don’t code it.
 - Otherwise determine the number of bits needed to code the subband such that the quantization noise is below the masking threshold.
 - [One fewer bit of quantization introduces ~6dB of noise]

MPEG Audio Layers

- Layer 1:
 - DCT type filter with one frame and equal frequency spread per band.
 - Psychoacoustic model only uses frequency masking.
- Layer 2:
 - Uses three frames in filter (1152 samples).
 - More compact encoding of scale factors and samples.
- Layer 3:
 - Better critical band filter is used (non-equal frequencies)
 - Psychoacoustic model includes temporal masking effects.
 - Takes into account stereo redundancy
 - Huffman encoding of quantized samples.
MPEG Audio Layers

- **Layer 1:**
 - DCT type filter with one frame and equal frequency spread per band.
 - Psychoacoustic model only uses frequency masking.

- **Layer 2:**
 - Uses three frames in filter (1152 samples).
 - More compact encoding of scale factors and samples.

- **Layer 3:**
 - Better critical band filter is used (non-equal frequencies)
 - Psychoacoustic model includes temporal masking effects.
 - Takes into account stereo redundancy
 - Huffman encoding of quantized samples.
Huffman Coding

- Variable length coding, with most frequent codes using fewest bits and less frequent codes using more bits.
 - Provably optimal.

- Encoding done by building an encoding tree.
- Tree is built bottom up, based on frequencies of characters from the “text”.

Huffman Coding: Example

- Eg: five letter alphabet, A,B,C,D,E with frequencies in the text of A: 12, B: 6, C: 5, D: 4, E: 3
- Start with five separate subtrees:

 A: 12 B: 6 C: 5 D: 4 E: 3
Huffman Coding: Example

Subtrees for D and E have lowest frequencies, so merge them:

A: 12 B: 6 C: 5 D: 4 E: 3

A: 12 B: 6 C: 5 7

D: 4 E: 3

Subtrees for B and C have lowest frequencies, so merge them:

A: 12 B: 6 C: 5 7

B: 6 C: 5 D: 4 E: 3
Huffman Coding: Example

A: 12
 11
 B: 6
 C: 5
 D: 4
 E: 3

Subtrees for {B,C} and {D,E} have lowest frequencies; merge:

A: 12
 18
 11
 7
 B: 6
 C: 5
 D: 4
 E: 3

Finally:

30
 0
 1
 A: 12
 18
 0
 1
 11
 0
 1
 B: 6
 C: 5
 D: 4
 E: 3

To encode a character, walk down the tree. Each left branch adds a 0, each right branch adds a 1.

Eg: A codes as 0, B codes as 100, E codes as 111
Fixed Bitrate Encoding in MP3

- Goal is to encode at a fixed bitrate.
 - Eg: 128Kb/s.

- Can’t directly allocate bits to subbands because of Huffman encoding (don’t know how many bits will result).
 - Use an iterative approach to changing the scale factors used in quantizing each subband.

MP3 Iterative Encoding

Outer loop
Adjust scale factors and re-run inner loop, Repeat until quantization noise is acceptable.

Inner loop
adjust gain until bitrate achieved

Check quantization noise for each subband against masking threshold

Subband Samples → Quantize → Huffman Code → Adjust Global Gain → Adjust Subband Scalefactor

bitrate < Coded Audio
MP3 Stereo

- Multiple stereo modes:
 - Mono
 - Code each channel separately.
 - Joint stereo:
 - Code mean + difference.
 - For low frequencies, only code mean (you can’t hear stereo at low frequencies)

MP3 Decoder

- No need for psychoacoustic model at decoder.
- Improved encoder can improve quality for any decoder.
Beyond MP3

- MP3 is no longer state of the art.
- Most newer codecs follow same general principles though.
 - MPEG 2 Advanced Audio Codec (AAC)
 - Ogg Vorbis
 - Windows Media Audio (WMA)

MPEG-2 AAC

AAC is derived from MP3. Main differences:

- **5.1 Surround Sound**
- **Better Filter bank:**
 - MP3 used a hybrid filter bank for backward compatibility reasons.
 - MPEG-2 AAC uses a plain Modified Discrete Cosine Transform
- **Temporal Noise Shaping (TNS):**
 - Shapes the distribution of quantization noise in time by prediction in the frequency domain.
 - Helps with voice signals.
- **Finer control of quantization resolution** - the given bit rate can be used more efficiently.
- **Bit-stream format:** the information to be transmitted undergoes entropy coding in order to keep redundancy as low as possible.
Ogg Vorbis

- Patent free, similar quality to AAC.
- Like AAC, MDCT used to transform to frequency domain.
- Psychoacoustic model used to determine the noise floor (envelope of masking effects) across frequency bands.
 - Includes simultaneous noise masking.
- Noise floor subtracted from MDCT components.
- Noise floor and MDCT residue coded separately using a codebook-based vector quantization algorithm.

Window Media Audio (WMA)

- MDCT-based codec, pretty similar to AAC and Ogg.
 - Frequency and temporal masking, then requantize.
- Main differences:
 - More block sizes to choose from (can trade off temporal vs frequency precision better).
 - Different use of Huffman coding:
 - Independently Huffman-code mantissa and exponent of floating-point quantized frequency values.
 - Mid/side coding of stereo.
 - Code L+R (mid) and L-R (side) separately.