
1

3: Fourier Transforms

Mark Handley

Fourier Series

 Any periodic function can be expressed as the sum of a
series of sines and cosines (of varying amplitudes)

2

Square Wave

Frequencies: f + 3f + 5f + … + 15f

Frequencies: f + 3f

Frequencies: f + 3f + 5f

Frequencies: f

Sawtooth Wave
Frequencies: f Frequencies: f + 2f

Frequencies: f + 2f + 3f + … + 8fFrequencies: f + 2f + 3f

3

Fourier Series
A function f(x) can be expressed as a series of sines and cosines:

where:

Fourier Transform

 Fourier Series can be generalized to complex numbers,
and further generalized to derive the Fourier Transform.

Forward Fourier Transform:

Inverse Fourier Transform:

Note:

4

Fourier Transform

 Fourier Transform maps a time series (eg audio samples)
into the series of frequencies (their amplitudes and phases)
that composed the time series.

 Inverse Fourier Transform maps the series of frequencies
(their amplitudes and phases) back into the corresponding
time series.

 The two functions are inverses of each other.

Discrete Fourier Transform

 If we wish to find the frequency spectrum of a function that
we have sampled, the continuous Fourier Transform is not
so useful.

 We need a discrete version:

Discrete Fourier Transform

5

Discrete Fourier Transform

Forward DFT:

Inverse DFT:

The complex numbers
f0 … fN are transformed
into complex numbers
F0 … Fn

The complex numbers
F0 … Fn are transformed
into complex numbers
f0 … fN

DFT Example
 Interpreting a DFT can be slightly difficult,

because the DFT of real data includes complex
numbers.

 Basically:
 The magnitude of the complex number for

a DFT component is the power at that
frequency.

 The phase θ of the waveform can be
determined from the relative values of the
real and imaginary coefficents.

 Also both positive and “negative” frequencies
show up.

6

Sampled data:
f(x) = 2 sin(x) + sin(3x)

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude

“Negative”
Frequencies

Sampled data:
f(x) = 2 sin(x+45) + sin(3x)

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude

7

Sampled data:
Square wave

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude

Fast Fourier Transform

 Discrete Fourier Transform would normally require O(n2)
time to process for n samples:

 Don’t usually calculate it this way in practice.

Fast Fourier Transform takes O(n log(n)) time.

Most common algorithm is the Cooley-Tukey Algorithm.

8

Even vs Odd Functions

Even: f(x) = f(-x) Odd: f(x) = -f(-x)

Fourier Cosine Transform

Any function can be split into even and odd parts:

Then the Fourier Transform can be re-expressed as:

9

Discrete Cosine Transform (DCT)

 When the input data contains only real numbers from an
even function, the sin component of the DFT is 0, and the
DFT becomes a Discrete Cosine Transform (DCT)

 There are 8 variants however, of which 4 are common.

DCT vs DFT
 For compression, we work with sampled data in a finite time window.

Fourier-style transforms imply the function is periodic and extends to
infinity. So which periodic extension is best?

DFT DCT

Sampled
data

periodic
extension

periodic
extension discontinuity

less
discontinuity

10

DCT Types

DCT Type II

Used in JPEG, repeated for a 2-D transform.

Most common DCT.

DCT Types
DCT Type IV

Used in MP3.

 In MP3, the data is overlapped so that half the data from
one sample set is reused in the next.
 Known as Modified DCT or MDCT
 This reduces boundary effects.

11

Why do we use DCT for Multimedia?
 For audio:

 Human ear has different dynamic range for different frequencies.

 Transform to from time domain to frequency domain, and
quantize different frequencies differently.

 For images and video:

 Human eye is less sensitive to fine detail.

 Transform from spacial domain to frequency domain, and
quantize high frequencies more coarsely (or not at all)

 Has the effect of slightly blurring the image - may not be
perceptable if done right.

Why use DCT/DFT?

 Some tasks are much easier to handle in the frequency
domain that in the time domain.

 Eg: graphic equalizer. We want to boost the bass:

1. Transform to frequency domain.

2. Increase the magnitude of low frequency
components.

3. Transform back to time domain.

12

Original Image

JPEG Image

JPEG Noise from
discarding high
frequency DCT

coefficients

