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3: Fourier Transforms

Mark Handley

Fourier Series

 Any periodic function can be expressed as the sum of a
series of sines and cosines (of varying amplitudes)
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Square Wave

Frequencies: f + 3f + 5f + … + 15f

Frequencies: f + 3f

Frequencies: f + 3f + 5f

Frequencies: f

Sawtooth Wave
Frequencies: f Frequencies: f + 2f

Frequencies: f + 2f + 3f + … + 8fFrequencies: f + 2f + 3f
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Fourier Series
A function f(x) can be expressed as a series of sines and cosines:

where:

Fourier Transform

 Fourier Series can be generalized to complex numbers,
and further generalized to derive the Fourier Transform.

Forward Fourier Transform:

Inverse Fourier Transform:

Note:
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Fourier Transform

 Fourier Transform maps a time series (eg audio samples)
into the series of frequencies (their amplitudes and phases)
that composed the time series.

 Inverse Fourier Transform maps the series of frequencies
(their amplitudes and phases) back into the corresponding
time series.

 The two functions are inverses of each other.

Discrete Fourier Transform

 If we wish to find the frequency spectrum of a function that
we have sampled, the continuous Fourier Transform is not
so useful.

 We need a discrete version:

Discrete Fourier Transform
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Discrete Fourier Transform

Forward DFT:

Inverse DFT:

The complex numbers
f0 … fN are transformed
into complex numbers
F0 … Fn

The complex numbers
F0 … Fn are transformed
into complex numbers
f0 … fN

DFT Example
 Interpreting a DFT can be slightly difficult,

because the DFT of real data includes complex
numbers.

 Basically:
  The magnitude of the complex number for

a DFT component is the power at that
frequency.

 The phase θ of the waveform can be
determined from the relative values of the
real and imaginary coefficents.

 Also both positive and “negative” frequencies
show up.
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Sampled data:
f(x) = 2 sin(x) + sin(3x)

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude

“Negative”
Frequencies

Sampled data:
f(x) = 2 sin(x+45) + sin(3x)

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude
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Sampled data:
Square wave

DFT: Real Components

DFT: Imaginary Components

DFT: Magnitude

Fast Fourier Transform

 Discrete Fourier Transform would normally require O(n2)
time to process for n samples:

 Don’t usually calculate it this way in practice.

Fast Fourier Transform takes O(n log(n)) time.

Most common algorithm is the Cooley-Tukey Algorithm.
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Even vs Odd Functions

Even: f(x) = f(-x) Odd: f(x) = -f(-x)

Fourier Cosine Transform

Any function can be split into even and odd parts:

Then the Fourier Transform can be re-expressed as:
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Discrete Cosine Transform (DCT)

 When the input data contains only real numbers from an
even function, the sin component of the DFT is 0, and the
DFT becomes a Discrete Cosine Transform (DCT)

 There are 8 variants however, of which 4 are common.

DCT vs DFT
 For compression, we work with sampled data in a finite time window.

Fourier-style transforms imply the function is periodic and extends to
infinity.  So which periodic extension is best?

DFT DCT

Sampled
data

periodic
extension

periodic
extension discontinuity

less
discontinuity
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DCT Types

DCT Type II

Used in JPEG, repeated for a 2-D transform.

Most common DCT.

DCT Types
DCT Type IV

Used in MP3.

 In MP3, the data is overlapped so that half the data from
one sample set is reused in the next.
 Known as Modified DCT or MDCT
 This reduces boundary effects.
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Why do we use DCT for Multimedia?
 For audio:

 Human ear has different dynamic range for different frequencies.

 Transform to from time domain to frequency domain, and
quantize different frequencies differently.

 For images and video:

 Human eye is less sensitive to fine detail.

 Transform from spacial domain to frequency domain, and
quantize high frequencies more coarsely (or not at all)

 Has the effect of slightly blurring the image - may not be
perceptable if done right.

Why use DCT/DFT?

 Some tasks are much easier to handle in the frequency
domain that in the time domain.

 Eg: graphic equalizer.  We want to boost the bass:

1. Transform to frequency domain.

2. Increase the magnitude of low frequency
components.

3. Transform back to time domain.
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Original Image

JPEG Image

JPEG Noise from
discarding high
frequency DCT

coefficients


