
Chapter 3

Lists

As has been shown in previous chapters, data items of types such as num and bool

can only hold one data value at a time. In order to collect more than one value,
tuples and strings can be used; these are known as aggregate data types. However,
since they are not recursive by nature, it is not easy to manipulate data items of
these types in a recursive manner. The list data type is introduced in this chapter
as a powerful aggregate data type which is recursively defined and is used to hold
many values of a single type. Built-in functions are introduced to construct and
deconstruct data items of this new type.

Functions which manipulate lists are naturally recursive. This chapter provides
guidelines for the design of such functions using the techniques of case analysis
and structural induction; case analysis ensures that the programmer considers all
possible inputs to a function, whereas structural induction is a powerful tool for
developing recursive algorithms.

Recursive function definition is of such fundamental importance to the manip-
ulation of the list data structure that the general technique is analysed further
and five common modes of recursion over lists are discussed. The chapter ends
with a detailed example of program design utilizing the above techniques; the pro-
gram grep, a textual search utility, which will be used as an extended example
throughout the rest of the book.

3.1 The list aggregate type

Aggregate types

It is often useful to have a single name to refer to items of data that are related in
some way. Any data type that allows more than one item of data to be referenced
by a single name is called an aggregate type or a data structure, since the items
are represented in a structured and orderly manner.

65

66 Lists

It is clear that objects of the simple types bool, char or num have one value
and are not aggregate types. One example of an aggregate type is the tuple,
which allows a fixed number of data items to be represented by a single name.
This chapter introduces the list aggregate type, which is of particular interest to
functional language programmers, because it is recursively defined and may be
easily manipulated by recursive functions.

Lists

The important concept of the list data structure is analogous to a collection of
nested boxes. There is a central (“empty”) box which may be surrounded by a
slightly larger box, which in turn may be surrounded by another box, and so on.
The central box contains nothing and cannot be opened, whereas all other boxes
contain a data item and another nested-box structure (see Figure 3.1).

Figure 3.1 Box containing empty box and the data item “4”.

To inspect the first item in this data structure, it is necessary to open the outermost
box—inside will be the first data item and a smaller box (the rest of the data
structure). In order to inspect the second item in the list, it is necessary to do two
things—first open the outermost box, then open the box that is found inside. At
that point, the second data item in the list is available, together with a smaller
box representing the remainder of the data structure (see Figure 3.2).

In order to use such a data structure, the following operations must be provided
by the language:

1. A way to construct a new structure (that is, the ability to put things inside
a new box).

2. A way to deconstruct an existing structure (that is, the ability to “open a
box”).

3. A way to recognize the empty box so that there will be no attempt to decon-
struct it (which would be an error because it contains nothing).

The following discussion of Miranda lists will first present the notation used and
then explain how these three operations may be performed.

The list aggregate type 67

Figure 3.2 Box containing the data item “1” and another box.

3.1.1 List syntax

From the above analogy, it should be clear that the list data structure is naturally
recursive in its definition. Informally, a Miranda list may be defined either as
being empty or containing one element together with a list (which itself is empty
or consists of an element of the same type as the previous element together with a
list (which itself is empty or consists of an element of the same type as the previous
element together with . . . and so on . . .)).

From the above, a more formal, recursive definition of a list may now be derived:
A list is either:

empty
or:

an element of a given type together with
a list of elements of the same type

There are two notations that Miranda uses to represent lists: an aggregate format
and a constructed format. The aggregate format is introduced below, whereas the
constructed format is presented in Section 3.2.

The empty list is represented in both formats by the characters []—this corre-
sponds to the “empty box” which cannot be opened. For lists with one or more
elements, the empty box is implicit in the aggregate format and only the data items
are given explicitly. For example, a box which contains the number 1 together with
the empty box is represented by the aggregate format [1]. Further examples of
lists entered at the prompt together with the type indicator now follow:

Miranda [1,2] ::

[num]

Miranda ["David Turner’s", "Miranda"] ::

[[char]]

68 Lists

Miranda [(1,2),(3,1),(6,5)] ::

[(num,num)]

Miranda [[1],[2,2,2]] ::

[[num]]

Illegal lists

All the elements of a list must have the same type; the Miranda system will detect
any attempt to define a list of mixed types. All of the following examples within
the script file are therefore illegal:

wrong1 = [1, "1"]

wrong2 = [1, [1]]

wrong3 = [1, (1, 1)]

wrong4 = [1, []]

In each case the first element of the list is a number and so, on exit from the editor,
the Miranda type checker expects all the other elements of the list to be numbers
as well:

type error in definition of wrong4

(line 4 of "script.m") cannot cons num to [[*]]

type error in definition of wrong3

(line 3 of "script.m") cannot cons num to [(num,num)]

type error in definition of wrong2

(line 2 of "script.m") cannot cons num to [[num]]

type error in definition of wrong1

(line 1 of "script.m") cannot cons num to [[char]]

The meaning of “cons” will be explained below.

3.1.2 The empty list—[]

The empty list is represented by the characters []. Recursive functions which
operate on lists will successively deconstruct each smaller “box” in the list structure
and will converge on the empty list []. However, it is important that such a
function should not attempt to deconstruct [] since this would give an error.

The value [] is used as the starting point for constructing a list of any type;
thus, [] must have the polytype [*]. For example, when [] is used to create a
list of numbers it adopts the type [num], but when it is used to create a list of
Booleans it adopts the type [bool]. Notice that [] is a data item which can itself
appear in lists; both of the following values have type [[*]]:

Built-in operations on lists 69

list1 = [[], [], []]

list2 = [[]]

3.2 Built-in operations on lists

Miranda provides a number of built-in operations for list manipulation, including
those for list construction and deconstruction. An empty list can simply be created
by giving a name to the empty list constant []. Other lists can be created by
combining an item with an existing list, using the special list constructor : or by
combining a list with another list using the built-in operator ++. Two functions
are also provided for list deconstruction: hd and tl. The former takes a list and
returns its first element; the latter takes a list and returns the list without the first
element.

A number of other list manipulating functions (such as extracting the n
th item

of a list or finding its length) may also be provided as built-in functions. However,
they could easily be written by the programmer, as will be seen later in this chapter.

3.2.1 List construction—:

Apart from [], the only list operator that is actually required is the polymorphic
operator : (pronounced “cons”) which prepends an item to an existing list of the
same type as that item. To use the nested-box analogy, : takes a data item and a
box and puts both into a bigger box; this creates a new list. The type constraint
is important—the second argument must either be empty or contain items of the
same type as the first argument. A list of one item can be created from a single
item and [] because [] is a polytype list and so can be combined with an item of
any type. The type of : is:1

Miranda : ::

->[]->[*]

In the following example script file, all of the identifiers are of type [[char]]:

alist = "a" : []

blist = "fed" : "cb" : alist

clist = "C" : ["c", "c", "c"]

dlist = "d" : "dd" : "d" : []

It is also possible to identify individual list components, using the pattern matching
definition style introduced in Section 1.4:

1This represents a “mapping” or function type; for many purposes it is similar to a
(*,[*])->[*] type, but see also the section on currying in Chapter 4.

70 Lists

(firstItem : otherItems) = [3, 2, 1]

Miranda firstItem

3

Miranda otherItems

[2,1]

Miranda 4 : 2 : 3 : []

[4,2,3]

The use of : provides the list in its constructed format though the system responds
by giving the list in its aggregate format.

The (firstItem : otherItems) definition is similar to that of tuple matching,
shown in Chapter 1. The use of : in this manner is possible because it is not a
normal function or operator but a special form of what is known as a constructor.
It is not concerned with manipulating the values of its arguments but with con-
structing a new list. One of the most important properties of constructors is that
they provide a unique representation for each value of an aggregate type. Thus,
a new list can be constructed—and so deconstructed—in only one way. In the
above example, the only possible value for firstItem is the number 3 and the
only possible value for otherItems is the number list [2,1].

The operator : is also different from other operators so far seen in that it asso-
ciates to the right; that is (1:2:[]) is really (1:(2:[])). If : associated to the
left giving ((1:2):[]), then the construction (1:2) would fail because 2 is not a
list.

List construction abuse

The following examples demonstrate common mistakes. The first example is wrong,
in that the number 1 is cons-ed onto a list whose items are strings (whereas Miranda
expects the items to be numbers, to be consistent with the first argument to :). In
the second example, the first argument to : is a list of type number and therefore
Miranda expects the second argument to be a list whose items are themselves lists
of numbers. An error occurs because the second argument is in fact a list whose
items are numbers. The third example has a similar error, in that the number 1 is
expected to be prepended to a list of numbers, whereas the second argument is a
number and not a list.

wrong x = 1 : ["a","bcd"]

wrong y = [1] : [2,3]

wrong z = 1 : 2

type error in definition of wrong_z

(line 3 of "script.m") cannot cons num to num

type error in definition of wrong_y

Built-in operations on lists 71

(line 2 of "script.m") cannot cons [num] to [num]

type error in definition of wrong_x

(line 1 of "script.m") cannot cons num to [[char]]

Exercise 3.1

Give two possible correct versions of wrong y.
Exercise 3.2

Which of the following are legal list constructions?

list1 = 1 : []

list2 = 1 : [] : []

list3 = 1 : [1]

list4 = [] : [1]

list5 = [1] : [1] : []

Append

Miranda provides another polymorphic list operator ++ (pronounced “append”).
This takes two lists of the same type and concatenates them to create a new list
of the same type. The terminating [] value of the first list is discarded. The type
of ++ is:2

Miranda ++ ::

[*]->[*]->[*]

Sample session:

Miranda [1] ++ [2,3]

[1,2,3]

Miranda [] ++ [1]

[1]

Miranda [] ++ []

[]

Miranda 1 ++ [2,3]

type error in expression

cannot unify num with [num]

2This type is similar to ([*],[*])->[*], see also Chapter 4 on currying.

72 Lists

Properties of append

Two properties of ++ are worth noting:

1. The operator ++ could associate from the left or from the right and produce
the same result. An advantage here is that expressions involving ++ do not
require bracketing.

2. The operator ++ is not a constructor because it cannot provide a unique rep-
resentation for a list. This is demonstrated by the fact that the comparison:

["A","A"] = firstList ++ secondList

could be satisfied either by both firstList and secondList having the
values ["A"] or by one of them having the value [] and the other having the
value ["A","A"].
Theoretically ++ is unnecessary since it can be defined in terms of : (as shown
in Section 3.7.2). Nevertheless, it is provided as a built-in operator because
it is such a frequent programming requirement.

3.2.2 List deconstruction

Miranda provides two polymorphic functions to extract items from a list, called hd

and tl.3

The function hd (pronounced “head”) operates on a list to select its first element
(that is, it “opens the box” and extracts the data item). The type of hd is therefore:

[*]->*

Examples:

Miranda hd [1]

1

Miranda hd [1,2,3,4]

1

Miranda hd ["Schoenfinkel","male","mathematician"]

Schoenfinkel

Miranda hd [[1,2,3],[8,9]]

[1,2,3]

Miranda hd [(1,2),(7,-1),(0,0)]

(1,2)

3Section 3.4 shows how easily they could be defined if they were not already provided.

Built-in operations on lists 73

The function tl (pronounced “tail”) is complementary to hd in that it operates on
a list to yield that list with its first element removed (that is, it “opens the box”
and extracts the inner box). The type of tl is therefore:

[*]->[*]

Thus, if tl is applied to a value of type [num] then it will return a value of type
[num] (even if the resulting list is []).

Examples:

Miranda tl [1,2,3,4]

[2,3,4]

Miranda tl ["Schoenfinkel","male","mathematician"]

["male","mathematician"]

Miranda tl [[1,2,3],[8,9]]

[[8,9]]

Miranda tl [(1,2),(7,-1),(0,0)]

[(7,-1),(0,0)]

Miranda (tl [1])

[]

Miranda (tl [1]) ::

[num]

The relationship between hd, tl and :

Both hd and tl give rise to errors when applied to empty lists:

Miranda hd []

program error: hd []

Miranda tl []

[

program error: tl []

Thus, when programming with lists, it is necessary to use either a guard or pattern
matching to avoid such errors. This test often arises as a natural consequence of
the fact that the empty list is the terminating condition for functions that are
defined recursively over a list (as shown later in this chapter).

74 Lists

Apart from the case of the empty list, hd and tl and : are related in such a way
that for any list:

(hd anylist) : (tl anylist) = anylist

Exercise 3.3

Miranda adopts the view that it is meaningless to attempt to extract something from
nothing; generating an error seems a reasonable treatment for such an attempt. What
would be the consequences if hd and tl were to evaluate to [] when applied to an empty
list?

3.2.3 Other list operators

A number of other operators are provided for list manipulation. Three of these
operators are familiar, being congruent to the string manipulation operators intro-
duced in Chapter 1. These are: -- (list subtraction), # (list length) and ! (list
indexing). For example:

Miranda [’c’,’a’,’t’] -- [’a’]

ct

Miranda # [345,2,34]

3

Miranda ["chris", "colin", "ellen"] ! 0

chris

The other list operators are: “dotdot” notation, which is used as an abbreviation
for lists representing a series of numbers, presented below; and “list comprehen-
sion”, discussed in Chapter 5, which provides a tool for intensionally specifying
the contents of a list through calculation (rather than extensionally stating each
element).

3.2.4 Dotdot notation

The simplest form of “dotdot” notation is to place two numbers in a list (using the
aggregate format), separated by two dots as follows:

Miranda [1..4]

[1,2,3,4]

Built-in operations on lists 75

The above example shows that Miranda responds by “filling in” the missing num-
bers between the first and the last. This abbreviated form may only be used for
ascending lists—if a descending list is specified, the system returns the empty list.
However, negative numbers may be specified:

Miranda [4..1]

[]

Miranda [-2..2]

[-2,-1,0,1,2]

Miranda [-2..-4]

[]

Lists of numbers which form an arithmetic series are also allowed. If the first
number is followed by a comma and a second number (before the two dots) then
this will specify the interval between each number in the series:

Miranda [1,3..9]

[1,3,5,7,9]

Miranda [-2,0..10]

[-2,0,2,4,6,8,10]

Miranda [1,7..49]

[1,7,13,19,25,31,37,43,49]

Miranda [1.1,1.2..2.4]

[1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4]

If the last number does not belong in the sequence then the list will stop before
exceeding the last number:

Miranda [1,3..10]

[1,3,5,7,9]

With this second form of “dotdot” abbreviation, it is also possible to define de-
scending sequences:

Miranda [3,1..-5]

[3,1,-1,-3,-5]

Miranda [3,1..-8]

[3,1,-1,-3,-5,-7]

Miranda hd (tl (tl (tl [3,1..-5])))

-3

76 Lists

3.3 Lists and other aggregate types

This section briefly looks at the relationship between lists and the other Miranda
aggregate types: strings and tuples.

Lists and strings

Strings and lists of strings are semantically related, since they both represent a
sequence of characters. In fact, the string double-quote notation is just a convenient
shorthand for a list of characters, as seen by the type indication for a string:

Miranda "sample" ::

[char]

This explains why all of the Miranda list operators work on both strings and lists.
Notice that the above sample string could equally well have been written:

Miranda (’s’ : ’a’ : ’m’ : ’p’ : ’l’ : ’e’ : []) ::

[char]

or

Miranda [’s’,’a’,’m’,’p’,’l’,’e’] ::

[char]

Exercise 3.4

At first sight it would appear that show can be bypassed by defining a function that
quotes its numeric parameter:

numbertostring :: num -> [char]

numbertostring n = "n"

Explain what the above function actually does.

Lists and tuples

It can be seen that lists and tuples are similar in that they are both aggregate
data structures (that is, they collect together many data elements). However, they
differ in three ways:

Simple functions using lists 77

1. Their types: all the items in a list must be of the same type,4 whereas tuple
elements may be of differing types. However, lists and tuples can mix; it is
legal to have tuples with list components and vice versa. In the latter case,
it is necessary to ensure that the tuple elements of the list are of the same
length and have the same component types.

wrong list = [(1,2,3), (True,False)]

type error in definition of wrong_list

cannot cons (num,num,num) to [(bool,bool)]

good tuple = ([1,2,3], [True,False])

good list = [(12,"June",1752), (13,"March",1066)]

2. A list is a recursively defined type (it is defined in terms of itself), and there-
fore the type contains no information about the number of elements in the
list. By contrast, a tuple is not recursively defined and the type of a tuple
determines exactly how many elements it will contain. It is for this reason
that lists may be constructed incrementally, whilst tuples may not.

3. Equality testing: tuple comparison can only be made against tuples of the
same composite type and hence the same number of components, whereas
lists of any length may be compared.
Comparing tuples:

Miranda (1,2,3) = (1,2)

type error in expression

cannot unify (num,num) with (num,num,num)

Comparing lists:

Miranda [1,2,3] = [1,2]

False

3.4 Simple functions using lists

Functions over lists may be defined in the same manner as all other functions; they
can be recursive, polymorphic and use pattern matching. The nature of recursive,
and especially polymorphic recursive, functions is dealt with in later sections; this
section overviews the use of pattern matching on lists. There are four things that
can appear in function patterns involving lists:

1. Formal parameters—which can be substituted by any actual value.

4See Chapter 6 for ways of creating a new type of list which may have elements of different
underlying types.

78 Lists

2. Constants—including the empty list [].
3. Constructed lists using : notation (the aggregate form is also legal, but is

not recommended for general use).

Examples of simple functions using lists:

isempty :: [*] -> bool

isempty [] = True

isempty anylist = False

isnotempty :: [*] -> bool

isnotempty anylist = ~(isempty anylist)

bothempty :: ([*],[**]) -> bool

bothempty ([],[]) = True

bothempty anything = False

startswithMira :: [char] -> bool

startswithMira (’M’ : ’i’ : ’r’ : ’a’ : rest) = True

startswithMira anylist = False

In the final example, it is necessary to bracket the (’M’ : ’i’ : ’r’ : ’a’

: rest) list construction so that it is treated as a single value, which can then
be pattern matched. Further examples of pattern matching using list construction
include possible implementations of the built-in functions hd and tl:

myhd :: [*] -> *

myhd [] = error "myhd"

myhd (front : rest) = front

mytl :: [*] -> [*]

mytl [] = error "mytl"

mytl (front : rest) = rest

The use of pattern matching in these examples emphasizes that there is no possible
way of deconstructing [] to give component values.

3.5 Recursive functions using lists

Many of the functions over lists are recursive because the list itself is a recursive
data structure. Whilst recursion involving numbers generally requires the recogni-
tion of zero to provide a terminating condition, list processing generally requires
the recognition of the empty list. This section shows that the two recursive styles
shown in Chapter 2 can also be used to manipulate lists.

Recursive functions using lists 79

Stack recursion over lists

The template for many functions on lists is very similar to that of stack recursive
functions shown in Section 2.7.1:

template [] = some final value
template (front: rest) = do something with front and

combine the result with a
recursion on template applied
to rest

For example, the following function adds all the items in a number list. It specifies
that the sum of an empty list is 0, whilst the sum of any other list is the value of
the front item added to the sum of the rest of the list:

nlist == [num]

sumlist :: nlist -> num

sumlist [] = 0

sumlist (front : rest) = front + sumlist rest

Exercise 3.5

Write a stack recursive function to add all numbers less than 3 which appear in a list
of numbers.

Accumulative recursion over lists

The following example reworks sumlist to show its equivalent accumulative re-
cursive implementation:

nlist == [num]

sumlist :: nlist -> num

sumlist any = xsum (any, 0)

xsum :: (nlist, num) -> num

xsum ([], total) = total

xsum (front : rest, total) = xsum (rest, front + total)

However, if it were desired to consider the sum of an empty list to be meaningless
or an error, it would be sensible to validate the input list in sumlist and process
it in the auxiliary function xsum. In the following version, if sumlist recognizes an

80 Lists

empty list then it treats this as an error and does no further processing. In contrast,
when xsum recognizes an empty list it treats this as the terminating condition for
the recursion and returns the desired total:

nlist == [num]

sumlist :: nlist -> num

sumlist [] = error "sumlist - empty list"

sumlist any = xsum (any, 0)

xsum :: (nlist, num) -> num

xsum ([], total) = total

xsum (front : rest, total) = xsum (rest, front + total)

It is worth noting that validation is only done once in this example and has been
separated from the calculation. In contrast, the following version is undesirable in
that an extra pattern is needed to detect the terminating condition and also that
the validation is confused with the calculation. As discussed in Section 2.10, from
a software design perspective it is generally poor practice to make a function do
more than one thing.

nlist == [num]

muddledsum :: nlist -> num

muddledsum any = xmuddledsum (any, 0)

xmuddledsum :: (nlist, num) -> num

xmuddledsum ([], total)

= error "muddledsum"

xmuddledsum ((item : []), total)

= (item + total)

xmuddledsum (front : rest, total)

= xmuddledsum (rest, front + total)

A template for accumulative recursive functions is:

main [] = some terminating condition
or error condition

main any = aux (any, (initial value of accumulator))

aux ([], accumulator) = accumulator
aux ((front: rest), accumulator)

= aux(rest, do something with front
and accumulator))

Polymorphic recursive functions on lists 81

Exercise 3.6

The following function listmax is accumulative recursive. Rather than using an ex-
plicit accumulator, it uses the front of the list to hold the current maximum value.

numlist == [num]

listmax :: numlist -> num

listmax [] = error "listmax - empty list"

listmax (front : []) = front

listmax (front : next : rest)

= listmax (front : rest), if front > next

= listmax (next : rest), otherwise

Rewrite listmax so that it uses an auxiliary function and an explicit accumulator to
store the current largest item in the list.

3.6 Polymorphic recursive functions on lists

Many list-handling functions are designed to explore or manipulate the list struc-
ture itself rather than the list elements. These are called “polymorphic” functions
because the elements of the source lists may be of any type; otherwise they are the
same as non-polymorphic functions, as has already been shown with the simple
functions isempty and bothempty in Section 3.4. Polymorphic recursive functions
on lists are particularly interesting, in that they are the basis for a rich variety
of tools of general utility for list processing. This section presents two of these
functions over lists: length, and mydrop. The treatment of mydrop will also
demonstrate that not all software design principles are set in stone.

length

The following definition of length follows the template provided to describe stack
recursive functions. It provides the same functionality as the built-in # operator.
Informally, the length of a list can be seen as one of two possibilities: the length
of an empty list (which is 0) or the length of a non-empty list. The latter can be
seen to be 1 plus the length of a list containing one less item.

length :: [*] -> num

length [] = 0

length (front : rest) = 1 + length rest

82 Lists

mydrop

The polymorphic function mydrop returns part of its second argument (a list of
items of any type) by removing the first n items, where n is the first argument.
It provides similar functionality to the drop function provided in the Miranda
Standard Environment:

mydrop :: (num, [*]) -> [*]

mydrop (0, anylist) = anylist

mydrop (any, []) = error "mydrop"

mydrop (n, (front : rest)) = mydrop (n - 1, rest)

This function has been presented in the way that most functional programmers
would probably write it. However, it goes against the advice given for the function
sumlist. A better design might be:

mydrop :: (num, [*]) -> [*]

mydrop (n, anylist)

= error "mydrop: negative input", if n < 0

= error "mydrop: input too big", if n > (# anylist)

= xdrop (n, anylist), otherwise

xdrop :: (num, [*]) -> [*]

xdrop (0, anylist) = anylist

xdrop (n, front : rest) = xdrop (n - 1, rest)

This definition satisfies the principle of a function only doing one kind of activity,
because it separates the validation from the rest of the processing. However, it is
algorithmically unsatisfying in that the entire length of anylist must be calcu-
lated, even though xdrop will work as desired on any list with at least n elements.
For example, the length of a million item list may have to be calculated, even
though the programmer only wanted to discard its first element!

An alternative solution is to replace # in the if guard with a more finely tuned
function which only checks that anylist is of the minimum necessary length:

mydrop :: (num, [*]) -> [*]

mydrop (n, anylist)

= error "drop: negative input", if n < 0

= error "drop: input too big",

if shorterthan (n, anylist)

= xdrop (n, anylist), otherwise

Thinking about lists 83

Exercise 3.7

What happens if a negative value of n is supplied to the first version of mydrop?

Exercise 3.8

Write the function shorterthan used by the final version of mydrop.

A further example is the function mymember which checks whether an item ap-
pears in a list. This function also provides similar functionality to the function
member provided in the Miranda Standard Environment. The specification is sim-
ple:

1. The terminating condition where the list is empty—hence nothing can appear
in it, and so mymember evaluates to False.

2. The terminating condition where the item to be found matches the head of
the list—and so mymember evaluates to True.

3. The item does not match the head of the list—and so it is necessary to see
if the item appears in the rest of the list.

Translation to Miranda is as simple as the function specification:

mymember :: ([*],*) -> bool

mymember ([], item) = False

mymember (item : rest, item) = True

mymember (front : rest, item) = mymember (rest, item)

3.7 Thinking about lists

The list-handling functions introduced so far have been simple, to write because
their Miranda code follows directly from their natural language specification. Un-
fortunately not all functions are so intuitively defined. To make the programmer’s
task easier, this section discusses two important tools for designing functions, and
list-handling functions in particular. The first tool is commonly known as case
analysis, which stresses the importance of looking at each expected function pa-
rameter. The second tool is known as structural induction and offers an important
technique to aid the design of recursive algorithms.

3.7.1 Case analysis

It is impossible to consider every possible argument value to a list-handling func-
tion. In practice, it is only necessary to consider a limited number of cases:

84 Lists

1. The empty list [] which must always be considered because it is either a
terminating value or an illegal option.

2. The general list (front : rest) which also must always be considered; the
function body corresponding to this pattern is where the recursive application
is normally found.

3. Specific “n item” lists. For example the single item list (item : []), since
there is a class of functions (for example listmax in Exercise 3.6) that require
at least one element in the list for a meaningful result.

List reversal

This section explores the design of the function myreverse, which reverses the order
of the items in a list (and therefore has the type [*] -> [*]).5 The discussion
also highlights some important properties of list manipulation using : and ++.

The function definition can be derived by case analysis of possible input values:

1. The empty list.
2. A list of one item.
3. A list of two items, which is the simplest case where the list is transformed.
4. A general list.

List reversal for the first two cases is trivial:

myreverse [] = []

myreverse [item] = [item]

Considering the third case, the desired result can be seen as simply reversing the
two elements of the list. This means that the list must be deconstructed to give
a name to each of the two elements and then reconstructed with the elements
reversed.

The deconstruction of the list can be done using pattern matching with either
the aggregate format or the constructed format for the list:

myreverse1 [front, final] = ???

myreverse2 (front : rest) = ???

Remember that final and rest are not the same thing—the former refers to an
item, whereas the latter refers to a list (which contains both the final item and the
empty list).

Similarly, there are three ways to reconstruct the list—using either the : operator
or using the list aggregate format or using the ++ operator. Here are the six
possibilities:

5Note that the Miranda Standard Environment also provides a function called reverse which
has the same functionality.

Thinking about lists 85

myreverse11 [front, final] = final : front : []

myreverse12 [front, final] = [final, front]

myreverse13 [front, final] = [final] ++ [front]

myreverse21 (front : rest) = (hd rest) : front : []

myreverse22 (front : rest) = [(hd rest), front]

myreverse23 (front : rest) = rest ++ [front]

Notice that both myreverse21 and myreverse22 require rest to be further broken
down by use of the hd function, and so in this situation the aggregate pattern seems
to be more useful. However, myreverse13 requires both front and final to be
converted into lists before they can be appended. This conversion is achieved by
enclosing each in square brackets, which is equivalent to using : and the empty
list [].

As a guiding principle, the use of : in the pattern is preferred for the general
recursive case (as will be seen below), and in the base cases either format may
be used. For myreverse, the most straightforward of the correct definitions given
above is:

myreverse [front, final] = [final, front]

The reader should be wary of the following two errors:

wrong_myreverse1 [front, final] = final : front

wrong_myreverse2 [front, final] = final ++ front

Both of the above definitions fail to compile because the operator (either : or ++)
does not get arguments of the correct types. The latter definition is actually legal
for a list whose items are themselves lists, but it is semantically wrong because the
list items are inappropriately compressed:

wrong_myreverse2 [[1], [2]]

==> [2] ++ [1]

==> [2,1]

Considering the final case, the recursive nature of list processing becomes more
obvious. As a first step, reversing, for example, [1,2,3] can be treated as reversing
[2,3] appended to [1], that is (myreverse [2,3]) ++ [1]. Reversing [2,3] is, of
course, covered by the third case and the list [2,3] can easily be extracted from
[1,2,3] using pattern matching.

The above discussion leads to the provisional function definition:

myreverse :: [*] -> [*]

myreverse [] = []

myreverse [item] = [item]

myreverse [front, final] = [final, front]

myreverse (front : rest) = (myreverse rest) ++ [front]

86 Lists

The provisional function evaluates in the following manner:

myreverse [1,2,3]

==> (myreverse [2,3]) ++ [1]

==> [3,2] ++ [1]

==> [3,2,1]

Rationalization of list reversal

In practice, the above definition may be simplified, in that the final three patterns
can all be catered for by the final function body. Applying the final pattern to a
single or double item list shows that both the patterns for single and double item
lists are redundant. This is because the reverse of the single item list is a special
case of the final pattern [item] is just (item : []). The function myreverse

thus simplifies to:

myreverse [*] -> [*]

myreverse [] = []

myreverse (front : rest) = (myreverse rest) ++ [front]

A hand evaluation reveals:

myreverse [1,2]

==> (myreverse [2]) ++ [1] || using the final pattern

==> ((myreverse []) ++ [2]) ++ [1] || using the final pattern

==> ([] ++ [2]) ++ [1] || using the first pattern

==> [2] ++ [1] || ([] ++ [item]) == [item]

==> [2,1]

3.7.2 Structural induction

Case analysis is a useful method of ensuring that a programmer considers all pos-
sible inputs to a function. This gives immediate solutions to all “base” cases which
are directly provided for in the function specification and also highlights those
cases which require further processing. In the previous example of myreverse an
intuitive recursive solution was evolved for the general list (front:rest); however
not all problems are as amenable to such intuition. There is, therefore, a need for
a more systematic method of analysis. The nature of this analysis will depend on
the nature of the parameter of recursion (that is the parameter which converges
towards a terminating condition). For lists, a technique known as structural induc-
tion is recommended because it provides a way to reason about a list’s recursive
structure.

Thinking about lists 87

Structural induction requires two steps:

1. Consider all the base cases as for case analysis.

2. Consider the general case. The design of the function body may be facilitated
by the following technique: assume that a function body exists for a list rest
and then construct a definition for the case (front:rest). The assumption
is normally known as the induction hypothesis.

The use of structural induction to design two functions (startswith and append)
is now presented. The first function startswith will be used in the extended
example later in this chapter.

Specification of startswith

The function startswith takes two lists and returns a Boolean value. If the first
list is an initial sublist of the second list then the function evaluates to True, oth-
erwise it evaluates to False (for example, startswith ([1,2,3],[1,2,3,4,5])

evaluates to True). By definition, an empty list is an initial sublist of all lists.

Design of startswith

The function startswith will take a pair of lists whose elements may be compared
for equality. It therefore has the type ([*],[*]) -> bool.

The design will consider the general case and then the base cases. In this exam-
ple, it helps to consider the general case first, in order to determine the parameter
of recursion. However, the program designer may consider the base cases first if
appropriate.

The general case is where neither list is empty—there is no direct solution from
the specification and so this requires further processing. The general form of the
first list is (front1 : rest1) and the general form of the second list is (front2
: rest2). In this general case, the induction hypothesis is that the application
startswith (rest1, rest2) will evaluate to the appropriate truth value. Given
this assumption, the creative step is to realize that the general case should evaluate
to True if startswith (rest1, rest2) evaluates to True and also front1 is the
same as front2. This highlights the fact that each list converges and both are
parameters of recursion. The design translates directly to the following incomplete
Miranda code:

startswith (front1 : rest1, front2 : rest2)

= (front1 = front2) & startswith (rest1, rest2)

88 Lists

The base cases are:

1. An empty first list—by definition this case always returns True. This is the
terminating case for successful matches:

startswith ([], anylist) = True

2. An empty second list—which always evaluates to False. This is the termi-
nating case for unsuccessful matches because there is still some of the first
list to be compared. If the first list had also been empty, this would have
been matched by the first base case:

startswith (anylist, []) = False

The complete definition is:

startswith :: ([*],[*]) -> bool

startswith ([], anylist) = True

startswith (anylist, []) = False

startswith (front1 : rest1, front2 : rest2)

= (front1 = front2) & startswith (rest1, rest2)

List append

The following discussion emphasizes the advantages of using structural induction
rather than case analysis, especially when a large number of cases arise, since the
philosophy of structural induction is to generalize rather than specialize.

The infix operator ++ may itself be defined as a prefix function, in terms of :. The
specification of the following function append is very similar to that of ++ as stated
earlier in this chapter; it takes a pair of lists of the same type and concatenates
them to create a new list of that type; that is, it has the tuple type ([*],[*]) ->

[*], which differs only slightly from ++ which has the curried type [*]->[*]->[*]
(as will be explained in Chapter 4). The [] component of the first list is always
discarded; if the first list is empty the function evaluates to the second list.

An attempt at defining append using case analysis is to write down the possible
combinations of types of lists to be appended:

append ([], []) = Body_1

append ([], item2 : []) = Body_2

append ([], front2 : rest2) = Body_3

append (item1 : [], []) = Body_4

append (item1 : [], item2 : []) = Body_5

append (item1 : [], front2 : rest2) = Body_6

append (front1 : rest1, []) = Body_7

append (front1 : rest1, item2 : []) = Body_8

append (front1 : rest1, front2 : rest2) = Body_9

Thinking about lists 89

It is clear that providing function bodies for each of these possible cases will involve
a lot of programmer effort. Much of this effort can be saved if structural induction
is employed.

A definition for the general case Body 9 is based on the induction hypothesis
that there is already a definition for append (rest1, front2 : rest2). The
induction step is to produce a definition for append (front1 : rest1, front2

: rest2) which uses the property that front1 must become the first item of the
resultant list:

append (front1 : rest1, front2 : rest2)

= front1 : append (rest1, front2 : rest2)

It is clear that the parameter of recursion is the first list—the second list never
alters. Hence front2:rest2 could be written more simply as anylist. There is
now only one base case to consider: when the first list is empty (Body 3). By
definition this evaluates to the second list. The full Miranda code is thus:

append :: ([*],[*]) -> [*]

append ([], anylist)

= anylist

append (front1 : rest1, anylist)

= front1 : append (rest1, anylist)

All the other cases can be removed from consideration; in particular, it can be seen
that the single item list is not a special case. In general, single (or n-item) lists
should only be treated in a special manner by the function definition if they are
treated as special cases by the function specification.

Exercise 3.9

Use structural induction to design the function mytake, which works similarly to
mydrop but takes the first n items in a list and discards the rest.

Exercise 3.10

Write a function fromto which takes two numbers and a list and outputs all the
elements in the list starting from the position indicated by the first number up to the
position indicated by the second number. For example:

Miranda fromto (3, 5, [’a’,’b’,’c’,’d’,’e’,’f’])

[’d’,’e’,’f’]

90 Lists

3.7.3 Problem solving using structural induction and top-down design

This section looks at a slightly larger problem, the solution to which illustrates
the use of structural induction in conjunction with the top-down design technique
(discussed in Section 2.10).

The problem to be considered is that of sorting information in an ascending
order. There is a wealth of literature on how this may be best achieved (for
example, Standish, 1980); one of the simplest methods, known as insertion sort, is
now presented.

Sorted list specification

1. An empty list is defined as already sorted.

2. A list of only one element is defined as already sorted.

3. The list (front:rest) is sorted in ascending order if front is less than all
items in rest and rest is sorted in ascending order.

4. For the purposes of this example, only number lists will be considered.

Top-down design

There are a number of strategies to achieve insertion sort; the approach taken here
is to start with an unsorted list and an empty list and then insert the items of
the former into the latter one at a time, ensuring that the latter list is always
sorted. This approach makes the assumption that it is possible to insert one item
into an already sorted list to give a new sorted list. For example, to sort the list
[3,1,4,6,2,4], the following changes will occur to the two lists:

Unsorted list Sorted list
Initially [3,1,4,6,2,4] []
First pass [1,4,6,2,4] [3]
Second pass [4,6,2,4] [1,3]
Third pass [6,2,4] [1,3,4]
Fourth pass [2,4] [1,3,4,6]
Fifth pass [4] [1,2,3,4,6]
Final pass [] [1,2,3,4,4,6]

Insertion sort implementation

To meet the above design, the function isort must employ an accumulator (which
is initialized to be empty) to build the final sorted list. There is also the need for a

Thinking about lists 91

function to insert each element from the unsorted list into the accumulator. This
leads directly to the Miranda code:

nlist == [num]

isort :: nlist -> nlist

isort anylist = xsort (anylist, [])

xsort :: (nlist, nlist) -> nlist

xsort ([], sortedlist)

= sortedlist

xsort (front : rest, sortedlist)

= xsort (rest, insert (front, sortedlist))

Insert design

The design of the function insert is simple; the item to be inserted is compared
against each element of the sorted list in turn, until its correct position is found.

Insert implementation

The base case is that of inserting an item into an empty list which just gives a
singleton list of that item:

nlist == [num]

insert :: (num, nlist) -> nlist

insert (item, []) = [item]

The general case is that of inserting an item into a non-empty sorted list:

insert (item, (front : rest)) = ???

This involves finding the first item in that list which is greater than the item to be
inserted and placing the new item before it.

There are two subcases to consider:

1. The front of the list is greater than the new item. The new sorted list is now
the new item constructed to the existing sorted list:

= item : front : rest, if item <= front

= ???, otherwise

92 Lists

2. The front of the list is not greater than the new item, and so it is necessary
to place the new item somewhere in the rest of the sorted list. The inductive
hypothesis is to assume that insert works correctly for the smaller list rest.
The inductive step is to use this assumption to form the general function body
so that insert will work correctly for the larger list (front : rest). This
gives:

front : insert (item, rest)

Note that if the new item is larger than any existing list member then eventually
the rest of the list will converge towards []; this has already been covered in the
base case.

Piecing all this together gives:

nlist == [num]

insert :: (num, nlist) -> nlist

insert (item, [])

= [item]

insert (item, front : rest)

= item : front : rest, if item <= front

= front : insert (item, rest), otherwise

Insertion sort limitations

This sorting algorithm is not particularly efficient, nor is it very general (it will
only sort numbers in ascending order). Chapter 4 presents a more general purpose
version that will sort a list of any type in any order. Chapter 5 presents a more
elegant algorithm known as quicksort.

3.7.4 Lazy evaluation of lists

When a function is applied to a data structure, it only evaluates that data structure
as far as is necessary in order to produce the required result. This is similar
to the behaviour of the built-in operators for logical conjunction (&) and logical
disjunction (\/). For example, applying the function hd to the list [1,2,3] only
requires the value of the first item in the list. If the following items were not
yet fully evaluated, for example if the list were [1,(1 + 1),(1 + 1 + 1)], then
evaluating hd [1,(1 + 1),(1 + 1 + 1)] would not cause the additions to be
done. The following Miranda session illustrates this behaviour:

Modes of recursion 93

Miranda hd [23, (4 / 0), 39]

23

Miranda [23, (4 / 0), 39] ! 0

23

Miranda [23, (4 / 0), 39] ! 1

program error: attempt to divide by zero

Miranda [23, (4 / 0), 39] ! 2

39

This lazy behaviour provides the basis for elegant yet efficient solutions as will
be shown in Section 5.4.

3.8 Modes of recursion

This section reviews the two familiar styles of recursive functions over lists (stack
and accumulative recursion) and introduces three new styles (filter, tail and mutual
recursion). The different styles of recursion may often be mixed to form even more
expressive control structures. However, the programmer should choose the style
which most closely mirrors the natural specification of the problem.

Stack recursive functions

Stack recursion was first introduced in Chapter 2, where the printdots function
was used as an example. In general, stack recursive functions such as length have
a growing stage where evaluation is suspended, and a reducing stage wherein the
final result is evaluated. The reducing stage can only arise when the parameter of
recursion reaches the value that causes the non-recursive option to be taken. At
this point, the parameter of recursion is said to have converged and the reducing
stage is triggered by the fact that the non-recursive option returns a value instead
of causing another function application.

A further example of a stack recursive function is occurs which counts how
many times a particular item appears in a given list. There are three cases to
consider:

1. The terminating condition of the empty list which has no occurrences of any
item and so evaluates to zero.

2. The item matches the head of the list and so the number of occurrences is
one plus the number of occurrences in the rest of the list.

94 Lists

3. The item does not match the head of the list and so the number of occurrences
is zero plus the number of occurrences in the rest of the list.

Translating the above specification to a stack recursive implementation gives:

occurs :: ([*],*) -> num

occurs ([], item) = 0

occurs ((item : rest), item) = 1 + occurs (rest, item)

occurs ((front : rest), item) = 0 + occurs (rest, item)

Two alternative recursive implementations of the above specification are now dis-
cussed.

Filter recursive functions

A variation on the stack recursive approach is filter or partial stack recursion,
which is demonstrated in the following implementation of occurs. The definition
just presented is inelegant, in that the artificial value 0 was invented to denote
the non-occurrence of an item in a list. For example, the application occurs

([0,22,3,5,0,1,1,9,101,0],0) recursively expands to (1 + 0 + 0 + 0 + 1 +

0 + 0 + 0 + 0 + 1 + 0), whereas it would be more elegant to have an algorithm
that recursively expanded to just (1 + 1 + 1), thereby dropping the superfluous
zeros.

The stack recursive algorithm for the function occurs can be modified to adopt
a filter recursive approach as follows:

1. If the list is empty, the result is the same as for stack recursion.

2. If the item matches the head of the list, the result is the same as for stack
recursion.

3. If the item does not match the head of the list, the number of occurrences is
just the number of occurrences in the rest of the list.

As with the stack recursive version, the new version eventually reaches an empty
list and evaluates to zero; thus there is no danger of a “dangling” addition:

occurs :: ([*],*) -> num

occurs ([], item) = 0

occurs ((item : rest), item) = 1 + occurs (rest, item)

occurs ((front : rest), item) = occurs (rest, item)

Applying this version of occurs on the above example almost filters out all of the
unwanted zeros—there is still the trivial case of a final addition for the empty list!

Modes of recursion 95

Accumulative recursive functions

The recursive style using accumulators (introduced in Section 2.7.2) is also appli-
cable to list-handling functions and, as already shown in the definitions of sumlist
and xsum (in Section 3.5), it is often necessary to provide a main and auxiliary
function definition. The main function normally provides any necessary prelimi-
nary validation and initializes the accumulator. Rewriting the function occurs in
this style gives:

occurs :: ([*],*) -> num

occurs (any, item) = xoccurs (any, item, 0)

xoccurs :: ([*],*,num) -> num

xoccurs ([], item, total) = total

xoccurs ((front : rest), item, total)

= xoccurs (rest, item, total + 1), if front = item

= xoccurs (rest, item, total), otherwise

This version of occurs will achieve the same results as the two previous versions,
but is more difficult to read and reason about, probably because its definition is
more procedural in nature and further away from its natural language specification.

Tail recursive functions

The polymorphic definition of the function mymember in Section 3.6 is an example
of a tail recursive function. A tail recursive function is one wherein at no stage is
evaluation suspended.6 Another example is the function mylast, which selects the
final item in a non-empty list or raises an error if the list is empty:

mylast [*] -> *

mylast [] = error "mylast: empty list"

mylast (front : []) = front

mylast (front : rest) = mylast rest

Note that this function is so commonly required that it is also provided in the
Miranda Standard Environment (with the name last).

6This has an important consequence for functional language implementation because many im-
plementations detect tail recursive functions and produce code which uses constant stack storage
space (Field and Harrison, 1988; MacLennan, 1990).

96 Lists

The functions mymember and mylast are “pure” tail recursive functions; they
exhibit neither stack nor accumulative recursive style. Accumulative recursive
functions are also tail recursive when they do not suspend any evaluation. By
contrast, stack recursive functions can never be tail recursive.

3.8.1 Mutual recursion

Sometimes it is tempting to define functions in terms of each other (that is, these
functions are mutually recursive). For example, the following (not recommended)
program deletes all text within brackets from a given string:

string == [char]

nasty skipbrackets :: string -> string

nasty skipbrackets [] = []

nasty skipbrackets (’(’ : rest)

= nasty inbrackets rest

nasty skipbrackets (front : rest)

= front : nasty skipbrackets rest

nasty inbrackets :: string -> string

nasty inbrackets []

= error "text ends inside a bracket pair"

nasty inbrackets (’)’ : rest)

= nasty skipbrackets rest

nasty inbrackets (front : rest)

= nasty inbrackets rest

Is mutual recursion desirable?

Mutually recursive solutions are often considered undesirable because it is generally
unclear which function is calling the other with any particular values. Furthermore,
it is also impossible to test each individual function separately. Fortunately, the
mutual dependencies can often be eliminated.

In the following program, the function skipbrackets scans the text until it finds
the start of brackets. At this point it passes the remainder of the input text to
inbrackets, which strips the rest of the current bracketed expression and returns
the remaining text. The function skipbrackets can now use this result to find
the next bracketed expression:

Extended example—grep 97

string == [char]

skipbrackets :: string -> string

skipbrackets []

= []

skipbrackets (’(’ : rest)

= skipbrackets (inbrackets rest)

skipbrackets (front : rest)

= front : skipbrackets rest

inbrackets :: string -> string

inbrackets []

= error "text ends inside a bracket pair"

inbrackets (’)’ : rest)

= rest

inbrackets (front : rest)

= inbrackets rest

Exercise 3.11

Modify the skipbrackets program to cater for nested brackets.

3.9 Extended example—grep

This section introduces the development of the UNIX program grep which will
be used as an extended example throughout this book. The rest of this chapter
shows how the Miranda facilities already demonstrated may be used to develop a
real software tool. The program will be developed incrementally as new features
of Miranda are introduced in subsequent chapters to make the design easier to
understand and of more general utility.

Grep specification

Grep is a UNIX program which displays each line from its input that contains
an instance of a given pattern. As such, it is clearly very useful for a number of
different tasks, including the location of keywords and predefined names within a
program or selecting interesting parts of a document.

98 Lists

Table 3.1 Options for the UNIX grep facility.

Character Meaning
c any non-special character c matches itself
\c turn off any special meaning of character c
^ beginning of line
$ end of line
. any single character
[...] any one of characters in . . . ; ranges like a-z are legal
[^...] any one of characters not in ... ; ranges are legal
r* zero or more occurrences of a regular expression r
r1r2 regular expression r1 followed by regular expression r2
No regular expression matches a newline

For example, assuming the file called “textbook” contains the lines:

Programming in Miranda

by

C.Clack, C.Myers and E.Poon

then typing the following in response to the UNIX prompt:

grep Miranda textbook

will result in the first line of the file being displayed.
In practice grep is more than a simple pattern matching tool; it also caters for

what are known as regular expressions; (Aho et al., 1974; Kernighan and Pike,
1984). In a regular expression certain characters may be meta-characters, which
have special meanings. In the case of grep the meanings of characters, in order of
precedence, are given in Table 3.1.7

Thus, it is possible to search for a pattern that is anchored at the beginning or end
of a line and more importantly to search for patterns that contain “wild cards”.
For example, ^M.R will match any line starting with M followed by any character,
followed by R as the third character.

Similarly, M.*R will match:

MIR or M.R or MXR or MAAAAAAR or MABCR or MR

anywhere on the searched line.

7This table was adapted from Section 4.1 of the Unix Programming Environment (Kernighan
and Pike, 1984). The actual UNIX tool has several more options.

Extended example—grep 99

Furthermore,

[a-zA-Z][a-zA-Z_1-9]*

will match any line that starts with an alphabetic character, followed by zero or
more occurrences of an alphabetic character, digit or underscore, in any combina-
tion, such as:

fun

Miranda

legal_name

aux1

aux2_fun

It should be clear from the above why grep is sometimes known as a “filter” pro-
gram; only the part of the input that matches the pattern is output, all other parts
are filtered out.

Grep development considerations

The development of grep will be presented in a number of stages:

1. A simple program to indicate if a given pattern appears in a line. This is grep
without any meta-characters. This version of grep will deal with just one line
of input, and merely return the Boolean value True or False, depending on
whether the given pattern has been matched or not.

2. A program to allow the * meta-character to appear in the pattern. The
rationale for considering this as the next case is; if zero or more occurrences
of a normal character can be matched then it is likely that zero or more
occurrences of a wild card can also be matched.

3. An extended program to cater for many lines of input returning the text of
each line that has a successful match. This is presented in Chapter 4.

4. A safer version using enumerated types, is presented in Chapter 6.
5. A version that deals with file handling is presented in Chapter 8.
6. A program to cater for the other regular expression meta-characters, includ-

ing wild cards. This is presented in Chapter 9.

3.9.1 A simple version of grep

Specification

The grep program will return the truth value of whether the first component of its
tuple pair argument is a substring of the second component. Therefore it has the
type:

([char],[char]) -> bool

100 Lists

Design

The requirement for a successful grep search is that the regular expression (the
pattern) either matches from the front of the searched line, or it matches from the
front of the rest of the searched line. This is the general case of the structural
induction. The terminating cases are:

1. The empty regular expression, which matches any line.
2. The empty searched line, which only matches an empty regular expression.

Implementation

Since it is the intention to deal with regular expressions, it is worthwhile providing
a simple front-end to perform this action before any further processing:

string == [char]

grep :: (string, string) -> bool

grep (regexp, line) = sublist (regexp, line)

The rest of the design translates directly to the Miranda code:

string == [char]

sublist :: (string, string) -> bool

sublist ([], any) = True

sublist (any, []) = False

sublist (regexp, line)

= startswith (regexp, line)

\/ sublist (regexp, tl line)

It is important that the two base cases are defined in the above sequence. The
cases are not mutually exclusive; if they were swapped then matching an empty
regular expression and an empty input line would incorrectly evaluate to False.

Design of startswith

This has already been done in Section 3.7.2.

Exercise 3.12

It would appear that sublist no longer needs its first function pattern because this
is checked as the first pattern in startswith. Explain why this is incorrect, and also
whether the second pattern of sublist can safely be removed.

Extended example—grep 101

Exercise 3.13

An incorrect attempt to optimize the startswith program would combine startswith
and sublist in one function:

stringpair == ([char], [char])

sublist :: stringpair -> bool

sublist ([], any) = True

sublist (any, []) = False

sublist ((regfront : regrest), (lfront : lrest))

= ((regfront = lfront) & sublist (regrest, lrest))

\/ sublist (regfront : regrest, lrest)

This follows the general inductive case that the result is true if the front two items of the
lists are equal and the result of a sublist search of the rest of the two lists is also true.
Alternatively, the entire regular expression matches the rest of the search line. Show
why this approach is wrong.

3.9.2 Incorporating the zero or more occurrences

The next stage of the development is to allow for zero or more occurrences of a
given character to appear in the searched line. For example:

A*BC appears in AAABC

ABC

BC

AAABAAABC

A*A appears in AAAAAA

AA

A

At this point it is also worth recalling that * itself can be matched by preceding it
with a \which turns off its special meaning:

A*B appears in A*B

A*B does not appear in AABC

ABC

BC

AAABAAABC

102 Lists

The need for lexical analysis

The design of grep is now made more complex by the necessity of always checking
for the * meta-character following any other character. There are two approaches to
handling this. One approach is that the auxiliary function startswith could look
ahead for the meta-character *. However, this confuses the activity of recognizing
the meta-characters in the regular expression with the activity of comparing the
regular expression with the current search line. This makes the resultant function
startswith very complicated and will go against the advice in Chapter 2 that a
function should only do one thing.

In preference, the regular expression could be preprocessed to attribute every
character with a “match-type token” to indicate whether it is to be matched once
only, as a normal character, or whether it is to be matched zero or more times.8 For
this version of grep, a new function called lex is used to do the preprocessing; this
function will initially recognize \ and * but will be extended later to deal with the
other meta-characters.9 The easiest way of representing the two attributes is prob-
ably a tuple of the form (MATCH TYPE, actual value). For example ("ONCE",

ch) or ("ZERO MORE", ch), as shown in Figure 3.3.

Figure 3.3 Example of a regular expression in tokenized form.

Pattern matching, by case analysis, can now be employed to convert the raw regular
expression into a list of regular expression elements:10

8With this approach, startswith is also saved the bother of checking for the escape sequence
\c, where c is any character.

9This technique of transforming the regular expression into a sequence of actual values and
their match-type token is known as lexical analysis (Aho et al., 1974; Kernighan and Pike, 1984)
hence the name of the function lex.

10The reader is referred to Chapter 6 for a more elegant approach using enumerated types.

Extended example—grep 103

string == [char]

mtype == string

regtype == (mtype, char)

reglist == [regtype]

lex :: string -> reglist

lex [] = []

lex (’\\’ : ch : ’*’ : rest)

= ("ZERO MORE", ch) : lex rest

|| note the two char ’\\’

|| is treated as the single char ’\’

lex (’\\’ : ch : rest) = ("ONCE", ch) : lex rest

lex (’\\’ : []) = [("ONCE", ’\\’)]

lex (ch : ’*’ : rest) = ("ZERO MORE", ch) : lex rest

lex (ch : rest) = ("ONCE", ch) : lex rest

3.9.3 Redesign of startswith

Matching strategy

Incorporating ZERO MORE match-types into the startswith function requires
the careful consideration of two additional factors:

1. Each element of the regular expression list may be either a ONCE match-
type or a ZERO MORE match-type. It is necessary to treat them separately
because they lead to different inductive hypotheses.

2. There are many possible sub-lines within a line that can match a regular
expression, especially one involving a ZERO MORE match-type; for example,
A*A matches both A and AAAAAAAAAA. In order to continue the design,
it is necessary to adopt a strategy to deal with all possibilities in a consistent
manner. The most common strategies are:

(a) Look for the shortest possible match; for example, to match the regular
expression A*A it is only necessary to inspect the first character in
the string AAAAAAA. (Notice, however, that matching A*B against
AAAAAAAB still requires the inspection of the entire second string.)

(b) Look for the longest possible match; for example, to match the regular
expression A*A it is necessary to inspect all of the characters in the
string AAAAAAA.

104 Lists

Since grep only returns a Boolean value, either strategy is valid; the efficiency
of the strategy depends mainly on the nature of the regular expression and the
searched line. The program presented in this book will follow the strategy of the
shortest possible match.11

Design and implementation

The design proceeds by identifying the important cases for analysis:

1. The general case, where both the searched list and the regular expression
list are non-empty. This must be split into two subcases to cater for the two
different match-types.

2. The base cases, for the empty regular expression list and for the empty
searched list. In the latter case, once again there is a need to cater for
the two different match-types.

This leads to the following five alternative patterns:

startswith ([], any)

= Body_1

startswith (("ONCE", ch) : regrest, [])

= Body_2

startswith (("ZERO_MORE", ch) : regrest, [])

= Body_3

startswith (("ONCE", ch) : regrest, (lfront : lrest))

= Body_4

startswith (("ZERO_MORE", ch) : regrest, (lfront : lrest))

= Body_5

Finally, in accordance with the advice given in Chapter 2, a default pattern is
added to help with debugging:

startswith anyother = error "startswith: illegal pattern"

The definitions of Body 1, Body 2 and Body 4 are essentially the same as those for
the previous version of startswith (as explained in Section 3.7.2). However, the
other definitions need further attention.

11However, many text editors with a “search and replace” command adopt the longest possible
match strategy.

Extended example—grep 105

Body 5—ZERO MORE general case

Given the pattern (("ZERO MORE",ch) : regrest, (lfront : lrest)), there
are two successful matching possibilities: either to zero occurrences of ch or to the
first of one or more occurrences of ch (which requires further processing to de-
termine how many more occurrences of ch exist). The “shortest possible” match
strategy first assumes a match to zero occurrences of ch and has the inductive
hypothesis that (startswith (regrest, lfront : lrest)) will operate cor-
rectly. If the recursion evaluates to True then the entire search evaluates to True.
Otherwise, the strategy is to “backtrack” to consider the possibility of a single
occurrence match. This search will be successful if ch matches lfront and also if
all of the current regular expression matches the rest of the search line.12

This leads to the following Miranda code for Body 5:

startswith (regrest, (lfront : lrest))

\/

((ch = lfront) & startswith (("ZERO_MORE",ch) : regrest, lrest))

It is interesting to observe that if \/ did not delay the evaluation of its second
argument then the function would evaluate all possible matches for the regular
expression to the searched list. By contrast, any actual evaluation is limited to a
sequential search from the shortest to the longest, stopping when an overall match
is found.

Body 5 at work

The following shows the code for Body 5 at work on two exemplary cases:

1. A successful match of the regular expression "A*A" against the input line
"AAB" which demonstrates the shortest possible match strategy.

2. A successful match of the regular expression "A*B" against the input line
"AAB" which demonstrates the backtracking mechanism.

For clarity, the hand evaluation is shown using the “raw” regular expression and
searched-line strings rather than their tokenized list versions.

1. Shortest match strategy

grep ("A*A", "AAB")

==> startswith ("A*A", "AAB") || i.e. Pattern_5

==> startswith ("A", "AAB") || i.e. Pattern_4

==> True

12Note that if the searched list contains a long sequence of ch characters then this could lead
to a large number of delayed decisions and indeed backtracking may occur many times before the
appropriate match is found.

106 Lists

2. Backtracking mechanism

grep ("A*B", "AAB")

==> startswith ("A*B", "AAB") || i.e. Pattern_5

==> startswith ("B", "AAB") || i.e. Pattern_4

==> False

\/

(

"A" = "A"

&

startswith ("A*B", "AB") || i.e. Pattern_5

==> startswith ("B", "AB") || i.e. Pattern_4

==> False

\/

(

"A" = "A"

&

startswith ("A*B", "B") || i.e. Pattern_5

==> startswith ("B", "B") || i.e. Pattern_4

==> True

)

==> True

)

==> True

Body 3—ZERO MORE at end of line

This leaves the case for Body 3, which can be considered as a successful zero-
occurrence match. One of the parameters of recursion has reached termination
(or was [] to start with), but the other still needs further processing to handle
regular expressions of the form A*B* (which can successfully match an empty
search list). The inductive hypothesis is the same as for Body 5: the inductive
step is therefore to recurse using the rest of the regular expression—the evaluation
will either converge towards an empty regular expression and succeed or a ONCE
match-type will be found in the regular expression and the overall search will fail.
The code is:

startswith (("ZERO_MORE", ch) : regrest, [])

= startswith (regrest, [])

Extended example—grep 107

Final code for startswith

Piecing this all together gives:

string == [char]

mtype == string

regtype == (mtype,char)

reglist == [regtype]

startswith :: (reglist, string) -> bool

startswith ([], any) = True

startswith (("ONCE", ch) : regrest, []) = False

startswith (("ZERO MORE", ch) : regrest, [])

= startswith (regrest, [])

startswith (("ONCE", ch) : regrest, lfront : lrest)

= (ch = lfront) & startswith (regrest, lrest)

startswith (("ZERO MORE", ch) : regrest, lfront : lrest)

= startswith (regrest, (lfront : lrest)) \/

((ch = lfront) &

startswith (("ZERO MORE", ch) : regrest, lrest))

startswith any = error "startswith"

In order to complete the implementation, the grep and sublist functions need
amending to preprocess the raw regular expression:

sublist :: (reglist, string) -> bool

sublist ([], any) = True

sublist (any, []) = False

sublist (regexp, line)

= startswith (regexp, line) \/

sublist (regexp, tl line)

grep :: (string, string) -> bool

grep (regexp, line) = sublist (lex regexp, line)

Furthermore, the sublist function needs a little extra modification so that a
regular expression such as A* matches the empty string (as shown in the answer
to the final exercise in this chapter).

108 Lists

Exercise 3.14

Explain the presence of the final pattern in the function startswith, even though it
should never be encountered.
Exercise 3.15

What would happen if the second and third pattern in startswith were swapped?
Exercise 3.16

Alter the sublist function so that "A*" matches the empty string.

3.10 Summary

This chapter has introduced the recursively defined aggregate list data type. A new
list may be created from an existing list and a new value by use of the constructor :.
Chapter 6 will extend this concept to user-defined recursive types with user-defined
constructors.

The techniques of case analysis and structural induction were introduced as an
aid to designing list-handling functions. Recursive function definition is of such
fundamental importance to the manipulation of the list data structure that the
general technique was analysed further and five common modes of recursion over
lists were discussed: tail recursion, stack recursion, filter recursion, accumulative
recursion and mutual recursion. Chapter 4 shows how higher order functions may
be used to encapsulate common recursive forms.

This chapter ended with the design and development of the grep program, using
the tools and techniques learned so far. Later in the book we will show how more
advanced techniques can be applied to the same real-world example to produce a
better design.

