
Chapter 8

Files and Interaction

8.1 Introduction

This chapter introduces Miranda’s mechanisms for the input of data into a program
and for the output of data from a program. Data may be transferred between the
program and one or more files, or may be transferred between the program and
the user. For data transfer to and from the user, the program must take the form
of a dialogue; the user must be prompted for information and the program must
respond to the user’s input. This dialogue between the program and the user is
termed interaction.

Input and output (“i/o”) between programs and files is considered first, starting
with simple i/o mechanisms and proceeding to formatted i/o. This is followed by a
discussion of interaction with the user via the keyboard and the screen, and finally
the mechanisms for interaction with the operating system.1

8.2 File input

8.2.1 Simple input

In previous chapters, functions have mainly been applied to data entered at the
keyboard; however, this is both tedious and prone to error if large data volumes
must be processed. An alternative approach is to store the data as part of the
program in the script file, but this entails editing the script file every time there
is a change in the data. It is often preferable to put the data into separate files
and access these files from within the Miranda system; if the data changes, only
the data file need be edited, thereby reducing the chance of introducing an error
into the program code. Data can be read from a file by using the built-in read

1The current version of Miranda is only available for the UNIX operating system (or UNIX
clones), and so discussion of operating system interaction will be specific to UNIX.

210

File input 211

function, which is of type [char]->[char]. The parameter to read is a string
(that is, a list of characters) representing a UNIX file.2 The return value is a string
containing the contents of the file; if the file does not exist or cannot be read,
Miranda halts its evaluation and gives an error message.

The example below shows how the grep program, developed throughout this
book, can be adapted to work for file input. It uses the built-in function read

together with the predefined function lines which splits a flat string into a list of
strings using the newline as a delimiter:

in grep :: [char] -> [char] -> [[char]]

in grep regexp filename

= grep regexp ((lines . read) filename)

Another demonstration of the use of read is the following wordcount program.
This is similar to the standard UNIX facility wc, which counts the total number
of characters, words and lines in a given file.

In this program the expression read infile evaluates (lazily) to a string (a list
of char) representing the entire content of the specified input file; this list is used
as the input to the auxiliary function xwc, which is initialized with zero values in
the three accumulators representing the number of lines, words and characters in
the input file. Notice that xwc does not need to check for any special “end-of-file”
marker—the end of the data is represented by the empty list.

wordcount :: [char] -> (num, num, num)

wordcount infile

= xwc (read infile) 0 0 0

where

xwc [] nlines nwords nchars

= (nline, nwords, nchars)

xwc (first : second : rest) nlines nwords nchars

= xwc rest nlines (nwords + 1) (nchars + 2),

if member [’ ’,’\t’] second

= xwc rest (nlines + 1) (nwords + 1) (nchars + 2),

if second = ’\n’

= xwc (second : rest) nlines nwords (nchars + 1),

otherwise

xwc (first : rest) nlines nwords nchars

= xwc rest nlines nwords (nchars + 1),

if member [’ ’,’\t’] first

= xwc rest (nlines + 1) nwords (nchars + 1),

if first = ’\n’

= (nlines, nwords + 1, nchars + 1),

otherwise

2Strictly speaking, it represents a UNIX pathname indicating a file or device.

212 Files and Interaction

The characters in the file are read lazily (a character at a time) and are discarded
as soon as they have been scanned (this is evident from the fact that none of the
alternative return values for xwc contain the name first).3

8.2.2 Formatted input—readvals

The built-in function read only returns a list of characters, yet programs often
require values of other types. To this end, Miranda provides the readvals function,
which takes a string representing a file and returns a list of values of a specified
type (and so the type of readvals is [char] -> [*]). Each value in the input file
must appear on a separate line and will be returned as a separate item in the list;
blank lines and Miranda || comments may be embedded in the input file and are
not read into the resultant list.

UNIX represents the user’s screen and keyboard as a file,4 so that it is possible
to read from the keyboard in the same manner as reading from a file (similarly, it is
possible to write to a file and have the data appear on the screen). In recognition
of this fact, Miranda’s readvals function checks with the operating system to
determine whether the input is actually coming from a file or is coming from a
keyboard; if the input comes from a keyboard, readvals checks for errors and
reacts to bad data by prompting the user to repeat the line (the bad values are
omitted from the result list). If the input file is not connected to a keyboard, bad
data will cause the program to terminate with an error message.

The following example shows how an input file could be treated as a list of
numbers:

numberlist :: [num]

numberlist = readvals "data"

Note that Miranda must be able to determine the type of input file used by read-

vals. Thus, despite the polymorphic type of readvals, the programmer must
specify a monomorphic (non-polymorphic) type each time it is used. To omit the
type leads to a compile-time error:

numberlist = readvals "data"

compiling script.m

checking types in script.m

type error - readvals or $+ used at polymorphic type :: [*]

(line 1 of "script.m")

3In principle, the program should be able to deal with any size of file; unfortunately, with the
current implementation, Miranda runs out of space for very large input files.

4For example, the file /dev/tty represents the screen and keyboard currently being operated
by the user.

File input 213

Exercise 8.1

Adapt the wordcount program so that it will work for more than one input file.
Exercise 8.2

Explain why the following code is incorrect:

wrongsplit infile

= first second

where first = hd inlist

second = tl inlist

inlist = readvals infile

User-defined formatting

The readvals function operates on the whole file at once and expects all items in
the file to be the same type. However, the data file might contain items of different
type, in which case it is necessary to treat the file as a list of characters and then
to define a collection of functions which will translate a part of the file into data
of a different type. The following examples illustrate how to translate data from
a list of characters to whatever type is required by the rest of the program. Each
user-defined formatting function translates a small portion of data from the start of
the file. For each function there is also a data-discarding mirror, which is required
in order to access the remainder of the file’s data. These functions operate in pairs,
much like hd and tl or takewhile and dropwhile.

>|| user-defined formatting (Page 1 of 2)

read first integer from input file

> readint :: [char] -> num

> readint infile

> = string to int (takewhile digit (read infile))

> || where

> || string to int was defined in Chapter 2

drop first integer from input file

> dropint :: [char] -> [char]

> dropint infile

> = (dropwhile notdigit (dropwhile digit (read infile)))

214 Files and Interaction

>|| user-defined formatting continued (Page 2)

read first word from input file

> readword :: [char] -> [char]

> readword infile

> = (takewhile notspace (read infile))

drop first word from input file

> dropword :: [char] -> [char]

> dropword infile

> = (dropwhile isspace (dropwhile notspace (read infile)))

general-purpose character handlers:

> isspace x = member [’ ’, ’\t’, ’\n’] x

> notspace = (~) . isspace

> notdigit = (~) . digit

digit is built-in: digit x = ’0’ <= x <= ’9’

readN will read up to a specified number of characters from

its given input file, and result in a tuple containing

a count of the number of characters actually read together

with those characters

> readN :: [char] -> ([char],num)

> readN infile nchars

> = (instringLength, instring),

> if instringLength < nchars

> = (nchars, take nchars instring), otherwise

> where

> instringLength = # instring

> instring = read infile

> dropN :: [char] -> ([char],num)

> dropN infile nchars

> = (instringLength, []),

> if instringLength < nchars

> = (nchars, drop nchars instring), otherwise

> where

> instringLength = # instring

> instring = read infile

File input 215

Exercise 8.3

Provide the functions readbool and dropbool which, respectively, will read and dis-
card a Boolean value from the start of an input file.

8.2.3 Safe input—filemode

So far, the discussion of file input has assumed that the desired input file exists
and that the user is entitled to access it. This is clearly not a safe assumption in
anything other than a development context. It is possible to check the status of a
given file using the built-in filemode function, which is of type [char]->[char].
The parameter represents a file and the return value represents its UNIX user
access permissions.5

If the result string is empty then the file does not exist. Otherwise it will contain
four characters:

1. The first position will be the character ’d’ if the file is a directory or ’-’ if
it is not.

2. The second position will be the character ’r’ if the file is readable or ’-’ if
it is not readable.

3. The third position will be the character ’w’ if the file is writable or ’-’ if it
is not writable.

4. The final position will be the character ’x’ if the file is executable or ’-’ if
it is not executable.

Making use of this information, the wordcount program can now be made safe by
checking the file status before applying xwc:

wordcount :: [char] -> (num, num, num)

wordcount infile

= error "can’t open" ++ infile,

if cantopen (filemode infile)

where

cantopen [] = True

cantopen (’d’ : rest) = True

cantopen (any : ’-’ : rest) = True

cantopen anyother = False

= xwc (read infile) 0 0 0, otherwise

|| etc

5The UNIX “group” and “other” access permissions are not available.

216 Files and Interaction

8.3 Input and referential transparency

In earlier chapters it has been stressed that the functional programming view of
computation is that a name is bound to a value which never changes. This is in
direct contrast to the imperative view of programming, where a name is bound to
a memory location—the memory location never changes, but the value stored in
the memory location can change.

A name in a functional program might be bound to an expression to be calcu-
lated, and that expression might be different each time the program is run (because
it depends on data entered at run-time); however, once a value has been calculated
for that name, it cannot change. This is called “referential transparency”.

As a result of referential transparency, the following two definitions must always
be equivalent:

shared def g x = y ++ y

where

y = g x

unshared def g x = (g x) ++ (g x)

Unfortunately, both read and filemode may exhibit a lack of referential trans-
parency, such that if either were substituted for g in the above definitions, and if
x were the name of a file, the above definitions might not give equivalent results.
This is because in a multi-tasking system, such as UNIX, the file contents and the
permissions on a file might change at the same time as the Miranda program is
running.

In the following example, the function samecopy takes a copy of the input file
and duplicates it, whereas the function diffcopy reads the input file twice. It is
just feasible that someone may have edited this file between the first and second
evaluations of read infile:

samecopy infile = instring ++ instring

where

instring = read infile

diffcopy infile = read infile ++ read infile

8.4 File output

Just as it is necessary to take data from the files and the keyboard, it is also
necessary to output data to files and the user’s screen. In Miranda, all program
output occurs as part of the value returned by the topmost function, that is, the
function whose name is invoked at the Miranda prompt in order to run the program
The Miranda on-line manual calls this a “command-level expression”.

File output 217

The following section introduces the concept of system messages, which provide
mechanisms for a program to control where data is saved and in which format.

Figure 8.1 File output.

8.4.1 System messages

The value of a command-level expression is always a list of system messages, that
is, it has result type [sys message]. A system message is defined as an algebraic
type, where each constructor corresponds to a different output action:

sys_message ::= Stdout [char] | Stderr [char] |

Tofile [char] [char] | Closefile [char] |

Appendfile [char] | System [char] | Exit num

For example, a program might produce the result:

[Stdout "twinkle", Tofile "myfile" "twinkle little star"]

The above list of system messages is a sequence of commands to the Miranda
system; these commands are obeyed in left-to-right order. Thus, in the above

218 Files and Interaction

example, the Miranda system will first send the string "twinkle" to the standard
output (usually the user’s screen), then send the string "twinkle little star"

to the file myfile. The actions of each of the sys message constructors will be
explained in detail in the following subsections.

The default message wrapper

The above discussion may seem somewhat disconcerting, since none of the exam-
ple programs in the preceding chapters have required the top-level function of a
program to produce a value of type [sys message]. This is because they have all
operated under a “default wrapper”, which converts simple program output into
a value of type [sys message]. The default wrapper assumes that the output is
meant to be displayed as a string on the screen. If the program produces the value
x then it will silently be translated into [Stdout (show x)]. This works for a
value of any type recognized by show.

This feature is particularly useful to enable rapid prototyping and separate mod-
ule testing.

8.4.2 Writing to a file

So far, all the functions in this book have output their results to other functions
or to the screen; hence the output data has not survived the Miranda session. It is
easy to save this output data in a file using the sys message constructor Tofile

which takes a string representing the name of the output file (or device, such as a
printer) and a string consisting of the output data.

The first time an element of the form Tofile file data appears in the sys message

list, the file is opened for writing and data is written to it: subsequent use of the
same Tofile expression (most likely with new data) will cause the new data to
be appended to the file. Note that, in keeping with the spirit of UNIX, if the file

already exists then its old contents will be deleted before the new data is first
written.

The following example copies the contents of a named input file to a named
output file, discarding all “white space” characters. This is achieved by reading
the entire input file, then removing all white space characters and then writing the
result:

File output 219

compresscopy :: [char] -> [char] -> [sys message]

compresscopy infile outfile

= [Tofile outfile (xcompress (read infile))]

where

xcompress = filter (() . isspace)

isspace x = (x = ’ ’) \/ (x = ’\t’) \/ (x = ’\n’)

Appending to files

Sometimes, it is necessary to add to an existing file rather than write a new file.
This can be achieved using the constructor Appendfile, which takes a string rep-
resenting the name of a file that will have data concatenated to it. This element
must appear in the sys message before any Tofile element that writes to file.

add to diary :: [char] -> [sys message]

add to diary message

= [Appendfile "diary", Tofile "diary" message]

8.4.3 Formatted output

Data values other than character lists, can be written to output files using show.
For example:

writeint :: [char] -> num -> [sys message]

writeint outfile n = [Tofile outfile (show n)]

Two restrictions apply:

1. Infinite data values cannot be written to a file.

2. The show keyword only works for known types. It will not work for functions,
and abstract types require the special treatment described in Chapter 7.

If show did not exist then it would be necessary to write separate functions to
convert values to character lists; thus the above example could be written as:

writeint :: [char] -> num -> [sys message]

writeint outfile n

= [Tofile outfile (int to string n)]

|| using int to string as shown in Chapter 2

220 Files and Interaction

Notice that any data written to a file using show is stored in a form that is
appropriate for subsequent reading by using readvals. However, it is generally
considered bad style to have the same file open for both reading and writing during
a program. This is because of the danger of accidentally overwriting data that has
not yet been read.

Closing files

The constructor Closefile takes a string giving the name of a file and, assuming
the file has previously been opened by a Tofile message, it will close that file.

In practice, explicit file closing is normally unnecessary because all files are
normally closed on exit from the Miranda prompt. Nonetheless, there are three
situations where it is necessary:

1. Where it is required to read from and write to the same file within a single
program; it is normally necessary and advisable to close the file after writing
and before reading (or vice versa).

2. Where the number of files open exceeds the operating system limits.

3. Where it is required to flush the output to the file, to ensure all data has
been written.

8.5 Special streams

Miranda i/o was designed with the UNIX operating system in mind, and follows
the UNIX approach of having three “special” files, the standard input (normally
representing the user’s keyboard), the standard output (normally the user’s screen)
and the standard error output (also normally the user’s screen). These special files
are automatically opened at the start of any UNIX process which has been started
from the standard UNIX command interpreter (the “shell”) and provide convenient
communication with the terminal. Thus, a Miranda session will always start with
these three files already open: the standard input is open for reading, the standard
output and standard error output are both open for writing.

These three special files are sometimes called “streams” and are primarily used
for interactive programming, as will be discussed later in this chapter. They may
however also be redirected (at the UNIX command line), so that they are connected
to files instead of being connected to the user’s terminal; they may therefore be
used to prototype file processing programs (input and output can initially be with
the keyboard and screen, and then redirected to files once the program is working
correctly).

Special streams 221

8.5.1 Standard input

The special form $- is a list of characters representing the contents of the standard
input. Multiple occurrences of $- always represent the same input. Hence $-

++ $- reads data from the keyboard and duplicates it. Keyboard data entry is
terminated by entering <control-D> at the start of a new line.

Formatted standard input

The use of $+ is the equivalent of using readvals with the name of a file denoting
the standard input. For example:

Miranda foldr (+) 0 $+

will take a a sequence of numbers from the keyboard (one per line) up to the next
<control-D> and then return their sum.

8.5.2 Standard output and standard error output

To send data to the standard output stream, the program should include the system
message Stdout x as part of its result, where x is a value of type [char]. Similarly,
data can be sent to the standard error output, using the system message Stderr

x. If it is necessary to send a number to the standard output or standard error
output streams, it should first be formatted as a string:

Miranda [Stdout "hello"]

hello

Miranda [Stderr (show (300 + 45))]

345

In each of the above examples the result will appear on the user’s screen. Sometimes
it is necessary to clear the screen before displaying messages, this will be explained
in the next subsection.

The “System” message

It is possible to send commands to the UNIX operating system by using System

messages as part of the output of the program. This message takes a string argu-
ment which is interpreted and evaluated by the UNIX command interpreter. For
example, the program can clear the user’s screen by using the message System

"clear" as part of its sys message list. Any valid UNIX command can be given:

222 Files and Interaction

Miranda [System "date"]

Sat May 14 14:51:07 BST 1994

Miranda [Stdout "The date is: ", System "date", Stdout " A.D."]

The date is: Sat May 14 14:51:07 BST 1994

A.D.

Note that in the last example the date printed by the system includes a newline:
thus, the characters " A.D." appear on the next line.6 Finally, notice that the
command evaluated by the operating system might not produce any visible output:

Miranda [Stdout "Start:", System "mv a b", Stdout ":End"]

Start::End

The “Exit” message

When a UNIX process terminates it may return an exit status number to the
operating system. This can be achieved with the system message Exit x where
x is a number between 0 and 127. As soon as Exit is detected in the output of
the program, the program is terminated. Thus, any system messages following
Exit will be ignored. An exit value of zero usually indicates that the program has
terminated with no errors.

If a program ends without using the Exit system message, Miranda will generate
an exit value of 0 for normal exit and 1 for program exit due to an error.

8.6 Interaction

Interactive programs must interact with the user’s terminal—to accept input from
the keyboard and to print output to the screen. Most terminals provide a character-
based interface to the program; that is, the keyboard produces characters and the
screen will accept characters. Since there is no way to tell in advance how many
characters a user will type at the keyboard, Miranda treats the data coming from
the keyboard as a (potentially infinite) list of characters; output is treated similarly.
Thus, an interactive Miranda program should have the type [char] -> [char].

The [char] -> [char] paradigm is simple and convenient. However, it is nec-
essary to keep in mind the following two points:

1. As explained previously with regard to file output, all output must be chan-
nelled through the topmost function.

2. It is necessary for the programmer to specify the precise order in which user
interaction should take place.

6If it is required to format the output from a UNIX command then the program should use
the system function discussed in Section 7 of this chapter.

Interaction 223

8.6.1 Specifying a dialogue sequence

The user dialogue is one of the few places7 in a Miranda program where the spec-
ification of evaluation order is necessary; in the rest of the program it is normally
sufficient merely to specify how results will be combined to produce a new value
and leave the evaluation sequence to Miranda.

Miranda determines the evaluation order by inspecting the data dependencies
implied by the program. For example, in the expression ((3 * 4) + 5) the ad-
dition operator cannot proceed until the values of both of its operands are known
and so the multiplication must take place before the addition. In the example (2 +

(fst ((3 * 4), (5 / 6)))), the function fst does not need to know the result
of the division and so the division is never done (this is lazy evaluation); however,
the addition needs to know the result of the multiplication and so the multiplica-
tion is done before the addition. Finally, note that the Miranda system is free to
choose an evaluation order at random where there are alternatives. For example,
in the expression ((4 * 5) + (6 * 7)) both multiplications must be done before
the addition, but which multiplication happens first is not defined. Normally, the
Miranda programmer need never be concerned about such operational issues, but it
becomes important when dealing with the interactive part of a program, as shown
in the rest of this section.

There are two simple ways in which a programmer can force Miranda to evaluate
one expression before another:

1. Use function composition. For example, in the expression ((f . g . h)

45) the application of the function h will be evaluated first, followed by the
application of g to the intermediate result, followed by f. Lazy evaluation
will still mean that only the necessary parts of the data will be evaluated,
but now the programmer has some control over the order in which function
applications are considered.

2. Use pattern matching, since if an argument must be checked against any pat-
tern other than a formal parameter name then it must be evaluated at least
enough to determine whether it matches, and furthermore this evaluation
must happen before the function body is evaluated.

Simple interaction example

The following simple example demonstrates a dialogue with the user where the
program waits for the user to type a line and then prints the date; it does this
repeatedly until the user types <control-D>. The correct sequence of question
and response is guaranteed by the use of pattern matching:

7Control of evaluation order may be necessary for advanced program optimisation (which is
beyond the scope of this book) and perhaps where the program interacts with the outside world
using read or system—see Section 8.7.

224 Files and Interaction

prompt = "Please enter something: "

msg = "Here is the date: "

loop [] = [Stdout "\nGoodbye"]

loop (’\n’:rest)

= Stdout ("Please press just one character, "

++ "followed by the Return key")

: (loop rest)

loop (any:’\n’:rest

= Stdout msg : System "date"

: Stdout prompt : (loop rest)

loop (any:rest)

= Stdout ("Please press just one character, "

++ "followed by the Return key")

: (loop rest)

main = Stdout prompt : (loop $-)

By contrast, the following example gets the sequencing wrong and prints the first
date before it is requested:

prompt = "Please enter something: "

msg = "Here is the date: "

wrongloop ip

= Stdout msg : System "date"

: Stdout prompt : (rest ip)

where

rest [] = [Stdout "\nGoodbye\n"]

rest (x:xs) = wrongloop xs

main = Stdout prompt : (wrongloop $-)

The above error is quite understandable, since the output of the program does not
depend on the value of the data entered by the user. This highlights the difference
between programming the interactive part of a program (where the correct sequence
of operations is of primary importance) and the body of the program (where values
are of primary importance).

8.6.2 Using a menu

A common user interface is to present the user with a menu of items and ask
the user to choose one item (perhaps an action) by entering a number. A simple
example of this behaviour is illustrated in the following program which mimics a

Interaction 225

drink-vending machine. Of course, there are no real drinks on offer; it is a “virtual”
vending machine. This program will be presented as four different versions: the first
two will illustrate two equivalent ways to implement a single menu and the second
two will illustrate two equivalent ways to implement a more complex program with
three menus.

The user interface for the program with just one menu is simple:

1. First, the user is presented with a choice of either Tea, Coffee, Soup or Quit.
The user makes a choice by entering a number (1, 2, 3 or 4) and the computer
prints an acknowledgement on the screen.

2. If the choice was 4 (for Quit) the program stops. Otherwise, it loops and
prints the menu again.

The above interaction between human and computer will be the same in both of
the following two examples. The common code shared between the two examples
is now presented:

Screen messages for first two vending program examples:

> welcome :: [char]

> welcome

> = "Welcome to the Virtual Vending Machine\n\n"

> ++ "You may choose from the following menu:\n\n"

> ++ "1. Tea\n2. Coffee\n3. Soup\n"

> ++ "4. Quit\n" ++ request

> request :: [char]

> request

> = "Please enter the number of your choice: "

Message to confirm the user’s choice:

> confirm :: [char] -> [sys message]

> confirm choice

> = [Stdout ("\nThank you for choosing "

> ++ choice ++ ".\n")]

Leave the program, with ok exit status:

> quit :: [sys message]

> quit = [Stdout "End of program\n", Exit 0]

226 Files and Interaction

Preformatted menu input

If it is clear that the user will always enter values of the same type (for example, if
the user can only enter numbers in response to menus) then it is appropriate to use
the $+ special form to represent the input. Miranda will automatically interpret
the characters typed at the keyboard and translate them into values of the correct
type. Remember that the user must always press the Return key to send the input
to the program and if the user enters a value that cannot be interpreted then
Miranda will issue a warning and wait for input of the correct type.

>|| version 1 of vending program

> vend :: [sys message]

> vend = (System "clear") : dialogue $+

> dialogue :: [num] -> [sys message]

> dialogue ip

> = [Stdout welcome] ++ (next sel)

> where

> (sel : rest) = ip

> next 1 = confirm "tea" ++ dialogue rest

> next 2 = confirm "coffee" ++ dialogue rest

> next 3 = confirm "soup" ++ dialogue rest

> next 4 = quit

In the above example, pattern matching on the input is done inside the where

block rather than in the formal parameter list for the function; this ensures that
the welcome message is printed before the program interrogates the keyboard. It
is instructive to run the following (wrong) version which will wait for user input
before printing the menu:

> vend = (System "clear") : wrongdialogue $+

> wrongdialogue (sel : rest)

> = [Stdout welcome] ++ (next sel)

> where

> next 1 = confirm "tea" ++ wrongdialogue rest

> next 2 = confirm "coffee" ++ wrongdialogue rest

> next 3 = confirm "soup" ++ wrongdialogue rest

> next 4 = quit

Exercise 8.4

Explain why the following attempt at vend is incorrect:

Interaction 227

vend = (System "clear") : wrongdialogue $+

wrongdialogue ip = [Stdout welcome] ++ quit, if sel = 4

= [Stdout welcome] ++ (next sel), otherwise

where

(sel : rest) = ip

next 1 = confirm "tea" ++ wrongdialogue rest

next 2 = confirm "coffee" ++ wrongdialogue rest

next 3 = confirm "soup" ++ wrongdialogue rest

next 4 = quit

Program-formatted menu input

If the program expects the user to enter values of differing type in any order, then
it is necessary to use the $- special form to represent the input. The user input will
be available to the program as a list of characters which can then be interpreted
according to the types of values expected. Remember that the user must always
press the Return key to send the input to the program. When using $-, the end-
of-line character representing the Return key will also be part of the input list of
characters, and so the program must interpret this Return character.

The following version of vend employs $- to allow the user to enter words rep-
resenting the desired drinks or to enter numbers representing the menu option.
Notice that the split function discards the end of line character.

228 Files and Interaction

>|| version 2 of vending program

> vend :: [sys message]

> vend = (System "clear") : dialogue $-

> dialogue :: [char] -> [sys message]

> dialogue ip

> = [Stdout welcome] ++ (next sel)

> where

> (sel,rest) = split ip

> next "1" = confirm "tea" ++ dialogue rest

> next "tea" = confirm "tea" ++ dialogue rest

> next "2" = confirm "coffee" ++ dialogue rest

> next "coffee" = confirm "coffee" ++ dialogue rest

> next "3" = confirm "soup" ++ dialogue rest

> next "soup" = confirm "soup" ++ dialogue rest

> next anyother = quit

>

> split [] = ([],[])

> split (’\n’ : rest) = ([],rest)

> split (x : rest) = (x : a, b)

> where

> (a,b) = split rest

Plumbing multiple menus together

This third version of the vending machine program and the final version both have
more than one menu. It will be seen that the correct sequencing of the dialogue
between multiple menus requires the careful “plumbing” of both the user’s input
and the program’s output.

These programs share an interface consisting of three menus:

1. Initially, the user is presented with a choice of either Tea, Coffee or Soup.
The user makes a choice by entering a number (1, 2 or 3) and Miranda prints
an acknowledgement on the screen.

2. If the user has chosen Tea or Coffee (but not if the user has chosen Soup), a
second menu allows the user to choose Milk, Sugar, Milk and Sugar, or None.
The user makes this choice by entering a number (1, 2, 3 or 4) and Miranda
prints an acknowledgement on the screen.

3. Finally, the computer displays a message on the screen, followed by a menu
which allows the user to choose either to exit the program or to choose another
drink.

Interaction 229

Screen messages for third & fourth vending programs:

> welcome :: [char]

> welcome = "Welcome to the Virtual Vending Machine\n\n"

> ++ "You may choose from the following menu:\n\n"

> ++ "1. Tea\n2. Coffee\n3. Soup\n"

> ++ "4. Quit\n" ++ request

> request :: [char]

> request = "Please enter the number of your choice: "

> menu2 :: [char]

> menu2 = "You may also choose from:\n" ++

> "1. Milk and Sugar\n" ++

> "2. Milk only\n" ++

> "3. Sugar only\n" ++

> "4. None of the above\n" ++ request

> menu3 :: [char]

> menu3 = "Enjoy your virtual drink!\n\n" ++

> "Please enter 1 to exit or 2 for another drink\n"

Message to confirm the user’s choice:

> confirm :: [char] -> [sys message]

> confirm choice = [Stdout ("\nThank you for choosing "

> ++ choice ++ ".\n")]

Leave program with ok exit status, discarding surplus input

> quit :: [num] -> [sys message]

> quit x = Stdout "End of program.\n" : [Exit 0]

The rest of the program for version three is now presented. The dialogue function
prints the first menu to the screen as before, and inspects the user’s response by
pattern matching on the input; this is done inside the where block in order to
achieve the correct sequencing. However, if the user has chosen Tea or Coffee then
a second menu must be displayed and the input must be further interrogated. Once
this has been achieved, the dialogue function must present the user with a third
menu and, according to the user’s response, either terminate or recurse.

The third menu interaction is achieved in a straightforward manner by the func-
tion check inside the where block. The second menu interaction is, however,
more complex because it involves the action of functions which are not part of the
dialogue function. In general, it is not possible to know how much of the user

230 Files and Interaction

input will be consumed by these separate functions and so the entire user input
data must be transferred explicitly into the subsidiary function (this is sometimes
called “downward plumbing”). Subsequently, the input data which has not been
consumed must be transferred out of the subsidiary function as part of its result
for further inspection by the dialogue function (this is sometimes called “upward
plumbing”).

In this example, the functions for tea, coffee and soup return the remainder of
the input as part of their result tuple and the other part is the output to be sent to
the user. This is another example of “upward plumbing”, and it is important that
the dialogue function should correctly sequence this data as part of the overall
output of the program.

>|| version 3 of vending program (Page 1 of 2)

> vend :: [sys message]

> vend = (System "clear") : dialogue $+

> dialogue :: [num] -> [sys message]

> dialogue ip

> = [Stdout welcome] ++ next ++ (check rest2)

> where

> (sel : rest) = ip

> (next, rest2)

> = ([tea, coffee, soup] ! (sel - 1)) rest

> check xip = [Stdout menu3] ++ xcheck xip

> where

> xcheck (1:rest3) = quit rest3

> xcheck (2:rest3) = dialogue rest3

> xcheck any = quit any

Interaction 231

>|| version 3 of vending program continued (Page 2)

> tea :: [num] -> ([sys message], [num])

> tea ip

> = (confirm "Tea" ++ [Stdout menu2] ++ next, rest)

> where

> (sel : rest) = ip

> next = acknowledge "Tea" sel

> coffee :: [num] -> ([sys message], [num])

> coffee ip

> = (confirm "Coffee" ++ [Stdout menu2] ++ next, rest)

> where

> (sel : rest) = ip

> next = acknowledge "Coffee" sel

> soup :: [num] -> ([sys message], [num])

> soup ip = (confirm "Soup", ip)

> acknowledge :: [char] -> num -> [sys message]

> acknowledge d 1 = confirm (d ++ " with Milk & Sugar")

> acknowledge d 2 = confirm (d ++ " with Milk")

> acknowledge d 3 = confirm (d ++ " with Sugar")

> acknowledge d 4 = confirm d

Exercise 8.5

Why is it necessary for check to have a where block, and why is confirm repeatedly
applied within acknowledge?

Menus using continuation functions

The final version of the vending machine program uses a general-purpose function
which takes the input stream, a message and a list of functions; it prints the mes-
sage and reads the user’s input (which must be a number), and then applies one of
the functions to the remainder of the input stream. The function which is applied
(often called a “continuation function”, because it determines how the program will
continue) is chosen according to the number returned by the user. Note that the
whole user interface is mutually recursive; it is not easy to reason about and is dif-
ficult to test, since individual functions cannot be tested in isolation from the other

232 Files and Interaction

functions.8 However, this style of programming user interfaces is enthusiastically
promoted and supported by some other functional programming languages; it can
also be generalized to encompass interaction with the operating system, with dif-
ferent continuation functions provided for successful and unsuccessful operations.
This style of programming is sometimes known as “continuation-passing style”, or
just “CPS”.

>|| version 4 of vending program

>vend :: [sys message]

>vend = (System "clear") : dialogue $+

>dialogue :: [num] -> [sys message]

>dialogue ip

> = gendialogue ip welcome [tea, coffee, soup]

> where

> tea newip = xdial "Tea" newip

> coffee newip = xdial "Coffee" newip

> xdial d newip

> = confirm d ++ gendialogue newip menu2 (extras d)

> extras d = map option [(d," with Milk & Sugar"),

> (d," with Milk"),

> (d," with Sugar"), (d,"")]

> soup newip = confirm "Soup" ++ continue newip

>option :: ([char],[char]) -> [num] -> [sys message]

>option (drink, extra) ip

> = confirm (drink ++ extra) ++ continue ip

>continue :: [num] -> [sys message]

>continue ip = gendialogue ip menu3 [quit, dialogue]

>gendialogue :: [num] -> [char] -> [[num]->[sys message]]

> -> [sys message]

>gendialogue ip msg fns

> = Stdout msg : xdial ip fns

> where

> xdial [] fns = quit []

> xdial (x : rest) fns = (fns ! (x - 1)) rest

8The reader might notice that it implements a finite state machine (Minsky, 1967).

Advanced features 233

8.7 Advanced features

This section brings together various advanced Miranda features which either facili-
tate interaction with the operating system or provide greater control over the eval-
uation mechanism. Because all current implementations of Miranda are designed
to run on the UNIX operating system (or a UNIX equivalent such as LINUX), the
operating-system features discussed in this section are specific to UNIX.

8.7.1 Interaction with the Miranda evaluation mechanism

The Miranda lazy-evaluation mechanism provides a powerful computational model.
However, it is sometimes useful to be able to encourage Miranda either to evaluate
two expressions in a certain order, or to evaluate an expression more fully than
it would otherwise. This manipulation of the evaluation mechanism is necessary
either in the user-interface part of a program, in order to achieve a desired sequenc-
ing effect, or in the main body of a program, in order to optimize the efficiency of
the code.9

In addition to function composition and pattern matching, Miranda offers two
built-in functions:

1. The built-in function seq. This function has type:

seq:: * -> ** -> **

The seq function takes two arguments. It checks that the first argument is
not completely undefined, which requires some evaluation of the first argu-
ment, but not full evaluation. It then returns the second argument as its
result, so that the extent to which the second argument is evaluated depends
on the context in which seq has been applied.
The phrase “not completely undefined” means that if the first argument is
a list then it will be evaluated to the extent that its length is known but its
elements may still be undefined.

2. If the seq function does not provide sufficient evaluation of the first argument,
it can be combined with the built-in function force. This function has type:

force:: * -> *

The force function forcibly evaluates all of its argument and then returns
that argument’s value as its result. Thus, force cannot be used on its own
to enforce order of evaluation of one thing before another, but it can be used
in conjunction with seq:

fullseq x y = seq (force x) y

9However, issues of efficiency are beyond the scope of this book.

234 Files and Interaction

The functions seq and force evaluate their arguments to differing extents:
force will return an error (or an undefined result) if evaluation any part of
its argument returns an error (or is undefined), whereas seq can sometimes
return a result which contains undefined parts. For example:

Miranda seq [(3 div 0)] 45

45

Miranda force [(3 div 0)]

[

program error: attempt to divide by zero

It is possible to get correct dialogue sequencing using seq instead of pattern match-
ing. In the following example, the use of seq ensures that the first item of the
standard input is evaluated before the program produces the next date:

prompt = "Please enter something: "

msg = "Here is the date: "

loop [] = [Stdout "\nGoodbye"]

loop ip

= seq (hd ip) (Stdout msg : System "date"

: Stdout prompt : (loop (tl ip)))

main = Stdout prompt : (loop $-)

8.7.2 Interaction with UNIX

Subsection 8.5.2 showed how the System message could be utilized to ask the
operating system to evaluate a command; any output from that command is printed
to the standard output. This subsection shows how the output from an operating
system command can be manipulated inside a Miranda program.

The built-in function system takes a string argument which is a command to be
evaluated by the UNIX command interpreter. A new UNIX process is created10 in
order to run this command and the result of the system function is a three-tuple
containing:

1. A string containing whatever data the program wrote to its standard output.
This list of characters is created lazily—each character is available as soon
as it is output by the program.

2. A string containing whatever data the program wrote to its standard error
output. Each character in the list is available as soon as it is output by the
program.

10The new process has its standard input closed, so that it cannot interfere with input to the
Miranda program.

Advanced features 235

3. A number containing the exit status of the program (0 means that the pro-
gram terminated correctly; any other value indicates that an error occurred).
The number will always be an integer between 0 and 127. The number is
only available after the program has finished.

The type of this function is therefore:

system :: [char]->([char],[char],num)

Note that Miranda’s lazy evaluation of the first two elements of the above tuple
means that it is possible for the Miranda program and the called program to run
concurrently, with synchronizing pauses only necessary if the Miranda program
tries to read data faster than the called program can generate that data.

If UNIX cannot evaluate the given command, the result returned by system

will be ([], error message, -1), where error message is some error message,
indicating why the command failed.

Referential transparency and system

The function system provides a general mechanism for interfacing with the oper-
ating system. It is perhaps rather too powerful than is appropriate for a functional
language. Recall that in a functional language one attempts to “program by value”
rather than “program by effect”, and it is precisely this value-oriented discipline
that gives functional programs enormous advantages over imperative programs;
functional programs tend to be shorter, more modular and easier to understand.

With the system function it is possible to introduce the “program by effect” style
into a Miranda program; this should be avoided! The system function should only
be used to gain information from the operating system, and never as a mechanism
to cause some effect on the system outside of the Miranda program. It should be
remembered that a functional program should only effect the rest of the system
by means of system messages in the result of the program. Thus, to have an effect
on the operating system, one should use the System message. By contrast, to gain
information from the operating system one should use the system built-in function.

Despite the above discussion, some UNIX commands will by their very nature
introduce a degree of referential opacity (the opposite of referential transparency)
to a Miranda program. For example:

shared def g x = y ++ y

where

y = g x

unshared def g x = (g x) ++ (g x)

main = shared def system "date"

236 Files and Interaction

The program above will read the date (which includes the current time) once and
print out that value twice. However, if the program were changed so that the main
function called the function unshared def instead of shared def then the date
would be read twice and it is quite likely that the second reading would be different
from the first. This demonstrates that system is not referentially transparent and
should be used with great care!

8.7.3 Modifying UNIX interactive behaviour

In all the previous examples, the user has been required to press the Return key
in order to send input to the computer program. Furthermore, every time the user
presses a key on the keyboard this is displayed on the screen; this is done by UNIX,
not by the computer program.

UNIX allows these two behavourial features (and many others) to be controlled
by the program. This permits the programmer to develop a more direct interaction
between the program and the user, as illustrated by the following simple program
which provides a square board on the screen within which the user can manoeuvre.
This simple form of interaction is the basis of many computer games, though issues
of optimized screen control, the use of bit-mapped graphics and windowing systems
are beyond the scope of this book.

In the following example, the system message System "stty cbreak -echo"

contains the two instructions to UNIX:11

1. Allow each keyboard character to be input to the program when it is pressed
(that is, do not wait for the Return key to be pressed before sending characters
to the program).

2. Do not echo the keyboard character to the screen. In this example, this
is just an aesthetic decision concerning screen display; however this feature
is required for many applications, such as full-screen editors and to conceal
password entry.

Note that at the end of the program, UNIX is instructed to return to “normal”
behaviour by use of the system message System "stty -cbreak echo". Also
note that the modification of UNIX behaviour in this way is not suitable for the
user once the program has finished and so the programmer must be sure that
the program resets this behaviour whenever the program terminates, for whatever

reason. The programmer should be particularly careful of the following causes of
program termination:

1. Normal termination due to the end of input.
2. Normal termination due to some other reason (for example, the end of the

game, if the program implements a game).

11This stty command will not necessarily work correctly for all versions of UNIX; readers are
recommended to consult their local system documentation.

Advanced features 237

3. Termination due to a program-detected error (thus, use of the error function
becomes more complex, as demonstrated in the example below).

4. Termination due to an error in the program being detected by Miranda (thus,
the program should be thoroughly tested, especially for missing cases and
the possibility of list indexes exceeding the bounds of the list, before being
released to the user).

>|| Boardgame program: places ’X’ onto board (Page 1 of 2)

> main = [System "stty cbreak -echo"]

> ++ (display board) ++ (dialogue board startpos $-)

> board = Board (rep 10 " ")

> startpos = (5,5)

> dialogue bd (x,y) ip

> = xdial bd ip

> where

> xdial Error any = dialogue over "Game error\n" 1

> xdial b (’n’ : rest) = newpos (0,-1) rest

> xdial b (’e’ : rest) = newpos (1,0) rest

> xdial b (’w’ : rest) = newpos (-1,0) rest

> xdial b (’s’ : rest) = newpos (0,1) rest

> xdial b (’q’ : rest) = dialogue over "Game over\n" 0

> xdial b any = dialogue over "Game error\n" 1

>

> newpos (p,q) ip

> = (display (setboard bd (x+p,y+q)))

> ++ dialogue (setboard bd (x+p,y+q)) (x+p,y+q) ip

> dialogue over m s

> = [Stdout m, System "stty -cbreak echo", Exit s]

> abstype game board

> with

> board :: game board

> setboard :: game board -> (num,num) -> game board

> display :: game board -> [sys message]

> dialogue :: game board -> (num,num) -> [char]

> -> [sys message]

> board type ::= Error | Board [[char]]

> game board == board type

238 Files and Interaction

>|| Boardgame program continued (Page 2)

> setboard Error (x,y) = Error

> setboard (Board bd) (x,y)

> = Error, if (x<0) \/ (x>9) \/ (y<0) \/ (y>9)

> = Board (take y bd ++ [setrow (bd!y) x]

> ++ drop (y+1) bd), otherwise

> where

> setrow row x

= (take x row) ++ "X" ++ (drop (x+1) row)

> display Error = [System "clear",Stdout "ERROR\n"]

> display (Board bd)

> = [System "clear",Stdout (lay newbd)]

> where

> newbd = [rep 12 ’-’] ++

> (map (++ "|") (map (’|’ :) bd))

> ++ [rep 12 ’-’]

Exercise 8.6

Use the above board as the basis for a simple game of noughts and crosses (tic-tac-toe).

8.8 Summary

This chapter introduced tools to facilitate communication between the program-
mer and the world outside of the Miranda system. File input makes it possible
to have programs that work on different data values, without artificially amending
the script file; whilst file output allows the results of Miranda programs to be saved
outside of a Miranda session. The chapter continued by introducing special files
or streams for communicating with the keyboard and the screen, hence allowing
for interaction with another user. The process of interaction requires careful con-
sideration of the sequencing of function application via pattern matching or the
use of continuation functions. Finally, some mechanisms for interacting with the
operating system were discussed.

