
Solutions to Exercises

Solutions for Chapter 2

Exercise 2.1

Provide a function to check if a character is alphanumeric, that is lower case, upper case
or numeric.

One solution is to follow the same approach as in the function isupper for each of the
three possibilities and link them with the special operator \/ :

isalpha c = (c >= ’A’ & c <= ’Z’)

\/

(c >= ’a’ & c <= ’z’)

\/

(c >= ’0’ & c <= ’9’)

An second approach is to use continued relations:

isalpha c = (’A’ <= c <= ’Z’)

\/

(’a’ <= c <= ’z’)

\/

(’0’ <= c <= ’9’)

A final approach is to define the functions isupper, islower and isdigit and combine
them:

isalpha c = (isupper c) \/ (islower c) \/ (isdigit c)

This approach shows the advantage of reusing existing simple functions to build more
complex functions.

268

Solutions to Exercises 269

Exercise 2.2
What happens in the following application and why?

myfst (3, (4 div 0))

The function evaluates to 3, the potential divide by zero error is ignored because Miranda
only evaluates as much of its parameter as it needs.

Exercise 2.3
Define a function dup which takes a single element of any type and returns a tuple with

the element duplicated.

The answer is just a direct translation of the specification into Miranda:

dup :: * -> (*,*)

dup x = (x, x)

Exercise 2.4
Modify the function solomonGrundy so that Thursday and Friday may be treated with

special significance.

The pattern matching version is easily modified; all that is needed is to insert the extra
cases somewhere before the default pattern:

solomonGrundy "Monday" = "Born"

solomonGrundy "Thursday" = "Ill"

solomonGrundy "Friday" = "Worse"

solomonGrundy "Sunday" = "Buried"

solomonGrundy anyday = "Did something else"

By contrast, a guarded conditional version is rather messy:

solomonGrundy day = "Born", if day = "Monday"

= "Ill", if day = "Thursday"

= "Worse", if day = "Friday"

= "Buried", if day = "Sunday"

= "Did something else", otherwise

Exercise 2.5
Define a function intmax which takes a number pair and returns the greater of its two

components.

intmax :: (num,num) -> num

intmax (x, y) = x, if x > y

= y, otherwise

270 Solutions to Exercises

Exercise 2.6

Define a recursive function to add up all the integers from 1 to a given upper limit.

addints :: num -> num

addints 1 = 1

addints n = n + addints (n - 1)

The terminating condition is the first pattern (the integer 1) and the parameter of recur-
sion is n, which converges towards 1 by repeated subtraction. Note that addints fails if
it is applied to a number less than 1. See also Chapter 2.9.

Exercise 2.7

Write printdots in an accumulative recursive style. This will require more than one
function.

The accumulator will hold the growing sequence of dots; since the number n cannot be
used for this purpose, another parameter is needed. This involves the definition of an
auxiliary function to incorporate the accumulator:

printdots :: num -> [char]

printdots n = xprintdots (n, "")

xprintdots :: (num, [char]) -> [char]

xprintdots (0, dotstring) = dotstring

xprintdots (n, dotstring)

= xprintdots (n - 1, dotstring ++ ".")

Notice that the function printdots initializes the accumulator dotstring with an empty
string.

Exercise 2.8

Write the function plus in a stack recursive style.

The parameter of recursion is y and the terminating condition is when y is 0. In this
version, x no longer serves as an accumulator, but as the second operand to the final
addition:

plus :: (num,num) -> num

plus (x, 0) = x

plus (x, y) = 1 + plus (x, y - 1)

Solutions to Exercises 271

Exercise 2.9
Write a function called int divide which divides one whole number by another; the

function should not use any arithmetic operators except for subtraction, addition and unary
minus.

The division is straightforward: what requires some thought is the handling of positive
and negative values of the operands. Not every problem has an elegant pattern matching
solution!

int_divide :: (num,num) -> num

int_divide (n, 0) = error "Division by zero"

int_divide (n, m) = error "Division: operands must be integers",

if ~ ((integer n) & (integer m))

= posdiv (-n, -m), if (n < 0) & (m < 0)

= - (posdiv (n, -m)), if m < 0

= - (posdiv (-n, m)),if n < 0

= posdiv (n,m), otherwise

posdiv :: (num,num) -> num

posdiv (n, m) = 0, if n < m

= 1 + posdiv (n - m, m), otherwise

Note that the applications -(posdiv (n, -m)) and -(posdiv (-n, m)) must be brack-
eted to evaluate to a numeric result for the unary negation operator -. If the brackets
were omitted then Miranda would attempt to apply - to the function posdiv rather than
to its result.

Solutions for Chapter 3

Exercise 3.1
Give the two possible correct versions of wrong y.

Either the first operand should be an integer or the second operand should be a list of
integer lists:

correct_y1 = 1 : [2,3]

correct_y2 = [1] : [[2,3]]

Exercise 3.2
Which of the following are legal list constructions?

list1 = 1 : []

list2 = 1 : [] : []

list3 = 1 : [1]

272 Solutions to Exercises

list4 = [] : [1]

list5 = [1] : [1] : []

The correct constructions are list1, list3 and list5.

The construction list2 fails because : is right-associative. Thus, list2 is defined to
be (1 : ([] : [])), which is the same as (1 : [[]]), which in turn is a type
error because it attempts to join an integer to a list of lists.

The construction list4 fails because it attempts to add a list (in this case the empty
list) to a list of integers, which causes a type error.

Exercise 3.3
Miranda adopts the view that it is meaningless to attempt to extract something from

nothing; generating an error seems a reasonable treatment for such an attempt. What would
be the consequences if hd and tl were to evaluate to [] when applied to an empty list?

The following equality would no longer hold for all values of alist:

alist = hd alist : tl alist

The equality would not hold when alist was [], since the right-hand side would evaluate
to [[]].

Furthermore, such definitions for hd and tl would be totally incompatible with the
Miranda type system; for example, any function which applied hd to a list of integers
could not be sure whether the value returned was going to be an integer or a list!

Exercise 3.4

At first sight it would appear that show can be bypassed by defining a function that quotes
its numeric parameter:

numbertostring :: num -> [char]

numbertostring n = "n"

Explain what the above function actually does.

All it does is produce the string "n". The quotation marks are not constructors, unlike
the square brackets which denote the list aggregate format.

Exercise 3.5
Write a stack recursive function to add all numbers less than 3 which appear in a list of

numbers.

addlessthanthree :: [num] -> num

addlessthanthree [] = 0

addlessthanthree (front : rest)

= front + addlessthanthree rest, if (front < 3)

= addlessthanthree rest, otherwise

Solutions to Exercises 273

Exercise 3.6
The following function listmax is accumulative recursive. Rather than using an explicit

accumulator, it uses the front of the list to hold the current maximum value.

numlist == [num]

listmax :: numlist -> num

listmax [] = error "listmax: empty list"

listmax (front : []) = front

listmax (front : next : rest)

= listmax (front : rest), if front > rest

= listmax (next : rest), otherwise

Rewrite listmax so that it uses an auxiliary function and an explicit accumulator to store
the current largest item in the list.

The explicit accumulator is initialized with the front of a non-empty list; the rest of the
code is remarkably similar:

numlist == [num]

listmax :: numlist -> num

listmax [] = error "listmax: empty list"

listmax (front : rest) = xlistmax (rest, front)

xlistmax :: (numlist, num) -> num

xlistmax ([], maxvalue) = maxvalue

xlistmax (front : rest, maxvalue)

= xlistmax (rest, front), if front > maxvalue

= xlistmax (rest, maxvalue), otherwise

Exercise 3.7
What happens if a negative value of n is supplied to the first version of mydrop ?

Eventually (front : rest) will converge to [] and an error will be reported.

Exercise 3.8
Write the function shorterthan used by the final version of mydrop.

The approach taken is similar to that in defining the function startswith in Chap-
ter 3.7.2. Both the number and the list converge towards terminating conditions, respec-
tively, by the integer one and by an element at a time. Hence, zero indicates that there
may still be items in the list, in which case the list cannot be shorter than the specified
number. Conversely, [] indicates that the list is shorter than the number of items to be
discarded.

274 Solutions to Exercises

shorterthan :: (num, [*]) -> bool

shorterthan (0, alist) = False

shorterthan (n, []) = True

shorterthan (n, front : rest) = shorterthan (n - 1, rest)

Exercise 3.9
Use structural induction to design the function mytake, which works similarly to mydrop

but takes the first n items in a list and discards the rest.

The type of the function is:

(num, [*]) -> [*]

The general case is:

mytake (n, front : rest) = ??

There are two parameters of recursion; the inductive hypothesis must therefore assume
that take (n - 1, rest) evaluates to an appropriate list. The inductive step is to
construct a list of the front value (which must be retained) with that list:

mytake (n, front : rest)

= front : mytake (n - 1, rest)

The terminating cases are:

1. Taking no elements; this must just give an empty list:

mytake (0, alist) = []

2. Attempting to take some items from an empty list; this is an error:

mytake (n, []) = error "take: list too small"

Notice that asking for zero items from an empty list is covered by mytake (0, alist)

and therefore this pattern must appear first.
The final code is:

mytake :: (num, [*]) -> [*]

mytake (0, alist) = []

mytake (n, []) = error "mytake: list too small"

mytake (n, front : rest)

= front : mytake (n - 1, rest)

This approach deals with negative numbers in the same manner as the first definition of
mydrop.

Solutions to Exercises 275

Exercise 3.10
Write a function fromto which takes two numbers and a list and outputs all the elements

in the list starting from the position indicated by the first integer up to the position indicated
by the second integer. For example:

Miranda fromto (3, 5, [’a’,’b’,’c’,’d’,’e’,’f’])

[’d’,’e’,’f’]

To meet this specification, it is necessary to assume that it is possible to extract the first
n elements from a list and that it is also possible to drop the first m elements from a list.
Of course, it is quite feasible to write this function from first principles but a lot easier
to reuse existing code:

fromto :: (num,num,[*]) -> [*]

fromto (m, n, alist) = mydrop (m, mytake (n,alist))

Exercise 3.11
Modify the skipbrackets program to cater for nested brackets.

stringtostring == [char] -> [char]

skipbrackets :: stringtostring

skipbrackets [] = []

skipbrackets (’(’ : rest) = skipbrackets (inbrackets rest)

skipbrackets (front : rest) = front : skipbrackets rest

inbrackets :: stringtostring

inbrackets (’)’ : rest) = rest

inbrackets (’(’ : rest) = inbrackets (inbrackets rest)

inbrackets (front : rest) = inbrackets rest

Notice the adjustment is minor; the nesting of brackets is a recursive requirement and
its treatment is recursively achieved by matching the start of a nested bracket within
inbrackets, which itself ignores brackets.

An alternative solution, though not recommended, would have been to use mutual
recursion within skipbrackets, without changing the original definition of inbrackets:

notrecommended_skipbrackets [] = []

notrecommended_skipbrackets (’(’ : rest)

= inbrackets (notrecommended_skipbrackets rest)

notrecommended_skipbrackets (front : rest)

= front : notrecommended_skipbrackets rest

As with mutually defined functions, it is quite difficult to reason how and why this
function succeeds.

276 Solutions to Exercises

Exercise 3.12
It would appear that sublist no longer needs its first function pattern because this is

checked as the first pattern in startswith. Explain why this is incorrect, and also whether
the second pattern of sublist can safely be removed.

It is not safe to remove the first pattern because matching the empty regular expression
with an empty line to be searched would now be met by the second pattern and incorrectly
evaluate to False. The second pattern cannot be removed because it serves as the
terminating condition for recursion along the line to be searched.

Exercise 3.13
An incorrect attempt to optimize the startswith program would combine startswith

and sublist in one function:

stringpair = ([char], [char])

sublist :: stringpair -> bool

sublist ([], alist) = True

sublist (alist, []) = False

sublist ((regfront : regrest), (lfront : lrest))

= ((regfront = lfront) & sublist (regrest, lrest))

\/ sublist ((regfront : regrest), lrest)

This follows the general inductive case that the result is True if the front two items of the
lists are equal and the result of a sublist search of the rest of the two lists is also True.
Alternatively the entire regular expression matches the rest of the search line. Show why this
approach is wrong.

The following application would erroneously evaluate to True:

sublist ("abc", "ab_this_will_be_ignored_c")

Exercise 3.14
Explain the presence of the final pattern in the function startswith, even though it

should never be encountered.

The type regtype could have any number of possible strings, rather than just the strings
"ONCE" and "ZERO MORE"; the final pattern is intended to suppress the system warning
message. A safer solution is presented in Chapter 6.2.4.

Exercise 3.15
What would happen if the second and third pattern in startswith were swapped?

The function would still produce the same results; the two patterns are mutually exclusive
and it does not matter which appears first.

Solutions to Exercises 277

Exercise 3.16
Alter the sublist function so that "A*" matches the empty string.

The naive solution is to introduce an extra pattern as the new first pattern:

sublist ([("ZERO_MORE", alist)], []) = True

...

However, this does not cater for regular expressions of the form "A*B*". An easy solution
is to ensure that startswith is always applied at least once; this solution is presented
in Chapter 9.

Solutions for Chapter 4

Exercise 4.1
Give the types of the following compositions:

tl . (++ [])

abs . fst

code . code

show . tl

The first composition has the type: [*] -> [*] which shows that it is legitimate to
compose partially applied functions. The second expression has the type (num,*) ->

num, which shows that it is valid to compose functions which have tupled parameters.
Notice also that fst is now only polymorphic in the second component of its parameter
because abs expects a num parameter. The third composition is invalid because the code
that will be applied second expects its input parameter to be a char but the code that
is applied first produces a value of type num.

The final composition is interesting in that the expression could be used at the Miranda
prompt:

Miranda (show . tl) "abc"

bc

However, it would be illegal to attempt to use the expression on its own, as the right-hand
side of a script file definition:

wrongshowtail = show . tl

This will result in an error because Miranda could not resolve the type of the overloaded
show function.

278 Solutions to Exercises

Exercise 4.2
Theoreticians claim that all of the combinators (and consequently all functions) can be writ-

ten in terms of the combinator K (cancel) and the following combinator S (distribute):

distribute f g x = f x (g x)

Define the combinator identity (which returns its argument unaltered) using only the
functions distribute and cancel in the function body. Provide a similar definition for a
curried version of snd.

identity = distribute cancel cancel

|| I = SKK

curried_snd = distribute cancel

|| curried_snd = SK

Whilst the above are relatively straightforward, it is not always so easy to provide com-
binator expressions; for example compose, (B) is defined as:

compose = distribute (cancel distribute) cancel

|| B = S (KS) K

and the simplest combinator expression for swap, (C) is:

swap = distribute (compose compose distribute) (cancel cancel)

|| C = S (BBS) (KK)

Exercise 4.3
Explain why make curried cannot be generalized to work for functions with an arbitrary

number of tuple components.

This is because all functions must have a well-defined source type and therefore must have
either a fixed number of curried arguments or a tuple of fixed size. A separate conversion
function is therefore necessary for all the uncurried functions with two arguments, another
for all the uncurried functions of three arguments, and so on.

Exercise 4.4
Write the function make uncurried which will allow a curried, dyadic function to accept

a tuple as its argument.

This is the mirror of make curried:

make_uncurried :: (* -> ** -> ***) -> (*,**) -> ***

make_uncurried ff (x,y) = ff x y

Solutions to Exercises 279

Exercise 4.5
The built-in function fst can be written using make uncurried and the cancel combi-

nator:

myfst = make_uncurried cancel

Provide a similar definition for the built-in function snd.

The function snd can be thought of as fst with its parameters swapped, that is:

mysnd = make_uncurried (swap cancel)

A hand evaluation reveals:

mysnd (1,2)

==> make_uncurried (swap cancel) (1,2)

==> (swap cancel) 1 2

==> swap cancel 1 2

==> cancel 2 1

==> 2

Exercise 4.6
Explain why myiterate is non-robust and provide a robust version.

The function should check that n is a positive integer; the best way to achieve this is to
separate the validation from the processing:

myiterate :: num -> (* -> *) -> * -> *

myiterate n ff result

= error "myiterate", if n < 0 \/ not (integer n)

= xmyiterate n ff result, otherwise

where the auxiliary function xmyiterate is the same as the original version of myiterate.
Chapter 5 shows how the auxiliary function can be tightly coupled to the new version of
myiterate.

Exercise 4.7

Imperative programming languages generally have a general-purpose iterative control struc-
ture known as a “while” loop. This construct will repeatedly apply a function to a variable
whilst the variable satisfies some predefined condition. Define an equivalent function in
Miranda.

This function can be written directly from its informal specification:

whiletrue :: (* -> bool) -> (* -> *) -> * -> *

whiletrue pred ff state

= whiletrue pred ff (ff state), if pred state

= state, otherwise

280 Solutions to Exercises

Here the predefined condition is the guard pred state, the repeated application is the
recursive application of while, with the application ff state representing the change
in the variable.

Note that there is no guarantee that the condition (pred state) will ever be satisfied.
This is a general problem of computing, known as the halting problem. Stated briefly,
it is impossible to write a program that will infallibly determine whether an arbitrary
function (given some arbitrary input) will terminate or loop forever. One consequence
is that there is no point in attempting excessive and unnecessary validation of such
general-purpose iterative constructs as whiletrue.

Exercise 4.8
In the definition of map two, source lists of unequal length have been treated as an error.

It is an equally valid design decision to truncate the longer list; amend the definition to meet
this revised specification.

This is a trivial task; the last error-handling pattern can be converted to have an action
that returns the empty list. This pattern also caters for the case of both lists being
empty.

map_two (* -> ** -> ***) -> [*] -> [**] -> [***]

map_two ff (front1 : rest1) (front2 : rest2)

= (ff front1 front2) : map_two ff rest1 rest2

map_two ff alist blist = []

Note that this function has the same behaviour as the Standard Environment function
zip2.

Exercise 4.9
Write a function applylist which takes a list of functions (each of type *->**) and an

item (of type *) and returns a list of the results of applying each function to the item. For
example: applylist [(+ 10),(* 3)] 2 will evaluate to [12,6].

This function has a similar shape to map, only here it is the head of the list that is applied
to the first parameter rather than vice versa:

applylist :: [* -> **] -> * -> [**]

applylist [] item = []

applylist (ffront : frest) item

= (ffront item) : applylist frest item

Exercise 4.10
Explain why the following definitions are equivalent:

f1 x alist = map (plus x) alist

f2 x = map (plus x)

f3 = (map . plus)

Solutions to Exercises 281

The definition of f2 is that of a partially applied function; Miranda can infer that it
requires an extra list parameter from the type of map.

The definition of f3 makes use of the following equivalence:

(f . g) x = f (g x)

In this case f is map and g is plus and the x can be discarded for the same reason as in
the definition of f2.

To a certain extent, it is a matter of taste which function should be used; f1 has the
advantage that all of its arguments are visible at the function definition, whilst f3 has
the advantage of brevity and perhaps the fact that the programmer can concentrate on
what the function does rather than what it does it to. There are no absolute guidelines,
but it is important to be able to read all three kinds of definitions. Finally, notice that
the type of each function is the same, that is:

num -> [num] -> [num]

Exercise 4.11
Rewrite the function map in terms of reduce.

This is simply done by generalizing the code in the text:

map_inc = reduce ((:) . inc) [])

That is, by replacing the specific function inc with a polymorphic parameter:

reduce_map :: (*->**) -> [*] -> [**]

reduce_map ff = reduce ((:) . ff) []

Now reduce map can be used in exactly the same way as map:

map_inc :: (num->num)->[num]->[num]

map_inc = reduce_map inc

Exercise 4.12
Some functions cannot be generalized over lists, as they have no obvious default value for

the empty list; for example, it does not make sense to take the maximum value of an empty
list. Write the function reduce1 to cater for functions that require at least one list item.

It is clear from the specification that an empty list must be considered an error, otherwise
the first item in the list can be used as the default value to reduce. This is a good example
of reusing code.

reduce1 :: (* -> * -> *) -> [*] -> [*]

reduce1 ff [] = error "reduce1"

reduce1 ff (front : rest) = reduce ff front rest

282 Solutions to Exercises

Exercise 4.13

Write two curried versions of mymember (as specified in Chapter 3.6), using reduce and
accumulate, respectively, and discuss their types and differences.

The reduce version is straightforward and uses the prefix, curried functions defined in
Chapter 4.1.2:

reduce_member alist item

= reduce (either . (equal item)) False alist

A hand evaluation of (reduce member [1,2,3] 1) shows:

reduce_member [1,2,3] 1

==> reduce (either . (equal 1)) False [1,2,3]

==> ((either . (equal 1)) 1) (reduce (either . (equal 1)) False [2,3])

==> (either (equal 1 1)) (reduce (either . (equal 1)) False [2,3])

==> either True (reduce (either . (equal 1)) False [2,3])

==> True \/ (reduce (either . (equal 1)) False [2,3])

==> True

The accumulate version is less straightforward; this is not an example where accumulate
can be safely substituted for reduce. An attempt to define member as:

accumulate_member alist item

= accumulate (either . equal item) False alist

will only work if item and the elements of alist are of type bool. This is easily verified
by checking the type of the above function:

Miranda accumulate_member ::

[bool] -> bool -> bool

For example, a hand evaluation of accumulate member to a list [a,b,c] (where the list
elements are of arbitrary type) shows:

accumulate_member [a,b] item

==> accumulate (either . equal item) False [a,b]

==> accumulate (either . equal item) ((either . equal item) False a) [b]

==> accumulate (either . equal item) (either (equal item False) a) [b]

==> error or item must be of type bool, since equal

expects both its arguments to be of the same type

In order to make the function more general, the default value False must become the
second of the parameters to the functional argument. This is easily achieved using the
swap combinator:

accumulate_member :: [*] -> * -> bool

accumulate_member alist item

= accumulate (swap (either . (equal item))) False alist

Solutions to Exercises 283

A hand evaluation of (accumulate member [1,2,3] 1) now shows:

accumulate_member [1,2,3] item

==> accumulate (swap (either . (equal 1))) False [1,2,3]

==> accumulate (swap (either . (equal 1)))

(swap (either . (equal 1)) False 1) [2,3]

==> accumulate (swap (either . (equal 1)))

((either . (equal 1)) 1 False) [2,3]

==> accumulate (swap (either . (equal 1)))

(either (equal 1 1) False) [2,3]

==> accumulate (swap (either . (equal 1))) (True \/ False) [2,3]

==> accumulate (swap (either . (equal 1))) True [2,3]

==> ...

Exercise 4.14
Define the function mydropwhile which takes a list and a predicate as arguments and

returns the list without the initial sublist of members which satisfy the predicate.

This function has same behaviour as the Standard Environment dropwhile and can be
written using the same approach as the function takewhile:

mydropwhile :: (* -> bool) -> [*] -> [*]

mydropwhile pred [] = []

mydropwhile pred (front : rest)

= mydropwhile pred rest, if pred front

= (front : rest), otherwise

Exercise 4.15
The set data structure may be considered as an unordered list of unique items. Using the

built-in functions filter and member, the following function will yield a list of all the items
common to two sets:

intersection :: [*] -> [*] -> [*]

intersection aset bset = filter (member aset) bset

Write a function union to create a set of all the items in two sets.

The union of two sets can be considered as all the members of the first set that are not

in the second set, together with that second set. The answer makes use of the design
for intersection, but inverts the truth value of the predicate to filter in order to
exclude common members (by means of the composition of ~with member):

union :: [*] -> [*] -> [*]

union aset bset = aset ++ filter ((~) . (member aset)) bset

An alternative specification is to remove the duplicates from the result of appending the
two sets.

284 Solutions to Exercises

Exercise 4.16
An equivalent version of stringsort using accumulate would require that the arguments

to (insert lessthan) be reversed. Why is this the case?

For the same reasons as discussed with the accumulative version of member. The
default value [] becomes the first argument to the (insert lessthan) and an attempt
would be made to compare it with an actual value. This will only work if that value is
also an empty list.

Exercise 4.17
A function foldiftrue which reduces only those elements of a list which satisfy a given

predicate could be defined as:

foldiftrue :: (* -> bool) -> (* -> ** -> **) -> ** -> [*]

foldiftrue pred ff default [] = default

foldiftrue pred ff default (front : rest)

= (ff front (foldiftrue pred ff default rest)), if pred front

= foldiftrue pred ff default rest, otherwise

Write this function in terms of a composition of reduce and filter.

foldiftrue :: (* -> bool) -> (* -> ** -> **) -> ** -> [*]

foldiftrue pred ff default = (reduce ff default) . (filter pred)

The composed style is probably easier to read; the explicit recursion may appear algo-
rithmically more efficient, but this really depends upon the underlying implementation
(which might automatically convert function compositions to their equivalent explicit
recursive form (Darlington et al., 1982)).

Exercise 4.18
What is the purpose of the function guesswhat?

The function is a rather convoluted method of writing the built-in operator # in terms
of itself.

Solutions for Chapter 5

Exercise 5.1
Write a function, using where definitions, to return the string that appears before a given

sublist in a string. For example, beforestring "and" "Miranda" will return the string
”Mir”.

This is yet another example where it makes sense to reuse existing code, in this case the
startswith function designed in Chapter 3:

Solutions to Exercises 285

beforestring :: [char] -> [char] -> [char]

beforestring any []

= error "Beforestring: empty string to search"

beforestring bstring (front : rest)

= [], if startswith (bstring, front : rest)

where

startswith ([], any) = True

startswith (any, []) = False

startswith (front1 : rest1, front2 : rest2)

= (front1 = front2)

& startswith (rest1, rest2)

= front : beforestring bstring rest, otherwise

Note that it is not permitted to incorporate type declarations within a where clause.

Exercise 5.2
The Standard Environment function lines translates a list of characters containing new-

lines into a list of character lists, by splitting the original at the newline characters, which
are deleted from the result. For example, lines applied to:

"Programming with Miranda\nby\nClack\nMyers\nand Poon"

evaluates to:

["Programming with Miranda","by","Clack","Myers","and Poon"]

Write this function using a where definition.

mylines :: [char]->[[char]]

mylines [] = []

mylines (’\n’ : rest) = [] : mylines rest

mylines (front : rest)

= (front : thisline) : otherlines

where

(thisline : otherlines)

= mylines rest, if rest ~= []

= [[]], otherwise

|| handle missing ’\n’ on last line

The above code uses the induction hypothesis that mylines rest will correctly return a
list of strings as required. Thus, in order to return the correct result, all that is necessary
is to cons the front element onto the start of the first string returned by the recursive
call. There are two base cases, the first of which deals with an empty list (this is the
terminating condition), and the second of which returns an appropriate result if the front
character in the input string is a newline.

286 Solutions to Exercises

Exercise 5.3
Define a list comprehension which has the same behaviour as the built-in function filter.

filter :: (* -> bool) -> [*] -> [*]

filter pred anylist = [x <- anylist | pred x]

This can be read as the list of all elements x, where x is sequentially from the list
anylist such that pred x evaluates to True.

Exercise 5.4
Rewrite quicksort using list comprehensions.

qsort :: (* -> * -> bool) -> [*] -> [*]

qsort order = xqsort

where

xqsort [] = []

xqsort (front : rest)

= xqsort [x | x <- rest; order x front]

++ [front] ++

xqsort [x | x <- rest; ~ (order x front)]

The algorithm is the same as shown earlier in this chapter, but the split function has
been replaced by two list comprehensions. The first generates all values from the rest

of the list such that, for each value x, the order predicate on x and the front evaluates
to True; the second where it does not. Notice also that the auxiliary function does not
need to carry around order, which is in scope.

Exercise 5.5
Use a list comprehension to write a function that generates a list of the squares of all the

even numbers from a given lower limit to upper limit. Change this function to generate an
infinite list of even numbers and their squares.

One approach is to generate all the possible integers between low and high and create a
list of the squares of only those integers that satisfy the constraint mod 2 - 0:

gensquares low high

= [x * x | x <- [low .. high] ; x mod 2 = 0]

This is readily adapted to cater for infinite lists:

infinite_squares

= [(x, x * x) | x <- [2..]; x mod 2 = 0]

Alternatively, it is possible to utilize the list comprehension’s ability to recognize integer
intervals:

infinite_squares = [(x, x * x) | x <- [2,4..]]

Solutions to Exercises 287

Solutions for Chapter 6

Exercise 6.1
Write a function to calculate the distance between a pair of coords.

The hardest part of this solution is to remember the geometry!

coords ::= Coords (num,num,num)

distance :: coords -> coords -> num

distance (Coords (x1,y1,z1)) (Coords (x2,y2,z2))

= sqrt (square (x2 - x1) + square (y2 - y1) + square (z2 - z1))

where

square n = n * n

Exercise 6.2
Given the algebraic type:

action ::= Stop | No_change | Start

| Slow_down | Prepare_to_start

write a function to take the appropriate action at each possible change in state for
traffic light.

drive :: traffic_light -> traffic_light -> action

drive Green Amber = Slow_down

drive Amber Red = Stop

drive Red Red_amber = Prepare_to_start

drive Red_amber Green = Start

drive x x = No_change

drive x y = error "broken lights"

Exercise 6.3
A Bochvar three-state logic has constants to indicate whether an expression is true, false

or meaningless. Provide an algebraic type definition for this logic together with functions
to perform the equivalent three-state versions of &, \/ and logical implication. Note that,
if any part of an expression is meaningless then the entire expression should be considered
meaningless.

bochvar ::= TRUE | FALSE | MEANINGLESS

andB :: bochvar -> bochvar -> bochvar

andB TRUE TRUE = TRUE

andB MEANINGLESS any = MEANINGLESS

andB any MEANINGLESS = MEANINGLESS

andB avalue bvalue = FALSE

288 Solutions to Exercises

orB :: bochvar -> bochvar -> bochvar

orB FALSE FALSE = FALSE

orB MEANINGLESS any = MEANINGLESS

orB any MEANINGLESS = MEANINGLESS

orB avalue bvalue = TRUE

impB :: bochvar -> bochvar -> bochvar

impB TRUE FALSE = FALSE

impB MEANINGLESS any = MEANINGLESS

impB any MEANINGLESS = MEANINGLESS

impB avalue bvalue = TRUE

Exercise 6.4

Explain why it is not sensible to attempt to mirror the tree data structure using nested
lists.

It is necessary to know the depth of the tree before the correct level of list nesting can
be determined. This is because Miranda does not allow lists to contain elements of mixed
types and, for example, a double-nested list is of a different type than a triple-nested
list. If the depth of the tree is known then each nested list can have the same depth; but
this defeats the purpose of the tree data structure, which is designed to be of arbitrary
depth.

Exercise 6.5

A number of useful tree manipulation functions follow naturally from the specification of
a binary tree. Write functions to parallel the list manipulation functions map and # (in terms
of the number of nodes in the tree).

The equivalent of map just traverses the tree, applying the parameter function to each
non-empty node:

maptree :: (* -> **) -> tree * -> tree **

maptree ff Tnil = Tnil

maptree ff (Tree (ltree, node, rtree))

= Tree (maptree ff ltree, ff node, maptree ff rtree)

The equivalent of # could be written by traversing the tree and adding 1 for each non-
empty node, although an easier method is to reuse some existing code:

nodecount = (#) . tree_to_list

Solutions to Exercises 289

Exercise 6.6
What would have been the consequence of writing the function list to tree as:

list_to_tree order = reduce (insertleaf order) Tnil

This will fail because reduce expects its first argument to be a function of the form:

* -> ** -> **

whereas (insertleaf order) has the type:

tree * -> * -> tree *

which has the general form:

* -> ** -> *

It is always worth looking at a function’s type for program design and debugging pur-
poses.

Exercise 6.7
Write a function to remove an element from a sorted tree and return a tree that is still

sorted.

The base cases are: deleting terminal nodes (for example, node 0 and node 7), which
leaves the rest of the tree unaltered, and attempting to delete a node from an empty
tree, which is an error.

Figure A.1 A sample tree.

The general case is that of deleting non-terminal nodes. Here, only the subtree below
the deleted node needs to be re-sorted. One method is to replace the deleted value with

290 Solutions to Exercises

the highest value in the left subtree below the deleted node. Thus, given the sample tree
in Figure A.1, deleting node 8 will require the value 8 to be replaced with the value 7.
The node which contained the replacement value must now be deleted; this may cause
yet another re-sorting of the tree.

For example, to delete node 12 will require the value 11 to take the place of 12; this
means that node 11 must next be deleted from its original position, thus causing the
value 10 to take its place; this means that node 10 must next be deleted from its original
position, which can be achieved with a simple deletion and with no need to consider
further subtrees.

Following the above informal specification:

delnode :: (* -> * -> bool) -> * -> tree * -> tree *

delnode ff item Tnil

= error "delnode: item not in tree"

delnode order item (Tree(Tnil, item, rtree))

= rtree || ’promote’ right subtree

delnode order item (Tree(ltree, item, rtree))

= || replace deleted node with new root and

|| delete new root from left subtree

Tree (delnode order newroot ltree, newroot, rtree)

where

newroot

= findhighest ltree

findhighest (Tree (ltree, node, Tnil))

= node

findhighest (Tree (ltree, node, rtree))

= findhighest rtree

delnode order item (Tree(ltree, node, rtree))

= || look for item in rest of tree

Tree (delnode order item ltree, node, rtree),

if order item node

= Tree (ltree, node, delnode order item rtree),

otherwise

Note that when the condition item = node is true, the method proceeds by chosing a
new root from the left subtree; hence there is no need to check if the right subtree is
empty.

There is a simpler approach which merely flattens the tree, then deletes the item from
the resultant list, and then turns the list back into a tree using list to tree. However,
this approach immediately leads to a pathologically unbalanced tree, because the list
argument to list to tree is totally sorted and therefore all tree nodes will have only
one branch.

Solutions to Exercises 291

Solutions for Chapter 7

Exercise 7.1
Provide function definitions for the nat primitives if a recursive underlying data represen-

tation is used as follows: algnat ::= Zero | Succ algnat.

The solution to this exercise shows that the natural numbers can be modelled using only
the constructors Succ and Zero; there is no need for any underlying built-in type. The
abstype body provides a sample of the arithmetic and relational operators, as well as
makeNat and show interfaces.

abstype nat

with

makeNat :: num -> nat

plusNat :: nat -> nat -> nat

timesNat :: nat -> nat -> nat

equalNat :: nat -> nat -> bool

shownat :: nat -> [char]

|| etc

nat_type ::= Zero | Succ nat_type

nat == nat_type

makeNat x = error "makeNat: non-negative integer expected\n",

if (x < 0) \/ (~ (integer x))

= xmakeNat x, otherwise

where

xmakeNat 0 = Zero

xmakeNat x = Succ (xmakeNat (x - 1))

plusNat x Zero = x

plusNat x (Succ y) = plusNat (Succ x) y

timesNat x Zero = Zero

timesNat x (Succ Zero) = x

timesNat x (Succ y) = plusNat x (timesNat x y)

equalNat (Zero) (Zero) = True

equalNat (Succ x) (Succ y) = equalNat x y

equalNat (Succ x) (Zero) = False

equalNat (Zero) (Succ x) = False

shownat Zero = "Zero"

shownat (Succ x) = "(Succ " ++ (shownat x) ++ ")"

Note that the definition of plusNat is remarkably similar to the accumulative recursive
definition of plus shown in Chapter 2.

292 Solutions to Exercises

Exercise 7.2

A date consists of a day, month and year. Legitimate operations on a date include: creating
a date, checking whether a date is earlier or later than another date, adding a day to a date
to give a new date, subtracting two dates to give a number of days, and checking if the date
is within a leap year. Provide an abstract type declaration for a date.

The fact that the date abstract type can be declared on its own, demonstrates that a
programmer does not necessarily have to worry about implementation at the same time
as determining requirements. Coding the interface functions can be deferred or left to
another programmer. Notice in this case, the declaration assumes that the date will be
converted from a three number tuple, but makes no assumption concerning the type of
a day or of a date itself.

abstype date

with

makeDate :: (num,num,num) -> date

lessDate :: date -> date -> bool

greaterDate :: date -> date -> bool

addday :: day -> date -> date

diffDate :: date -> date -> day

isleapyear :: date -> bool

Exercise 7.3

Complete the implementation for the sequence abstract type.

The completed implementation requires some code reuse for the left-to-right operations,
and employing the built-in function reverse to cater for right-to-left operations:

seqHdL = hd

seqHdR = hd . reverse

seqTlL = tl

seqTlR = reverse . tl . reverse

seqAppend = (++)

Exercise 7.4

Provide a show function for the sequence abstract type.

Because sequence is a polymorphic abstract type, its corresponding show function re-
quires a ‘dummy’ parameter. The showsequence implementation takes the first element
in the underlying list, applies the dummy function f to it, and then concatenates the
result to the recursive application on the rest of the list. The identity element is the
empty list.

Solutions to Exercises 293

abstype sequence *

with

...

seqDisplay :: (sequence *) -> [*]

showsequence :: (* -> [char]) -> sequence * -> [char]

sequence * == [*]

...

seqDisplay s = s

...

showsequence f s = foldr ((++) . f) [] s

Notice that it is not possible to take the following approach:

showsequence f s = s

It is necessary to apply the dummy function to every component of the data structure.
However, the definition for seqDisplay is perfectly acceptable because seqDisplay is
not a show function.

Exercise 7.5

Assuming that the underlying type for an abstract date type is a three number tuple (day,
month, year), provide functions to display the day and month in US format (month, day),
UK format (day, month) and to display the month as a string such as “Jan” or “Feb”.

This exercise demonstrates that “showing” an abstract type is rather arbitrary. More
often than not, what is needed is to show some property of the type:

abstype date

with

makeDate :: (num,num,num) -> date

...

displayUK :: date -> (num,num)

displayUS :: date -> (num,num)

displayMonth :: date -> [char]

date = (num,num,num)

displayUK (day, month, year) = (month, day)

displayUS (day, month, year) = (day, month)

displayMonth (day, month, year)

= ["Jan",Feb","March","April","May","June",

"July","Aug","Sept","Oct","Nov","Dec"] ! (month - 1)

|| remember list indexing starts at 0

294 Solutions to Exercises

Exercise 7.6
An alternative representation of the Atree would be:

abstype other_tree *

with

|| declarations

ordering * == * -> * -> bool

other_tree * ::= Anil (ordering *)

| ATree (ordering *) (other_tree *) * (other_tree *)

What would be the consequences for the abstract type implementation?

The ordering function would be contained at each node in the other tree rather than
just once at the highest root in the tree.

Exercise 7.7
A queue aggregate data structure (Standish, 1980) can be defined as either being empty

or as consisting of a queue followed by an element; operations include creating a new queue,
inserting an element at the end of a queue and removing the first element in a queue. The
following declares a set of primitives for a polymorphic abstract type queue:

abstype queue *

with

qisempty = queue * -> bool

qtop = queue * -> *

qinsert = queue * -> * -> queue *

qcreate = queue *

Provide an implementation for this abstract type.

Just as with the array examples, there are many possible implementations and, as far as
the meaning of a program is concerned, it should not matter which is chosen. The imple-
mentation rationale is often determined by algorithmic complexity, based on assumptions
about the pattern of accesses and updates; however, this subject is beyond the scope of
this book. For this abstype, it is possible to use a simple list as the underlying type,
however the following construction shows an equally valid alternative:

queue_type * ::= Qnil | Queue (queue *, *)

queue * == queue_type *

qtop Qnil = error "Queue: empty queue"

qtop (Queue (Qnil, qfirst)) = qfirst

qtop (Queue (qrest, qfirst)) = qtop qrest

qisempty aq = (aq = Qnil)

qinsert queue item = Queue (queue, item)

qcreate = Qnil

Solutions to Exercises 295

Solutions for Chapter 8

Exercise 8.1

Adapt the wordcount program so that it will work for more than one input file.

manywordcount :: [[char]] -> [char]

manywordcount filenames

= lay (map f filenames)

where

f name = name ++ ":\t" ++ show (wordcount name)

This simple solution invokes wordcount for each of the given filenames; each result is
formatted so that it is transformed from a three-tuple to a string using show and then
appears after the name of the file, a colon and a tab. The result of map is a list of strings,
which lay (a function from the Standard Environment) concatenates as a single string
using newline delimiters.

The above example does not give the total for all the files, nor does it return the result
numerically. A different solution might only return a three-tuple giving the totals across
all the files:

manywordcount2 :: [[char]] -> [char]

manywordcount2 filenames

= foldr totals (0,0,0) (map f filenames)

where

f name = (wordcount name)

totals (a,b,c) (t1,t2,t3) = (a+t1, b+t2, c+t3)

Exercise 8.2

Explain why the following code is incorrect:

wrongsplit infile

= first second

where first = hd inlist

second = tl inlist

inlist = readvals infile

The code is wrong because Miranda does not know the type of the contents of infile,
and so readvals cannot work. Furthermore, because there is no concrete representation
of a function, there is no possible way that readvals could create a list of values such
that the first item could be treated as a function.

296 Solutions to Exercises

Exercise 8.3

Provide the functions readbool and dropbool which, respectively, will read and discard
a Boolean value from the start of an input file.

These answers use the function readword as defined in the text of Chapter 8. They
expect the input to be a string representing a Boolean; this is checked and either the
appropriate action is taken or an error message is given:

readbool :: [char] -> bool

readbool infile

= check (readword infile)

where

check "True" = True

check "False" = False

check other = error "readbool"

dropbool :: [char] -> [char]

dropbool infile

= check (readword infile)

where

check "True" = dropword infile

check "False" = dropword infile

check other = error "dropbool"

Exercise 8.4

Explain why the following attempt at vend is incorrect:

vend = (System "clear") : wrongdialogue $+

wrongdialogue ip = [Stdout welcome] ++ quit, if sel = 4

= [Stdout welcome] ++ (next sel), otherwise

where

(sel : rest) = ip

next 1 = confirm "tea" ++ wrongdialogue rest

next 2 = confirm "coffee" ++ wrongdialogue rest

next 3 = confirm "soup" ++ wrongdialogue rest

next 4 = quit

In the above code, the guard if sel = 4 requires the value of sel and therefore causes
the input to be scanned before the welcome message is printed to the screen.

Solutions to Exercises 297

Exercise 8.5
Why is it necessary for check to have a where block, and why is confirm repeatedly

applied within acknowledge?

The definition of dialogue is given as:

dialogue :: [num] -> [sys_message]

dialogue ip

= [Stdout welcome] ++ next ++ (check rest2)

where

(sel : rest) = ip

(next, rest2)

= ([tea, coffee, soup] ! (sel - 1)) rest

check xip = [Stdout menu3] ++ xcheck xip

where

xcheck (1:rest3) = quit rest3

xcheck (2:rest3) = dialogue rest3

xcheck any = quit any

The function check must have a where block because menu3 must be output to the
screen before the user’s response xip is evaluated. In the expression [Stdout menu3]

++ xcheck xip, the evaluation of xcheck only occurs after the left operand of ++ has
been output.

The definition of acknowledge is given as:

acknowledge :: [char] -> num -> [sys_message]

acknowledge d 1 = confirm (d ++ " with Milk & Sugar")

acknowledge d 2 = confirm (d ++ " with Milk")

acknowledge d 3 = confirm (d ++ " with Sugar")

acknowledge d 4 = confirm d

An alternative definition does not use confirm repeatedly:

wrongacknowledge :: [char] -> num -> [sys_message]

wrongacknowledge d x = confirm (d ++ (mesg x))

where

mesg 1 = " with Milk & Sugar"

mesg 2 = " with Milk"

mesg 3 = " with Sugar"

mesg 4 = []

Unfortunately, this (wrong) version has the undesirable effect that the the phrase “Thank
you for choosing” is printed before the user has entered a number. This becomes obvious
when the definition for confirm is given:

confirm :: [char] -> [sys_message]

confirm choice = [Stdout ("\nThank you for choosing "

++ choice ++ ".\n")]

298 Solutions to Exercises

Exercise 8.6

Use the above board, as the basis for a simple game of noughts and crosses (tic-tac-toe).

>|| Noughts and crosses (tic-tac-toe) game: (Page 1 of 4)

Controlling program - main:

This makes use of Miranda’s keyboard input directive $+

Start the game by entering ‘main’ at the Miranda prompt.

> move==(num,num)

> main = [System "stty cbreak"] ++

> [Stdout greeting] ++

> [Stdout (game $+)] ++

> [System "stty sane"]

> greeting

> = "\nWelcome to the Noughts and Crosses game\n\n" ++

> "Please enter moves in the form (x,y) followed by a newline\n" ++

> "Each number should be either 0, 1 or 2; for example: (1,2)\n\n" ++

> "Enter your first move now, and further moves after the display:\n"

> game:: [move]->[char]

> game ip = xgame ip empty_board

> xgame [] brd = []

> xgame ((x,y) : rest) brd

> = prompt ++ m1, if ss1

> ||

> || don’t test s2 here because it will delay printout

> || of the user’s move until the computer move is done

> ||

> = prompt ++ m1 ++ xgame rest brd, if (~s1)

> = prompt ++ "Computer’s move:\n" ++ nextmove, otherwise

> where

> prompt = clearscreen ++ "Player’s move:\n"

> ++ print_board newboard1

> clearscreen = "\f"

> nextmove = print_board newboard2 ++ m2 , if ss2

> = print_board newboard2 ++ m2

> ++ xgame rest newboard2, if (~s2)

> = print_board newboard2

> ++ xgame rest newboard2, otherwise

> (newboard1,s1,ss1,m1) = user_move brd (x,y)

> (newboard2,s2,ss2,m2) = comp_move newboard1

Solutions to Exercises 299

>|| Noughts and crosses game continued (Page 2 of 4)

State:

> state == (board, bool, bool, [char])

Board:

> abstype board

> with

> empty_board :: board || in order to start the game

> print_board :: board -> [char]

> game_over :: board -> state

> user_move :: board -> (num,num) -> state

> computer_move :: board -> state

Represent the board as a list of lists of cells,

where a cell is either Empty or contains a Nought or a Cross:

> cell ::= Empty | Nought | Cross

> board == [[cell]]

An empty board has 9 empty cells

> empty_board = [[Empty,Empty,Empty],

> [Empty,Empty,Empty],

> [Empty,Empty,Empty]

>]

Print the board:

> print_board [row1,row2,row3]

> = edge ++ printrow1 ++ edge ++ printrow2 ++ edge

> ++ printrow3 ++ edge

> where

> edge = "-------------" ++ "\n"

> printrow1 = (concat (map showcell row1)) ++ "|\n"

> printrow2 = (concat (map showcell row2)) ++ "|\n"

> printrow3 = (concat (map showcell row3)) ++ "|\n"

> showcell Empty = "| "

> showcell Nought = "| O "

> showcell Cross = "| X "

300 Solutions to Exercises

>|| Noughts and crosses game continued (Page 3 of 4)

Check for "game over".

Find three Noughts or Crosses in a row, column or diagonal

and then indicate who won (computer plays crosses).

> game_over brd

> = (brd,over,over,msg)

> where

> over = cross_wins \/ nought_wins \/ board_full

> cross_wins = finished Cross

> nought_wins = finished Nought

> board_full = ~(member (concat brd) Empty)

>

> finished token = or (map (isline token) (rows ++ cols ++ diags))

> isline x [x,x,x] = True

> isline x [a,b,c] = False

>

> rows = brd

> cols = transpose brd

> diags = [[brd!0!0,brd!1!1,brd!2!2], [brd!0!2,brd!1!1,brd!2!0]]

>

> msg = "Computer won!\n", if cross_wins

> = "Player won!\n", if nought_wins

> = "Board Full\n", if board_full

> = "", otherwise

Add the user’s move to the board.

But first check if the new cell is on or off the board

then check if the new cell is already occupied.

Then return a four-tuple indicating:

(i) the new board after the change has been made

(ii) a boolean to say whether the change was successful

(iii) a boolean to say whether the program should terminate

(iv) a string containing an error message if the change failed.

> user_move brd (x,y)

> = (newb,False,True,message2), if over

> = (newb,success,False,message1), otherwise

> where

> (newb,success,message1) = do_move brd (x,y) Nought

> (b1,over,s2,message2) = game_over newb

Solutions to Exercises 301

>|| Noughts and crosses game continued (Page 4)

> do_move :: [[cell]]->(num,num)->cell->([[cell]],bool,[char])

> do_move brd (x,y) token

> = (brd,False,"illegal move - off the board\n"),

> if ~((0 <= x <= 2) & (0 <= y <= 2))

> = (brd,False,"cell not empty\n"),

> if (brd!y)!x ~= Empty

> = (newb,True,""), otherwise

> where

> newb = simple_move brd (x,y)

> simple_move [d,e,f] (x,0) = (newcol d x):[e,f]

> simple_move [d,e,f] (x,1) = d:(newcol e x):[f]

> simple_move [d,e,f] (x,2) = d:e:[newcol f x]

> simple_move [d,e,f] (x,n)

> = error (seq (force (system "stty sane"))

> "out of bounds\n")

> newcol [cell1,cell2,cell3] 0 = [token,cell2,cell3]

> newcol [cell1,cell2,cell3] 1 = [cell1,token,cell3]

> newcol [cell1,cell2,cell3] 2 = [cell1,cell2,token]

> newcol [cell1,cell2,cell3] n

> = error (seq (force (system "stty sane"))

> "out of bounds\n")

Computer move:

first check whether all positions are full,

then choose where to put a cross:

note: there is no attempt to win, just to play honestly!

> comp_move b = (newb,False,True,message2), if over

> = (newb,success,False,message1),otherwise

> where

> (newb,success,x,message1) = computer_move b

> (b1,over,s2,message2) = game_over newb

>

> computer_move brd

> = (brd,False,True,"Board full\n"),

> if ~(member (concat brd) Empty)

> = hd [(newb,success,False,m) | i,j <- [0..2];

> (newb,success,m) <- [do_move brd (i,j) Cross];

> (success = True)], otherwise

draw successful moves from a list containing

the results of moves for all values of i and j

