
Programming with Miranda

Chris Clack, Colin Myers and Ellen Poon

August 29, 2011

Contents

Preface ix

Introduction 1

1 Operators, Identifiers and Types 7

1.1 A Miranda session 7

1.2 Identifiers 11

1.3 Types 13

1.4 Tuples 25

1.5 Properties of operators 27

1.6 Programs, layout and comments 30

1.7 Summary 32

2 Functions 34

2.1 Simple functions 35

2.2 Functions as values 40

2.3 Function parameters and results 41

2.4 Polymorphic functions 43

2.5 Pattern matching 45

2.6 Type information 51

2.7 Simple recursive functions 54

2.8 Who needs assignment? 57

2.9 Error messages 59

2.10 Programming with functions 61

2.11 Summary 63

v

vi Contents

3 Lists 65

3.1 The list aggregate type 65

3.2 Built-in operations on lists 69

3.3 Lists and other aggregate types 76

3.4 Simple functions using lists 77

3.5 Recursive functions using lists 78

3.6 Polymorphic recursive functions on lists 81

3.7 Thinking about lists 83

3.8 Modes of recursion 93

3.9 Extended example—grep 97

3.10 Summary 108

4 Curried and Higher Order Functions 109

4.1 Currying 109

4.2 Simple higher order functions 113

4.3 Higher order functions on lists 119

4.4 Program design with higher order functions 131

4.5 Summary 135

5 Environments and Evaluation 137

5.1 Environments 138

5.2 Block structure: where expressions 142

5.3 List comprehensions 149

5.4 Lazy evaluation 153

5.5 Summary 163

6 User-defined Types 164

6.1 The need for new types 164

6.2 Algebraic types 167

6.3 Constructors and functions 177

6.4 Recursive algebraic types 180

6.5 Placeholder types 185

6.6 Summary 186

7 Abstract Types 187

7.1 Simple abstract type definition and usage 189

7.2 Showing abstract types 198

7.3 Further examples of abstract types 201

7.4 Guidelines for abstract type primitive selection 208

7.5 Summary 209

Contents vii

8 Files and Interaction 210

8.1 Introduction 210
8.2 File input 210
8.3 Input and referential transparency 216
8.4 File output 216
8.5 Special streams 220
8.6 Interaction 222
8.7 Advanced features 233
8.8 Summary 238

9 Programming in the Large 239

9.1 The %include directive 239
9.2 The %export directive 241
9.3 The %free directive 249
9.4 Reusable software—grep revisited 251
9.5 Summary 264

A The Initial Miranda Environment 265

A.1 Identifiers 265
A.2 Reserved and predefined names 265
A.3 Functions as operators 266

Solutions to Exercises 268

Solutions to Chapter 2 268
Solutions to Chapter 3 271
Solutions to Chapter 4 277
Solutions to Chapter 5 284
Solutions to Chapter 6 287
Solutions to Chapter 7 291
Solutions to Chapter 8 295

Bibliography 302

Annotated bibliography 302
References 305

Index 307

Index 307

Preface

The purpose of this book is to teach structured programming skills using the func-
tional programming language Miranda. It may be used as an introductory textbook
for people with little programming experience or as an intermediate textbook for
more advanced programmers who wish to learn a functional programming language.
Both novice and advanced programmers will learn how to use a functional language
to develop sound software design and code management techniques. Additionally,
advanced programmers will find that knowledge of a functional language provides
a foundation for further studies in the theory and implementation of programming
languages and formal specification.

Miranda is one of the most popular functional languages employed in education
and research, used in over 500 sites, and it is also increasingly having an impact
on industry. Miranda has evolved from earlier languages such as SASL and KRC,
which were developed in 1976 (Turner, 1976) and 1982 (Turner, 1982), respectively.
It is a general-purpose programming environment, with a compiler embedded in
an interactive system (implemented under UNIX1) providing access to a screen
editor, an on-line reference manual and an interface to UNIX. Separate compilation
is supported (to an intermediate code, which is subsequently interpreted), with
automatic recompilation of altered source files. The Miranda programming system
is a product of Research Software Limited; this textbook is based on Miranda
release two.2

This is a practical programming book. Theoretical issues are avoided unless they
are essential for a proper understanding of the use of the language. However, some
formal definitions are introduced in order to aid the reader when referring to other
texts. The boundary between those theoretical matters that are discussed and
those that are not is, unavoidably, somewhat arbitrary. For example, Chapter 3
discusses the use of inductive reasoning to help with software design; however, we

1UNIX is a trademark of AT&T Bell Laboratories.
2The Miranda system can be obtained directly from Research Software Ltd of 23 St Augustines

Road, Canterbury, Kent, CT1 1XP, UK. email: mira-request@ukc.ac.uk.

ix

x Preface

do not extend this to the use of denotational semantics to reason about a program.
Similarly, we provide a gentle introduction to the theory of strong typing, but we
do not discuss type inference mechanisms. We do not discuss the lambda calculus,
formal program transformation, numerical analysis, efficiency or any implementa-
tion methods.

The approach we adopt in this book is to show good software engineering prin-
ciples by discussion of both correct and incorrect design decisions, using realistic
examples. There is no Ackermann function and there are no miracles.

Acknowledgements

This book was developed during the teaching of functional programming courses
to undergraduate and postgraduate classes at University College London and the
University of Westminster. We thank our students for their many helpful recom-
mendations and corrections.

Many thanks also to Don Clack, Simon Courtenage, Michael Fourman, Mark
Hardie, Neil Harris, Hessam Khoshnevisan, Dave Pitt, Mike Poon, Mark Priestley,
Will Richardson and David N. Turner for their positive suggestions concerning the
companion volume to this book, Programming with Standard ML. These comments
have proven equally valuable in the writing of this book.

We also thank Anthony Davie, Mark d’Inverno and Dr John Sharpe for their
many helpful suggestions and corrections. Finally, thanks to David Turner for his
many constructive comments and to Research Software Limited for permission to
include information about the Miranda system in this book, and for allowing us to
quote from the Miranda on-line reference manual.

Chris Clack
Colin Myers
Ellen Poon

Introduction

Programming languages may be grouped into several “families” with similar char-
acteristics. Two of the most important families are the imperative languages (also
known as “procedural” languages) and the functional languages. The imperative
family includes such languages as BASIC, Pascal, C, Fortran, Ada, Modula-2 and
COBOL. The functional family includes Miranda,1 SML, Lispkit,2 FP and Haskell;
a good survey is provided in (Hudak, 1989).

The basic difference between functional and imperative languages is that func-
tional languages are concerned with describing a solution to a problem, whereas
imperative languages are concerned with giving instructions to a computer. Rather
than attempt an explanation in isolation, this introduction compares the functional
and imperative styles of programming. A number of claims will be made for the
functional style and these will be substantiated in the main body of the text.

The reader should notice that this chapter compares styles and not languages:
it is often possible to use a functional style when programming in an imperative
language. Readers with no previous programming experience may safely skip this
chapter on first reading.

Implications of the imperative style of programming

A program written in an imperative language describes in detail a sequence of
actions that the computer must execute (these are sometimes called commands—
hence the name “imperative”). This means that the imperative programmer must
be familiar with the way the computer works. In general, a programmer must
think in terms of the computer hardware—the conceptual model is one of memory
locations containing values which may change during the execution of a program.

1Miranda is a trademark of Research Software Limited.
2Lispkit is a pure functional subset of the well-known language LISP which was the first

important language with functional features.

1

2 Introduction

The major consequence of this conceptual model is that a programmer is forced
to muddle together the three separate activities of:

1. Describing the solution to a problem.
2. Organizing that solution into a set of instructions for a computer.
3. Administering low-level storage allocation.

A programmer should only be concerned with the first of these.
To a great extent this complexity derives from one particular feature—the as-

signment statement (Backus, 1978). The dangers inherent in the assignment state-
ment include ambiguous pointer assignment, forgetting to initialize variables or
incorrectly changing loop control variables (possibly causing an infinite loop). The
availability of global variables also offers the opportunity of bad programming style,
since it becomes very difficult to keep track of what value the variable is meant
to have at any time and which parts of the program are changing the value of the
variable. Assignment to pointers serves to compound these problems.

Consider the following Modula-2 solution to select all the items in an integer
array that are less than 10:

j := 1;

FOR i := 1 TO LineLength DO

IF line[i] < 10 THEN

newline[j] := line[i];

j := j + 1;

END

END

The code has a relatively difficult interpretation; it is not easy to read compared
with the simplicity of the natural language specification. Even in this small pro-
gram extract, the major concern has been with the assignment to storage and
maintaining indexes; that is, making the solution fit the hardware model.3 This
intellectual overhead is magnified if the problem were to select all the items less
than 10 in a dynamic linked list. The emphasis would be even more towards the
manipulation of memory rather than the representation of the data structure or
the selection of items from it.

In general, the following observations hold for most existing imperative lan-
guages:

1. They have a limited set of control structures for expressing iteration and for
combining subcalculations and hence it is often difficult to take advantage of
a high-level modular design.

2. They have a limited set of built-in data structures. Although it is possible to
model other data structures, the process often involves complex manipulation
of pointers and a lot of code.

3To keep this example simple, the problem of retaining knowledge of the array newline’s size
has been ignored.

Introduction 3

3. They have complex semantics, which makes it difficult to apply formal rea-
soning and hence more difficult to arrive at a correct solution.

Benefits of the functional programming style

Functional languages are an example of the declarative style of programming,
whereby a program gives a description (or “declaration”) of a problem to be solved
together with various relationships that hold for it. It is the responsibility of the
language implementation (perhaps a compiler or an interpreter) to convert this
description into a list of instructions for a computer to run.4 There are a number
of implications of this alternative computational model:

1. A programmer does not have to worry about storage allocation. There is no
assignment statement—a functional programmer does not assign values to
storage locations, but instead has the ability to give names to the values of
expressions; these names may then be used in other expressions or passed as
parameters to functions.

2. The fact that in a functional language a name or an expression has a unique
value that will never change is known as referential transparency. As a con-
sequence of referential transparency, subcomputations always give the same
result for the same arguments. This means that the code is safer and may
often be reused in similar contexts; the nett result is a higher level of quality
assurance and faster programming.

3. Functions and values are treated as mathematical objects which obey well-
established mathematical rules and are therefore well suited to formal rea-

soning. This allows the programmer a high level of abstraction and so greater
flexibility in defining control structures and data structures.

4. The syntax and semantics of functional languages tend to be simple and so
they are relatively easy to learn. Furthermore, the resultant programs tend
to be more concise and have fewer mistakes. Brooks (Brooks, 1975) observes
that “productivity seems constant in terms of elementary statements”; if this
applies equally to functional programmers then the conciseness of functional
programs should lead to greater programmer efficiency.

It is not possible to justify all of these assertions in this brief introduction but, as
a sample of the functional style, a typical solution to the problem discussed in the
previous section (of selecting items from a sequence of numbers) would be:

filter (lessthan 10) number_sequence

4Many functional languages are based on a mathematical theory known as the “lambda cal-
culus” (Revesz, 1988). At advanced levels, it may be useful for a programmer to understand this
theory but, in general, it is not necessary for the novice or intermediate programmer.

4 Introduction

There is no need to manage storage, no danger of forgetting to initialize or incre-
ment variables and no need to worry about where the results are kept! The code
is clearly much nearer to the specification—indeed sometimes functional programs
are considered as “executable specifications” (Turner, 1985a).

The functional style is also more flexible. For example, changing the Modula-2
code to select all items not equal to "fred" from a sequence of strings requires
writing a new function—even though the structure of the solution is identical.
Changing the functional code is straightforward:5

filter (notequal "fred") string_sequence

Finally, there is the question of efficiency. It is claimed that the higher the level of
the programming language (that is, the further away from the hardware model),
the less efficient the language is in terms of speed and memory utilization. To a
certain extent this may be true,6 however two very important points are worth
making:

1. The first concern of a programmer is that a a program is written on time and
is correct: performance is generally a secondary concern.

2. Functional languages are not tied to the von Neuman architecture (Backus
1978). This facilitates implementations on other hardware configurations
such as multi-processors.

Consider the following:

sumofsquares := square (x) + square (y)

In an imperative language it is necessary to have an ordering of instructions; typ-
ically square (x) is executed before square (y). Logically, however, it does not
matter whether square (x) is executed first or second; actually both square (x)

and square (y) could be calculated simultaneously. The very fact that func-
tional languages are not based on any particular hardware conceptual model helps
them to take advantage of parallel and multi-processor hardware (Peyton Jones,
1987; Kelley, 1989). In summary, the programmer is freed from the burden of
implementation.7

However, the above discussion should not lead the reader to the idea that func-
tional languages are the cure for all programming evils. There is still the need to

5In Miranda the function filter is built into the system, but could actually be written by
the programmer with just three short statements. The reason why the code is so flexible derives
directly from the ability to treat functions as parameters to other functions; filter takes any
function which returns a Boolean value.

6Although modern implementations of functional languages rival the speed of compiled im-
perative languages such as Pascal and C.

7Because of this freedom, functional languages are also well suited to program transformation
techniques. These allow programs to be mathematically derived from their specifications, or an
inefficient algorithm to be converted to an efficient one by the compiler (Darlington et al., 1982).
Program transformation techniques also guarantee that new errors are not introduced into the
code. However, such optimization techniques are outside the scope of this book.

Introduction 5

recognize problems and find sensible solutions! There are also a number of software
engineering issues that arise from large-scale programming tasks; in the main these
are beyond the scope of this book.

Miranda in context

Miranda is not an acronym but a woman’s name possibly first used by Shakespeare
in The Tempest, and is the Latin for “to be admired”. It has evolved from earlier
languages such as SASL and KRC, which were developed by David Turner at
(respectively) St. Andrews University in the late seventies and the University of
Kent in the early eighties. An overview of Miranda’s conceptual framework and
key features is given in (Turner, 1985b).

Miranda is a purely functional language, with no imperative features of any kind.
Following the style of SASL and KRC, Miranda has lazy semantics; this permits the
use of potentially infinite data structures and supports an elegant style of problem
decomposition. Miranda is now a general purpose programming language and is
used for a wide variety of activities, especially in the areas of proof systems and
specification.

Miranda shares with most other functional languages the notion that functions
and data values have “equal citizenship”; that is, they can be manipulated in the
same manner (Landin, 1966). Other Miranda characteristics of note include poly-
morphism (which gives flexibility to the strong type system), pattern matching (to
provide an elegant selection control structure), list comprehension, partial function
application and new type construction. These topics are dealt with in depth in the
main text.

Miranda is an example of a lazy functional language, which means that a func-
tion’s parameters are normally evaluated only if they are needed. This is in contrast
to the alternative strict style of evaluation, whereby a function’s parameters are
normally evaluated before the function body itself. (A good example of the latter
style is Standard ML (Myers, Clack and Poon, 1993)). The Bibliography contains
references which will provide further discussion of strict and lazy implementations.

How to use the book

The first two chapters of this book provide a simple introduction to Miranda syntax
and the functional approach to programming, whilst also serving to reorientate
the imperative programmer. Some of the features shown will be quite familiar
to anyone with imperative programming experience; these include the standard
mathematical operators, the clear distinction made between different types of data
and the idea of function definition and application. Novel features are dealt with
in greater depth; these include pattern matching, polymorphism and the use of
recursion for program control.

6 Introduction

The third and fourth chapters explore in depth the heart of the functional style.
They are core to Miranda (and functional) programming and will probably ap-
pear quite new to a programmer only familiar with an imperative programming
language. In Chapter 3, the list aggregate type is introduced as the most funda-
mental Miranda data structure and various styles of recursive programming using
lists are investigated. The chapter ends with the design of a program similar to
the UNIX utility grep, which is used in subsequent chapters to highlight the ex-
pressive power of new features. Chapter 4 introduces the important concept of
partial application and demonstrates that functions can be treated as data. It also
shows how recursive solutions to programming tasks can be generalized to facilitate
control structure abstraction.

Chapter 5 explores two important concepts: controlling the availability of identi-
fiers and functions; and lazy evaluation. The former is essential for any production
programming since it gives the ability to make blocks of code private to other blocks
of code—thereby facilitating safer and more reusable software. The latter provides
an important mechanism for combining functions and structuring programs.

The next two chapters explore the relationship between data and process by
showing Miranda’s powerful facilities to create new types and data structures, and
to encapsulate a type and its associated operations into a single abstraction.

Chapter 8 introduces the programmer to file handling and interactive program-
ming, and Chapter 9 provides tools for medium to large-scale program construction.

It is recommended that the main body of the book is studied sequentially, and
that the reader should attempt the exercises as they are encountered. The exercises
serve both as a review of the student’s current knowledge and also as a commentary
on the text; sample solutions are given at the end of the book.

Chapter 1

Operators, Identifiers and Types

This chapter starts by showing some elementary Miranda programs, where only
simple expressions involving built-in arithmetic and relational operators are used.
Since these simple expressions can only make simple programs, more enhanced
features are needed in order to create real-life applications. These include the
access to built-in functions, such as those to calculate the sine or square root
of a number, and more importantly, the ability to associate names either with
immediate data values or with expressions which are evaluated to some data value.
Once a name is defined, it can be recalled in all subsequent expressions within a
program. This makes programs more readable and makes it easier to create more
complex expressions.

In order to promote good programming, Miranda has a strong type system
whereby a function can only be applied to an argument of the expected type.
Any attempt to give an argument of a type other than the one it expects will
result in a “type error”. In practice, the strong type system is a useful debugging
tool.

Good style is further encouraged by the use of comments in order to document
the code.

1.1 A Miranda session

Typically, the Miranda system will be entered from the host system by typing the
command mira. Miranda responds by displaying an initial message, such as:

T h e M i r a n d a S y s t e m

version 2.009 last revised 13 November 1989

Copyright Research Software Ltd, 1989

7

8 Operators, Identifiers and Types

This message may be surrounded by site and version specific details and may be
followed by the Miranda system prompt, Miranda.

Exit from Miranda systems is achieved by typing /quit or /q, to which Miranda
responds: Miranda logout and then returns control to the UNIX shell.

Using the Miranda system

The Miranda interactive system issues a prompt and waits for the programmer to
type something. The programmer may type either an expression to be evaluated
or an instruction to the Miranda system; all instructions start with a slash (for
example, /q to quit from Miranda, or /e to ask Miranda to edit a file). Miranda
will either evaluate the expression or obey the instruction; it then issues a fresh
prompt and waits for the programmer to type something else.

The simplest use of Miranda is to type in an expression to be evaluated; in this
way, Miranda acts rather like a desk calculator.

All Miranda expressions and instructions, when entered at the prompt, must be
terminated by a newline. The following is an example of an expression with the
Miranda system response:

Miranda 3 + 4

7

Miranda responds to the expression by simply displaying the result: 7.
An expression cannot be split across more than one line; if it seems incomplete

then the system will give an error message, such as:

Miranda 3 +

syntax error - unexpected newline

Standard operators

Miranda provides built-in functions for the standard arithmetical and relational
operations. The rest of this section discusses their general characteristics, more
specific detail being provided in subsequent sections.

Examples:

Miranda 34 + 56

90

Miranda 2.0 * 3.5

7.0

A Miranda session 9

Miranda 3 > 4

False

Miranda 3 = 3

True

All of the arithmetic operations can be used several times in an expression or in
combination with other operators. For example:

Miranda 2 + 3 + 5

10

Miranda 2 + 3 * 5

17

Miranda (2 + 3) * 5

25

The above behave as expected, with brackets being used to enforce the order of
evaluation.

An interesting, although perhaps surprising, feature of Miranda is that the re-
lational operators >, >=, etc., can also be chained together to form “continued
relations”. For example, the expression (2 < 3 < 4) evaluates to True. How-
ever, the expression ((2 < 3) < 4) would give an error, as explained later in this
chapter.

Simple function application

Miranda provides a number of useful functions, full details of which are given in
Section 28 of the On-line Manual (see below). To use one of these functions, it must
be applied to an argument. Function application is denoted by giving the name of
the function, followed by the argument enclosed in brackets. If the argument is a
single value then the brackets may be omitted.

Examples:

Miranda sqrt (4.0 + 12.0)

4.0

Miranda sqrt (25.0)

5.0

Miranda sqrt 9.0

3.0

10 Operators, Identifiers and Types

Miranda (sqrt 9.0) + (sqrt 25.0)

8.0

Miranda sqrt (sqrt 81.0)

3.0

1.1.1 On-line help

Miranda offers a brief help screen and a more detailed on-line manual. By typ-
ing /help or /h the help screen appears with a short explanation of Miranda’s
interactive features. The on-line manual can be accessed by typing /man or /m.
This gives rise to the help menu as shown in Figure 1.1. Notice that the on-line
manual is extensive and contains detailed information for experienced users as well
as novices; furthermore, the manual is well structured for on-line browsing and it
is consequently neither necessary nor advisable to print a hard copy.

Miranda System Manual Copyright Research Software Limited 1989

1. How to use the manual system 20. Algebraic types

2. About the name "Miranda" 21. Abstract types

3. About this release 22. Placeholder types

4. The Miranda command interpreter 23. The special function {\bf show}

5. Brief summary of main commands 24. Formal syntax of Miranda scripts

6. List of remaining commands 25. Comments on syntax

7. Expressions 26. Miranda lexical syntax

8. Operators 27. The library mechanism

9. Operator sections 28. The standard environment

10. Identifiers 29. Literate scripts

11. Literals 30. Some hints on Miranda style

12. Tokenisation and layout 31. UNIX/Miranda system interface

13. Iterative expressions 32. -->> CHANGES <<--

14. Scripts, overview 33. Licensing information

15. Definitions 34. Known bugs and deficiencies

16. Pattern matching 35. Notice

17. Compiler directives

18. Basic type structure 99. Create a printout of the manual

19. Type synonyms 100. An Overview of Miranda (paper)

::please type selection number (or return to exit):

Figure 1.1 The menu for the Miranda on-line manual.

Identifiers 11

1.2 Identifiers

In Miranda it is possible to give a name or identifier to the value of an expression.
This is achieved by typing /e or /edit to enter the editor and then modifying the
default script file (which has the name script.m). An expression may then be
given a name, using the format:

identifier = expression

The simplest kind of expression is a basic data value, examples of this being:1

hours = 24

message = "Hello World"

The value associated with the name hours is now 24 and the value associated with
the name message is "Hello World".

Once the editor has been exited, the system checks the syntax of the script file
and, if it is valid, then the value given to a name can readily be recalled by entering
the name as an expression to be evaluated:

Miranda hours

24

Similarly, the value returned by the expression ((4 * 30) + (7 * 31) + 28) may
be given a name, within the script file, as follows:

days = ((4 * 30) + (7 * 31) + 28)

and recalled by entering days at the system prompt:

Miranda days

365

In general, any name may appear on the left-hand side of the equals sign and
any expression may appear on the right-hand side. Note that a name is a kind
of expression, but an expression is not a name, so twentyfour = hours is a legal
definition but (3 + 4) = hours is not. Giving a name to a value is useful because
that name can then be used in subsequent expressions; the choice of meaningful
names will make a program easier to read.

The following is a simple example of an expression that itself involves names
that have been previously defined:

hours in year = (days * hours)

hours in leapyear = ((days + 1) * hours)

1In the rest of this book, script files are presented within a box.

12 Operators, Identifiers and Types

The values of these two identifiers can be recalled as follows:

Miranda hours_in_year

8760

Miranda hours_in_leapyear

8784

Legal and sensible identifiers

In practice there is a limitation to the choice of names. There are three restrictions:

1. Certain words are reserved by the Miranda system and therefore cannot be
used:2

abstype div if mod otherwise

readvals show type where with

2. Certain words have already been defined within the Miranda Standard En-

vironment and should similarly be avoided. Appendix A contains a list of
those definitions provided by the Miranda system.

3. An identifier must begin with an alphabetic character and may be followed
by zero or more characters, which may be alphabetic, digits or underscores
() or single quotes (’). For names of simple expressions such as described in
this chapter, the first character must be in lower case.

1.2.1 Referential transparency and reusing names

The functional programming style is that a name is given to a value rather than
giving a name to a memory location. In an imperative programming language,
the memory location referred to by a name is constant, but the value stored in
that location may change; in a functional programming language, the value itself
is constant and the programmer is not concerned with how or where this value is
stored in memory.

The functional style has the important consequence that the values of names do
not change and therefore the result of a given expression will be the same wherever
it appears in a program. Any program written in this style is said to have the
property of referential transparency.

Programs exhibiting referential transparency have many benefits, including the
fact that it is easier to reason about these programs and hence easier to debug
them. For example, one part of a program may be tested independently of the
rest.

2Throughout this book, the use of a bold font indicates a reserved name.

Types 13

Miranda adopts this style and hence it is not possible to use the same name
more than once.3 Thus constructing the following definition sequence within the
script file is illegal:

message = "Hello World"

message = "Goodbye Cruel World"

On exit from the editor, the Miranda system will report a syntax error and abandon
compilation.

1.3 Types

Types are a way of classifying data values according to their intended use. A data
type may be specified either by enumerating the values that data items of that
type may have, or by the operations that may be performed upon data items of
that type. Conscientious use of a type classification system aids the construction
of clear, reliable, well-structured programs.

Miranda has a number of built-in data types, including the simple types—
integers, fractional (or real) numbers, strings, characters and Booleans—together
with fixed-length aggregate types which are discussed in this chapter. Chapter 3
introduces the variable-length list aggregate type, whereas the facility to define
new data types is presented in Chapter 6.

Miranda is a strongly typed language. This means that the system uses infor-
mation about the types of data values to ensure that they are used in the correct
way. For example, the predefined function sqrt expects to be applied to an ar-
gument that is a number. In Miranda, numbers are not surrounded by quotation
marks and so the following is detected as an error (the error message, itself, will
be explained in the next subsection):

Miranda sqrt ’4’

type error in expression

cannot unify char with num

This principle extends to the infix arithmetic operators, in that an error will arise
if the wrong type of value is used. For example, in the following session Miranda
expects the function div to be used with two numbers and gives an error if used
with a number and a Boolean value:

Miranda 2 div True

type error in expression

cannot unify bool with num

3See, however, Chapter 5.

14 Operators, Identifiers and Types

1.3.1 Error messages

On exit from the editor, Miranda checks the script file (assuming that it has
changed) and, if the script file is an error-free Miranda program, then the following
message will be printed:

compiling script.m

checking types in script.m

Miranda

By contrast, if the program contains errors then Miranda will issue one or more
error messages and will refuse to accept any of the definitions in the program.

Error messages highlight two kinds of error; syntax errors and type errors. Here
is an example of a syntax error, where the value "hello" has been wrongly entered
as "hello:

wrong message = "hello

On exit from the editor, Miranda gives the following report, including the line
number where the syntax error was found (which is useful in large programs):

compiling script.m

syntax error: non-escaped newline encountered inside string quotes

error found near line 1 of file "script.m"

compilation abandoned

Note that the error message assumes that the fault is the newline occurring imme-
diately after the word "hello; this is because a newline is not allowed unless the
terminating quote character has been given.

Here is an example of a type error:

wrong value = sqrt ’A’

On exit from the editor, Miranda gives the following report, including the line
number where the error was found (which is useful in large programs):

compiling script.m

checking types in script.m

type error in definition of wrong_value

(line 1 of "script.m") cannot unify char with num

Miranda

The last line of the error message states that Miranda “cannot unify char with
num”. This means that Miranda realizes that the built-in function sqrt expects
to be applied to a number (a “num”) and not to a character (a “char”). In general,
type error messages may include obscure information for advanced programmers as
well as information that is useful for relative beginners. These type error messages
will become clearer in later chapters.

Types 15

1.3.2 Numbers

Miranda recognizes two sorts of number: integers and fractional (or real) num-
bers, and is generally happy for these two subtypes to mix. Notice that fractional
numbers are indicated by decimal points (trailing zeros are required) or by using
exponential format. The precision cannot be specified by the programmer; it is
determined by the machine in use, but it is guaranteed to be at least the equivalent
of 16 decimal places.

Data values of both sorts of number are indicated by the type name num and
may be manipulated by the operators shown in Table 1.1. Notice that whenever
a fractional number appears as one of the operands to these operators then the
result will be a fractional number. The only exceptions are div and mod which
expect two integer operands, and will produce an error message otherwise.

Table 1.1 Operations on numbers.

+ addition

- subtraction

* multiplication

/ real number division

div integer division

mod integer remainder

^ exponentiation

For example:

Miranda 365.0 / 7.0

52.142857142857

Miranda 365 / 7.0

52.142857142857

Miranda 365 / 7

52.142857142857

Miranda 365 div 7

52

Miranda 365 mod 7

1

Miranda (1 / 3) * 3

1.0

16 Operators, Identifiers and Types

Miranda 3 ^ 3

27

Miranda 4.0 ^ -1

0.25

Miranda days div 7

52

where days has already been defined as having the value 365.
Notice, that the fractional number divide operator, /, allows integers and frac-

tional numbers to mix but that the div operator expects both of its operands to
be integers:

Miranda 365 div 7.0

program error: fractional number where integer expected (div)

Negative numbers

It is possible to denote negative numbers by prefixing them with a minus sign: -.
For example:

x = -33

However, the - character is actually a built-in prefix operator that takes a single
argument and negates the value:

Miranda - (-33.0)

33.0

Miranda - (- (33.0))

33.0

Miranda -x

33

The last of the above examples shows that there need not be a space between the
- and a name.

The fact that - can be used in this prefix manner is important, as illustrated by
the following session which uses the built-in function abs (which takes a positive
or negative number, and returns its absolute or unsigned, value):

Miranda abs -33

type error in expression

cannot unify num->num with num

Types 17

Miranda abs -x

type error in expression

cannot unify num->num with num

Neither expression succeeds because the - appears as the first object after the
function name abs and therefore Miranda believes that - is the argument for abs
(which obviously gives an error). The intended meaning can be enforced by brack-
eting the -x or the -33 thus forcing Miranda to interpret the whole subexpression
as the argument to the function abs :

Miranda abs (-x)

33

Miranda abs (- 33)

33

To avoid confusion, the Miranda Standard Environment also provides the function
neg:

Miranda abs (neg 33)

33

Integers and fractional numbers

Miranda generally treats integers and fractional numbers in the same manner.
However, it is sometimes necessary to distinguish between integers and fractional
numbers. Miranda provides the built-in predicate integer in its Standard Envi-
ronment to test whether a number is a whole number:

Miranda integer 3

True

Miranda integer 3.0

False

It may also be necessary to convert from fractional numbers to integers. This
can be achieved by the Standard Environment function entier, which returns the
largest whole number which is less than the given fractional number:

Miranda entier 3.2

3

Miranda entier 3.7

3

18 Operators, Identifiers and Types

Miranda entier (-3.2)

-4

Miranda entier (-3.7)

-4

1.3.3 Characters and strings

Miranda differentiates between single characters and strings of characters. As will
be seen in Chapter 3, strings of characters are special instances of the type list.

Characters

A character is a single token, denoted by the type name char. For example:

Miranda ’a’

’a’

Miranda ’1’

’1’

However, there is no “empty character”:

Miranda ’’

syntax error: badly formed char const

Notice also that characters and numbers do not mix. For example:

Miranda ’1’ + 1

type error in expression

cannot unify char with num

Special characters

Miranda follows the C language philosophy of implementing “special characters”
by a two-character sequence (the first character of which is a backslash). The
special characters include the newline character (’\n’), the tab character (’\t’),
backslash itself (’\\’ (backslash) and quotes (’\’’). It is also possible to use
the ASCII decimal codes for characters; for example \065 for the character A (in
this format, a three-digit sequence is used after the backslash character).

Types 19

Character to number type conversion

Miranda assumes an underlying character set of 256 characters, numbered from 0
to 255, where the first 128 characters correspond to the ASCII character set. The
built-in function code returns the ASCII number of its character argument, whilst
decode decodes its integer argument to produce a single character. For example:

Miranda code ’A’

65

Miranda decode 65

’A’

It is to be noted that an attempt to apply decode to a number not in the range 0

to 255 will result in an error:

Miranda decode 256

CHARACTER OUT-OF-RANGE decode(256)

Strings

Character strings are represented by any sequence of characters surrounded by
double quotations marks and are denoted by the type [char]. Hence there is a
difference between the character ’a’ and the string "a". Strings may be operated
on by the functions given in Table 1.2.

Table 1.2 Operations on strings.

++ concatenation

-- subtraction

length

! indexing

The following examples show that Miranda responds by representing an input
string without the quotation marks:

Miranda "functional programming is fun"

functional programming is fun

Miranda "aaa" ++ "rgh" ++ "!!!!"

aaargh!!!!

Miranda # "a"

1

20 Operators, Identifiers and Types

Miranda # "a string"

8

Miranda "abc" ! 0

’a’

Miranda "abc" ! 1

’b’

Miranda "abc" ! 999

program error: subscript out of range

Notice that the index operator ! considers the first position in the string as posi-
tion 0.

Concatenation treats the empty string in the same way as addition treats the
constant value zero, as illustrated below:

Miranda "" ++ ""

Miranda "1" ++ ""

1

Miranda "" ++ "anything"

anything

The string difference operator -- returns a value which is derived from its first
operand with some characters removed. The deleted characters are all of those
which appear in the second operand (the actual sequence of characters being irrel-
evant):

Miranda "abc" -- "ab"

c

Miranda "abc" -- "ccar"

b

Miranda "abc" -- "def"

abc

Miranda "aa" -- "a"

a

Miranda "miranda" -- "mira"

nda

Types 21

Special characters and strings

The convention for special characters also extends to strings, with "\"" represent-
ing a string containing the double quotes single character. Similarly, the string
"\"Buy us a drink\"" will appear as the characters "Buy us a drink". Notice
that the two-character sequence is considered to be a single character, hence:

Miranda # "\"Buy us a drink\""

16

Number to string type conversion

It is possible to represent a number as a string of characters using the general
purpose show keyword or by the more specific shownum function. For example:

Miranda "mir" ++ (show 123) ++ "anda"

mir123anda

Miranda "mir" ++ (shownum 123) ++ "anda"

mir123anda

Miranda (shownum (12 * 3)) ++ "anda"

36anda

1.3.4 Booleans

Boolean values are truth values, denoted by the type name bool. Data values of
type bool are represented by one of the two constant values True and False.

Data values of type bool may be operated on by special logical operators shown
in Table 1.3 or be produced as a result of the relational operators (>,>=,<,<=,=, ~=).

Table 1.3 Logical operations on Booleans.

~ logical negation

& logical conjunction

\/ logical disjunction

The following presents some simple examples of their use. Especial notice should
be taken of the fact that the sign = is used both as a way of giving an identifier to
a value, within a script file, and to check if two values are equal. This is shown in
the following sample session (where x already has the value 3):

22 Operators, Identifiers and Types

Miranda 3 = 4

False

Miranda 7.8 < 9.2

True

Miranda x <= 7

True

Miranda ~ True

False

Miranda (2 < 3) = (~ (~ True))

True

Miranda 2 < 3 < 4

True

The last example recalls that it is not necessary to bracket the relational operators
to form more extended expressions. Indeed, if brackets were to be used, such as
((1 < 2) < 3), then this would give rise to an error because (1 < 2) evaluates
to the Boolean value True, which cannot legally be compared to the number 3.

There is no built-in conditional expression—the ability to denote alternatives is
provided by conditional guards on the right-hand side of function definitions, which
will be discussed in Chapter 2. These conditional guards will return Boolean values.

Boolean to string type conversion

As with values of type num, it is possible to convert values of type bool to their
string representation, using the show keyword. For example:

Miranda "mir" ++ (show True) ++ "anda"

mirTrueanda

Lexicographic ordering

The relational operators will work with numbers and also with characters, Booleans
and strings: Booleans are ordered such that False is less than True; characters
take the ASCII ordering; and strings take the normal lexicographic ordering:

Miranda ’a’ < ’b’

True

Types 23

Miranda "A" < "a"

True

Miranda "A" < "A1"

True

Miranda "B" < "A1"

False

As expected, different types cannot be compared, hence it is meaningless to attempt
to compare a character with a string:

Miranda ’a’ < "ab"

type error in expression

cannot unify [char] with char

Fractional numbers and equality tests

Note that comparing two fractional numbers for equality is highly suspect, since
many real numbers do not have a terminating decimal representation. Miranda
allows fractional numbers to be tested for equality, but it is assumed that the
programmer understands the limitations of fractional representations. Using the
built-in function abs (which gives the absolute value of a number, regardless of its
sign), it is possible to determine whether two fractional numbers x and y (which
have been defined in the script file) are the same to within a given precision (say
0.1):

Miranda abs(x - y) < 0.1

True

Miranda

Conjunction and disjunction

The Miranda operators for both conjunction & (logical and) and disjunction \/

(logical or) are sometimes known as “lazy” operators because they do not strictly
need to evaluate their second operand. The left operand is always evaluated, but
sometimes it is not necessary to evaluate the right operand in order to determine
the overall truth value.4

The special operator & evaluates to True when both of its operands evaluate to
True, otherwise it evaluates to False. Similarly, the special operator \/ evaluates

4In this respect they are similar to the LISP conditional “cond” and the C operators “&&”
and “||” but dissimilar to the Pascal “and” and “or” functions (which always evaluate each
subexpression in a compound Boolean expression before deciding the overall truth value).

24 Operators, Identifiers and Types

to False when both of its operands evaluate to False, otherwise it evaluates to
True. Thus, in the expression False & (x = y) it is not necessary to evaluate the
right operand because, regardless of the value of the right operand, the overall result
will always be False. The current implementation of Miranda takes advantage of
this fact and does not evaluate the right operand if the result can be determined
from the left operand alone.

Example session, given x has the value 0 and y has the value 42:

Miranda (y = 42) & (x = 0) & (y = x)

False

Miranda (y = 42) & ((x = 0) & (y = x))

False

Miranda (x = 0) \/ ((y div x) > 23)

True

The last of these examples shows that the lazy evaluation of the right operand is
quite useful when it is not desirable for it to be evaluated. In this case a divide by
zero error has been avoided.5

1.3.5 Determining the type of an expression

The type of any expression may be determined by typing either the expression or
its name followed by two colons. This invokes Miranda’s type checker and reports
the type. For example:

Miranda (3 + 4) ::

num

Miranda ’A’ ::

char

Miranda x ::

num

Miranda True \/ True ::

bool

If the name is undefined, Miranda returns the answer *, which indicates that the
value could have any type.

5Notice that the lazy evaluation means that \/ and & are not the precise equivalent of logical
disjunction and conjunction.

Tuples 25

1.4 Tuples

This section introduces the tuple which combines values to create an aggregate

type. As an example, it is possible to give a name to the combination of an
integer, string and integer that represents a given date:

date = (13, "March", 1066)

Formally, the tuple represents the Cartesian product (or cross product) of the
underlying components.

Domains and Cartesian products

In order to understand the type information in error messages (and to create new
types as will be shown in Chapter 6), it is useful to understand the concept of type

domains. The following is an informal introduction to this topic. The reader is
referred to (Gordon, 1979) and (Thompson, 1991) for more details.

The collection of values that a type can have is known as its domain. For
example, the domain of type bool is the collection of built-in values True and
False. Similarly, the collection of values of the type int is the theoretically
infinite range of whole numbers from minus infinity to plus infinity.6

During evaluation, it is possible for an error to occur: either an error message
will be produced, or the program will enter an infinite loop. The formal treatment
of type domains treats such an error as a valid (“undefined”) result and a special
“Error” value (representing both kinds of error) is added to the domain of every
type. This error value is often given the special symbol ⊥ and called “bottom”.
Thus, the formal expression of the type domain bool will contain the values {True,
False, ⊥}.

Some programming languages allow the program to recognize an error value as
the result of a calculation and to take action accordingly (although it is normally
impossible for the program to detect an infinite loop!). However, Miranda does
not do this—for example, there is no special pattern which can be used in pattern-
matching to detect an error value7—and so this informal presentation of type
domains does not include ⊥ as a domain value.

The type (bool,bool) contains the Cartesian product operator “,”. This indi-
cates that the domain contains all possible combinations which combine one value
from the first domain (for type bool) with one value from the second domain (for
type bool). Therefore the domain for the type (bool,bool) is fully represented
by the four tuples:

6Of course, in practice, there is a machine-dependent restriction on this range.
7Although the programmer can express such behaviour with user-defined types—see Chap-

ter 6.

26 Operators, Identifiers and Types

(False, False)

(True, False)

(False, True)

(True, True)

Similarly, the infinite domain (num,[char],bool) contains all the tuples (n,s,b)
where n is any value drawn from the number domain, s is any value drawn from
the string domain and b is any value drawn from the Boolean domain.

Tuple equality

Any simple type has at least two operations defined upon its elements; that of
equality (=) and inequality (~=). Thus any two tuples of the same type (whose
elements are simple types) may be tested for equality, as is shown in the following
session (a script followed by an interaction with the Miranda command interpreter):

date = (13, "March", 1066)

Miranda date = (13, "March", 1066)

True

Miranda (3,4) = (4,3)

False

Miranda date = (abs (-13), "March", 1065 + 8 mod 7)

True

As might be expected, tuples with different types cannot be compared:

Miranda (1,2) = (1, True)

type error in expression

cannot unify (num,bool) with (num,num)

Miranda (3,4,5) = (3,4)

type error in expression

cannot unify (num,num) with (num,num,num)

Tuple composite format

The composite format of a tuple can be used on the left-hand side of an identifier
definition, thereby providing a convenient shorthand for multiple definitions:

(day, month, year) = (13, "March", 1066)

Properties of operators 27

The names day, month and year can now be used as single identifiers:

Miranda day

13

Miranda month

March

Miranda year

1066

This shorthand notation is in fact a simple example of the powerful mechanism
known as pattern matching , which will be discussed in Section 2.5. This general
mechanism extends to complex patterns:

((day, month, year), wine, price)

= ((13, "May", 1966), "Margaux", 60)

1.5 Properties of operators

An understanding of the properties of operators may significantly assist debugging
and may aid the design of better functions, as will be seen in Chapter 4. This
section explains the following key concepts:

1. Precedence and order of association determine the correct meaning of any
expression which includes multiple occurrences of operators and/or function
applications.

2. Associative and commutative functions and operators present an opportu-
nity for the programmer to reorganize an expression without changing its
meaning.

3. Overloading refers to the fact that some operators may manipulate values of
different types.

1.5.1 Precedence

In an expression such as (3 + 4 * 5), there is an inherent ambiguity as to whether
the expression means ((3 + 4) * 5) or (3 + (4 * 5)). This ambiguity is re-
solved by a set of simple rules for arithmetic operators; in the above example it is
clear that the expression really means (3 + (4 * 5)) because the rule is that mul-
tiplication should be done before addition. This is known as a rule of precedence;
multiplication has a higher precedence than addition and therefore the subexpres-
sion 4 * 5 should be treated as the right operand of the addition operator. If

28 Operators, Identifiers and Types

it is necessary to override the precedence rules then brackets are used to indicate
priority.

For example:

((3 + 4) * (5 + 6))

All Miranda operators are given a precedence level—a table of precedence levels
(referred to as “binding powers”) is given in Section 8 of the Miranda On-line
Manual. However, it is important to remember that function application has a
very high precedence, so that:

(sqrt 3.0 + 4.0)

is interpreted as:

((sqrt 3.0) + 4.0)

In general, the use of brackets is encouraged for reasons of safety and good docu-
mentation.

1.5.2 Order of association

Some operators (for example, * and /) have the same level of precedence; this
means that there is still ambiguity in the meaning of some expressions. For ex-
ample, the expression (4.0 / 5.0 * 6.0) is ambiguous—it might mean either
((4.0 / 5.0) * 6.0) or (4.0 / (5.0 * 6.0)). Furthermore, repeated use of
the same operator leads to similar ambiguity, as with the expression (4.0 / 5.0

/ 6.0). This ambiguity may be resolved by determining the order of association.
In Miranda, all operators (except for ++ -- ˆ and :, as will be seen in Chapter 3)
associate to the left. That is, (4.0 / 5.0 * 6.0) is interpreted as ((4.0 / 5.0)

* 6.0) and (4.0 / 5.0 / 6.0 / 7.0) is interpreted as ((4.0 / 5.0) / 6.0) /

7.0). This left-associating behaviour also extends to function application so that
(sqrt abs 1) is interpreted as ((sqrt abs) 1) and gives an error—the program-
mer should therefore take particular care to bracket function applications correctly.
To summarize:

1. Precedence is always considered first; the rules for association are only applied
when ambiguity cannot be resolved through precedence.

2. The rules governing the order of association only apply to operators at the
same level of precedence; this may be two or more different operators, or
perhaps two or more occurrences of the same operator (such as (5 - 6 -

7)).
3. Brackets are used for priority, to override precedence and the order of as-

sociation. For example, although it is now clear that the expression (4.0

/ 5.0 * 6.0) means ((4.0 / 5.0) * 6.0), it is possible to bracket the
multiplication, to ensure that it happens first: (4.0 / (5.0 * 6.0)).

Properties of operators 29

Associativity

For some operators, it makes no difference whether they associate to the right or
to the left. These are called associative operators, for example multiplication:

Miranda ((4.0 * 5.0) * 6.0) = (4.0 * (5.0 * 6.0))

True

However, some operators are not associative:

Miranda ((4.0 / 5.0) / 6.0) = (4.0 / (5.0 / 6.0))

False

This property of associativity only refers to repeated use of the same operator in
an expression; notice that an operator can only be associative if its result type is
the same as its argument type(s).

Commutativity

Some operators are commutative; that is, it makes no difference in what order
their parameters appear. For example:

Miranda (4 * 5) = (5 * 4)

True

However, some operators are not commutative:

Miranda (4 - 5) = (5 - 4)

False

Sometimes the non-commutativity of an operator is due to it being lazy in one of
its operands:

Miranda True \/ ((3 div 0) = 3)

True

Miranda ((3 div 0) = 3) \/ True

program error: attempt to divide by zero

The recognition of non-associative and non-commutative operators often assists
debugging. The associativity of operators is given in Section 8 of the On-line
Manual.

30 Operators, Identifiers and Types

1.5.3 Operator overloading

The idea of an overloaded operator such as > or < is that the same symbol may be
used for two operations or functions that are internally dissimilar but semantically
similar. For example, the internal representation of real numbers and strings on
most computers is different and thus the implementation of comparison operators
is also quite different; it would perhaps be logical to have two operators num<

and string< to mirror this. However, the behaviour of the two operations appears
to the programmer as identical and Miranda supports this semantic congruence
by using the single operator symbols <, <=, >, >= for both number and string
comparison. When an overloaded operator is used incorrectly, the resulting error
message reports that it cannot unify the type of the right operand with that of the
left. It is not legal to mix numbers, characters and strings:

Miranda 3 < "hello"

type error in expression

cannot unify [char] with num

Miranda True >= 0

type error in expression

cannot unify num with bool

1.6 Programs, layout and comments

Direct interaction with the Miranda command interpreter may be used for simple
desk calculator operations. However, the inability to define names means that
even for relatively small programs it is necessary to use the /e or /edit commands
which allow definitions to be edited in the script file and automatically read by the
system on exit from the editor. If no filename is given, Miranda assumes that the
program file is called script.m. Miranda’s notion of the current program can be
changed by using the /f or /file command followed by the name of the new file.
For example, given a file called “spending money.m”, typing /f spending money.m

will cause the system to read this new file from the current directory. The new file
is automatically compiled; if it contains syntax errors then Miranda will abandon
compilation and not incorporate any of the definitions into the current environment
(consequently no previous script file definitions will be available).

1.6.1 Program layout

It is not legal to enter more than one expression at the Miranda prompt. By
contrast, it is permitted to have several definitions on one line within a script file,
provided that each is terminated by a semicolon. However, this generally results in

Programs, layout and comments 31

code that is cramped and difficult to read or to modify, and is not recommended.
Similarly, whilst it is not legal to enter a long expression over more than one line

at the Miranda prompt, this is permitted within a script file (with a restriction,
known as the offside rule, discussed in Chapter 2.1.1). Rather than present a long
expression all on one line, it is recommended to layout the program by using spaces,
tabs and newlines (as illustrated by the examples in this book).

1.6.2 Program documentation

To enhance readability, all programs in a file should be documented; in Miranda
this is achieved by using comments or by using a literate script.

Comments

Within a Miranda script file, commented text is anything to the right of two parallel
bars || and before the end of the line (the end of the line terminates the comment).
Figure 1.2 provides an example of this style of commenting.

|| Program "spending money.sml".

|| Calculates the amount of holiday spending money.

|| Only deals with three different currencies.

amount of sterling = 200.0 || amount of money available

|| different exchange rates

uk to us = 1.70

uk to dm = 2.93

uk to fr = 10.94

|| amount of spending money in different currencies

us spending money = amount of sterling * uk to us

dm spending money = amount of sterling * uk to dm

fr spending money = amount of sterling * uk to fr

Figure 1.2 Simple commenting style.

Literate scripts

Miranda recognizes that it is often the case that the comments to a program are
more extensive than the actual program code and offers a literate script facility—
whereby the default text is comment and code must be emphasized. Within a

32 Operators, Identifiers and Types

literate script, the first line and all code lines must commence with a > sign.
Additionally, blank lines (that is lines without text) must separate text and code.

Reworking the program in Figure 1.2 as a literate script gives the program in
Figure 1.3. Notice that the || comment convention is also allowed.

>|| literate script version of above program

Program "spending money.m".

Calculates the amount of holiday spending money.

Only deals with three different currencies.

> amount of sterling = 200.0 || amount of money available

different exchange rates

> uk to us = 1.70

> uk to dm = 2.93

> uk to fr = 10.94

amount of spending money in different currencies

> us spending money = amount of sterling * uk to us

> dm spending money = amount of sterling * uk to dm

> fr spending money = amount of sterling * uk to fr

Figure 1.3 A literate script.

1.7 Summary

It is possible to treat the Miranda command interpreter as a simple desk calculator
which evaluates expressions entered by the programmer. However, for the purposes
of real programming, four additional features have been introduced:

1. The provision of built-in functions; user-defined functions will be introduced
in Chapter 2.

2. The classification of data values into different types; the ability to create new
types is discussed in Chapter 6.

3. The ability to give names to expressions and thereby use their values in other
expressions; Chapter 5 shows how a programmer can specify where a name
can and cannot be used.

4. The ability to combine built-in types to form tuples; another important ag-
gregate type is introduced in Chapter 3.

Summary 33

It is worth emphasizing that the classification of data values ensures that they are
used correctly and therefore that many common programming errors are detected
early in the software development process.

Chapter 2

Functions

Miranda functions may either be built-in (for example show), predefined in the
Standard Environment (for example sqrt) or they may be defined by the pro-
grammer. This chapter explains how to define new functions and then use these
functions by applying them to values. Functions can be defined in terms of built-
in functions (and operators) and/or other user-defined functions. The result of a
function application may either be saved (by giving it an identifier) or it may be
used immediately in a bigger expression (for example as an argument to another
function).

Tuples may be used to package more than one argument to a function. Functions
that only operate on the structure of the tuple and not on its components belong
to the class of polymorphic functions. An example is a function to select the first
component of a tuple, regardless of the values of its other components.

Two powerful tools, pattern matching and recursion, are introduced in this chap-
ter. Pattern matching allows programmers to give alternative definitions for func-
tions for different values of input data. This forces consideration of all inputs to
functions and thus eliminates many potential errors at the design stage. Recur-
sion is used to provide iteration and is an essential mechanism for flow control in
programs.

Functions are important because they provide a basic component from which
to build modular programs. This facilitates the technique of top-down design for
problem solving; that is, a problem may be broken down into smaller problems
which can easily be translated into Miranda functions. Programs structured in
this way are easier to read and easier to maintain.

This chapter ends with a slightly larger example, which shows the use of top-
down design to solve a problem.

34

Simple functions 35

2.1 Simple functions

This section introduces the simplest form of function definition and discusses how
functions may be applied to arguments (or “parameters”1) and how Miranda eval-
uates such function applications.

2.1.1 Function definition

In Miranda, functions are defined within the script file. The simplest function
definitions have the following template:

function name parameter name = function body

Miranda knows that this is a function definition because the left-hand side of
the expression consists of more than one name. Both the parameter name and
the function name may be any legal identifier as described in Chapter 1 (Section
1.2) of this book (and must similarly start with a lower case character). The
parameter name is known as the formal parameter to the function; it obtains an
actual value when the function is applied. This name is local to the function
body and bears no relationship to any other value, function or formal parameter
of the same name in the rest of the program. The function body may contain any
valid expression, including constants, value identifiers and applications of built-in
functions and user-defined functions.

In the following example twice is the function name, x is the parameter name
and x * 2 is the function body:

twice x = x * 2

At the Miranda prompt twice can be used in three ways:

1. Most importantly, as a function applied to an actual argument, for example:

Miranda twice 2

4

This will be discussed further in the next section.
2. In conjunction with the special type indicator keyword ::

Miranda twice ::

num->num

The arrow in the system response indicates that the name twice is a function.
The type preceding the arrow is known as the source type of the function
and states the expected type of the argument to which the function will be
applied. The type following the arrow is known as the target type and states
the type of the value returned by the function. This is further illustrated in
Figure 2.1 for the function isodd.

1In the rest of this book the words “argument” and “parameter” will be used interchangeably.

36 Functions

3. As an expression:

Miranda twice

<function>

This gives the information that twice is a function rather than a value iden-
tifier or something not yet defined.

Figure 2.1 Function source domain and target domain.

In general, a function translates (or “maps”) a value from a source type (or “argu-
ment type”) to another value from a target type (or “result type”). Though many
values from the source type can have the same target value, normally each value
from the source type will have just one target result. The source and target types
need not be the same. Both of these points are illustrated in the next example,
which checks if a character is upper case:

isupper c = (c >= ’A’) & (c <= ’Z’)

Miranda isupper ::

char->bool

The following example makes use of the built-in functions code and decode to
convert a lower case alphabetic into its upper case equivalent; all other characters
being left unaltered. The calculation relies upon three facts:

Simple functions 37

1. Subtracting the ASCII code for lower case ’a’ from the ASCII code for a
lower case alphabetic character will give a number within the range 0 to 25.

2. Adding the ASCII code for upper case ’A’ to a number within the range 0 to
25 will give the ASCII code for an upper case alphabetic character.

3. It is assumed that the argument c will be a character in the range ’a’ to ’z’.

toupper c = decode ((code c) - (code ’a’) + (code ’A’))

Miranda toupper ::

char->char

The offside rule

The “offside rule” is a syntactic constraint for actions that cannot be written on
one line; its template is of the form:

function parameter = start of action on first line

next line of action must NOT be to the left

of the start of the action on the first line

For example:

wrong timestamp (time, message) =

message ++ " at "

++ (show time) ++ " o’clock"

correct timestamp1 (time, message) =

message ++

" at " ++ (show time) ++ " o’clock"

correct timestamp2 (time, message)

= message ++ " at " ++

(show time) ++ " o’clock"

2.1.2 Function application

The function twice can be applied to an actual value, in exactly the same manner
as system-defined functions:

Miranda twice 3

6

Here, the formal parameter x has obtained the actual value 3.

38 Functions

The integer value returned by the above application may also be used as the
actual parameter for another function application. There is no restriction on the
number of the times this principle may be employed, as long as the types match.
However, it is important to remember that function application associates to the
left; for example, the application:

abs twice 3

is interpreted by Miranda to mean:

((abs twice) 3)

which is clearly an error because abs expects an integer as an argument rather
than the name of another function. It is therefore essential to use brackets to give
the intended meaning, as shown in the following sample session:

Miranda abs (twice (-3))

6

Miranda twice (twice 3)

12

Miranda (sqrt (abs (twice 8)))

4.0

An application of a previously user-defined function, such as twice, may also
appear inside a function body:

quad x = twice (twice x)

Miranda quad ::

num->num

Miranda quad 5

20

islower c = ~(isupper c)

Miranda islower ::

char->bool

Exercise 2.1

Provide a function to check if a character is alphanumeric, that is lower case, upper
case or numeric.

Simple functions 39

2.1.3 Function evaluation

The example below presents a model of how the application of the function quad to
an argument may be evaluated by a Miranda system. The example is interesting
in that the argument is itself an expression involving an application of a function
(the built-in function sqrt). Note that the ==> sign is used to indicate the result
of a conceptual evaluation step and has no special meaning in Miranda; this device
is used in the rest of the book to indicate a “hand evaluation” of an expression.

quad (sqrt (22 + 42))

==> twice (twice (sqrt (22 + 42)))

==> (twice (sqrt (22 + 42))) * 2

==> ((sqrt (22 + 42)) * 2) * 2

==> ((sqrt 64) * 2) * 2

==> (8.0 * 2) * 2

==> 16.0 * 2

==> 32.0

The above example illustrates several important points about function evaluation
and about evaluation in general:

1. In order to evaluate the function body, effectively a new copy of the function
body is created with each occurrence of the formal parameter replaced by a
copy of the actual parameter.

2. It is impossible for any function application to affect the value of its actual
parameters.

3. The argument to a function is only evaluated when it is required (this is
sometimes known as “call-by-name”). Furthermore, if an argument is used
more than once inside the function body then it is only evaluated at most

once—all occurrences of the formal argument name benefit from a single
evaluation of the actual argument (this is sometimes known as “call-by-need”
or “lazy evaluation”).

4. In general, the evaluation of function applications (and indeed evaluation
of any expression) may be viewed as a sequence of substitutions and sim-
plifications, until a stage is reached where the expression can no longer be
simplified.

It should be noted that in the above discussion there has been no mention of
how the evaluation mechanism is implemented. Indeed, functional languages offer
the considerable advantage that programmers need not pay any attention to the
underlying implementation.

40 Functions

2.2 Functions as values

Perhaps surprisingly, a new name may also be given to a function. The name then
has the same properties as the function:

tw = twice

Miranda tw ::

num->num

Miranda tw 4

8

This shows that functions are not only “black boxes” that translate values to other
values, but are values in themselves. They may also be passed as parameters to
other functions, as will be shown in Chapter 4.

Thus, entering a function’s name without parameters is the equivalent of entering
a constant value. However, because the function has no meaningful value (it would
not generally be useful for the system to print out the code definition for the
function), the system responds with an indication that the value of a function has
been requested:

Miranda twice

<function>

This principle explains the error message for the following incorrect attempt to
apply twice:

Miranda twice twice 3

type error in expression

cannot unify num->num with num

The error arises because the argument to twice is a function, which contradicts
the expected type of num. The above error message highlights the fact that twice
is a value itself, of type (num->num).

The major difference between a function and other values is that two functions
may not be tested for equality—even if they have precisely the same code, or always
result in the same value. For example, the expression (tw = twice) will give rise
to an error. This difference is reflected in that the show keyword merely reports
that a function is a function rather than echoes its code.

Miranda show twice

<function>

Function parameters and results 41

Redefining functions

It is important to remember that Miranda does not allow identifiers, and hence
functions, to be given more than one value within a script file.2

2.3 Function parameters and results

Normally, functions translate from a single argument into a single result. However,
it is often necessary to translate from more than one input argument or even to
have functions that do not require any input value to produce a result. This section
shows how Miranda caters for these types of function and also for functions that
produce an aggregate result.

2.3.1 Functions with more than one parameter

At first sight, the notion of a function having more than one parameter seems
to violate the constraint that all functions are translations from a source type to
a target type (and so a function to evaluate the greater of two values would be
impossible). Miranda has two ways of coping with this apparent problem—currying
and tuples. The currying approach is introduced in Chapter 4, whereas the tuple
approach is presented below.

Employing tuples to represent the formal parameter of functions with more than
one argument is a natural consequence of the fact that a tuple will have a value
drawn from an aggregate type (as discussed in Chapter 1). The formal parameter
can either use a single name to represent the entire tuple or the tuple composite
form to give names to each of the tuple’s values.

The following example shows a simple function that checks the entire parameter
and therefore uses a single formal parameter name (date) for the tuple:

ismybirthday date = (date = (1, "April", 1900))

Miranda ismybirthday ::

(num,[char],num)->bool

The system response makes explicit the fact that the formal parameter date has
an aggregate type with three components.

In the next example, which embellishes an input message, it is necessary to
extract the individual elements of the tuple and so the composite form is used for
the function parameter; the corresponding domains are shown in Figure 2.2.

timestamp (time, message)

= message ++ " at " ++ (show time) ++ " o’clock"

2See, however, Chapter 5 for a discussion of the Miranda rules of scope.

42 Functions

Miranda timestamp ::

(num,[char])->[char]

Miranda timestamp (8, "important meeting today")

important meeting today at 8 o’clock

Figure 2.2 Source and target domains for timestamp.

2.3.2 Functions with more than one result

It is possible for a function to return more than one result because a tuple may also
be the target type of a function. This is demonstrated in the following function
quotrem (and in Figure 2.3) whose result holds both the quotient and remainder
of dividing the source tuple’s first component by its second component:

quotrem (x, y) = ((x div y), (x mod y))

Miranda quotrem ::

(num,num)->(num,num)

Miranda quotrem (7, 3)

(2,1)

Polymorphic functions 43

Figure 2.3 Source and target domains for quotrem.

2.3.3 Functions without parameters

Sometimes functions do not need any parameters. As such, they have no obvious
source type—which unfortunately violates the constraint that all functions are
translations from a source type to a target type!

In general, a function can only return differing results if it is applied to differing
arguments. Thus, by definition a parameterless function must always return the
same result. Normally, it is adequate to cater for such a requirement by means of
a constant value definition, as described in Chapter 1. An alternative is to use the
explicit “null” parameter, (), which is the only value of the special empty tuple
type:

message () = "Buy us several drinks"

2.4 Polymorphic functions

It can be useful to define functions that provide general operations on tuples re-
gardless of their component types. For example, the functions myfst and mysnd,
respectively, extract the first item and second item from a pair:

myfst (x,y) = x

mysnd (x,y) = y

44 Functions

Miranda myfst ::

(*,**)->*

Miranda mysnd ::

(*,**)->**

These two functions mimic the action of the built-in functions fst and snd, which
are defined in exactly the same way (see Section 28 of the on-line manual).3

The type of myfst is different to previously defined functions in that it takes
a pair of values of any two types and returns a value of the first type. It does
not operate on the elements in the pair but on the shape or construction of the
pair itself; therefore myfst does not care about the type of x nor about the type
of y. This is indicated by the system response which gives the general purpose
type names * and **, which are known as polytypes. It should be noted that the
actual values of the tuple could be of different types, which is indicated by the two
different polytype names (a single star and a double star). However, because * and
** can stand for any type, the actual components could also be of the same type.

Miranda myfst (3,4)

3

Miranda myfst (3,("a",True))

3

Miranda mysnd (3,("a",True))

("a",True)

The above are examples of polymorphic functions. In general, a function is said
to be polymorphic in the parts of its input which it does not evaluate.4 Thus, in
the above example myfst is polymorphic in both x and y, whereas in the following
example g is only polymorphic in x:

g (x,y) = (-y,x)

Miranda g ::

(*,num)->(num,*)

Polymorphic functions need not take a tuple argument. For example, both of the
following functions are polymorphic in their argument x:

3Remember that it is not possible to reuse names which are already defined in the Standard En-
vironment. However, since it is recommended that the reader tries out these example definitions
for themselves, this book adopts the practice of prefixing the names of Standard Environment
functions with the letters my.

4There is, in theory, no restriction on the number of polytypes in the tuple parameter to a
function.

Pattern matching 45

id x = x

three x = 3

Miranda id ::

->

Miranda three ::

*->num

Exercise 2.2

What happens in the following application and why?

myfst (3, 4 div 0)

Exercise 2.3

Define a function dup which takes a single element of any type and returns a tuple
with the element duplicated.

2.5 Pattern matching

One of the more powerful features of Miranda is pattern matching , which allows the
format of one value to be compared with a template format (known as a “pattern”).
For example, the appearance of a tuple composite form as the formal parameter
to a function is an instance of pattern matching. Pattern matching is used both
in constant definitions and in function definitions; the former has already been
introduced in Section 1.4. In this section, the principle of pattern matching is
extended to enable alternative definitions for a function depending on the format
of the actual parameter. This facility has several advantages:

1. As a means of taking different actions according to the actual input.

2. As a design aid to help the programmer to consider all possible inputs to a
function.

3. As an aid to the deconstruction of aggregate types such as tuples, lists and
user-defined types (the last two will be introduced in Chapters 3 and 6,
respectively).

In most cases, it will be seen that the use of pattern matching reduces the risk of
programming errors and enhances program readability.

46 Functions

2.5.1 Alternative patterns

Pattern matching template

The general template for achieving pattern matching in functions is:

function name pattern 1 = function body 1

function name pattern 2 = function body 2

. . .

. . .

function name pattern N = function body N

When the function is applied to an argument, Miranda sequentially scans the
definitions, from the topmost definition, until the actual parameter matches one of
the patterns. The associated function body is then evaluated. At its simplest, a
function will have only one pattern. Since a formal parameter is an instance of a
pattern, all the function definitions so far presented are also examples of this form.

The following implementation of the function not (the equivalent of the built-in
function ~ — which inverts the truth value of its parameter) demonstrates a simple
use of pattern matching:

not True = False

not False = True

Similarly:

solomonGrundy "Monday" = "Born"

solomonGrundy "Sunday" = "Buried"

solomonGrundy anyday = "Did something else"

In this example, the anyday pattern will match any other input and will therefore
act as a default case. Notice that this default must be the bottommost definition
(see Section 2.5.2.).

Exercise 2.4

Modify the function solomonGrundy so that Thursday and Friday may be treated
with special significance.

2.5.2 Legal patterns

Patterns may consist of constants (for example, integers but not fractional numbers,
or the Boolean values True and False), tuples and formal parameter names.

Pattern matching 47

Patterns containing arithmetic, relational or logical expressions are generally not
allowed; the following are both wrong:

wrong (x + y) = "silly"

also wrong ("a" ++ anystring) = "starts with a"

However, it is legitimate to have patterns of the form (n + k), where n will evaluate
to a non-negative integer value and k is a non-negative integer constant. Hence
the following is legitimate, for all actual values of n greater than zero:

decrement (n + 1) = n

Unfortunately, this facility does not extend to the other operators or to values of
n and k that are negative or fractional.

Duplicates

Unlike some other languages that have pattern matching, Miranda permits both
constant and formal parameters to be replicated:

both equal (x,x) = True

both equal (x,y) = False

both zero (0,0) = True

both zero (x,y) = False

The occurrence of duplicated identifiers in a pattern instructs Miranda to perform
an equality check. Thus, in the above example, both equal will only return True

if both the first and second components of its two-tuple argument are the same
(are equal to each other), and both zero will only return True if both components
are equal to 0.

The equality check is only performed if an identifier is duplicated in a single
pattern: duplication of identifiers “vertically” across several patterns is common-
place and has no special meaning. Thus, in the following examples, the multiple
occurrences of the identifier x do not cause an equality check to be performed:

48 Functions

step up (0,x) = x

step up (1,x) = x+1

plus (0,x) = x

plus (x,0) = x

plus (x,y) = x+y

twenty four hour (x,"a.m.") = x

twenty four hour (x,"p.m.") = x + 12

equals ten (x, 10) = True

equals ten (x, y) = False

Note that this cannot be used to compare functions for equality:

Miranda both_equal (sqrt, sqrt)

program error: attempt to compare functions

Non-exhaustive patterns

In the not function (shown in Section 2.5.1), both possible values for the Boolean
type were checked. If the programmer has not considered all the possible input
options then Miranda will still permit the script file but may generate a run-time
error.

not False = True

Miranda not False

True

Miranda not True

program error: missing case in definition of not

Although programmers may be tempted to ignore patterns that they believe will
never arise, it is generally sensible to trap unexpected cases with an appropriate
“default” pattern. For example, if all of the days of the week were catered for as
patterns in the solomonGrundy function, it might still be desirable to have a final
pattern that dealt with any string which did not represent a day of the week.5

5See Section 2.9 for how this pattern may be dealt with by the Miranda error function.

Pattern matching 49

Order of evaluation

It must be stressed that Miranda checks each alternative sequentially from the top
pattern to the bottom pattern, ceasing evaluation at the first successful match. If
the patterns are mutually exclusive then it does not matter in which order they are
defined. However, patterns may overlap and then the order of definition is vital,
as is now shown in the following script file:

wrong or x = True

wrong or (False,False) = False

On exit from the editor Miranda will report:

syntax error: unreachable case in defn of "wrong_or"

error found near line 2 of file "script.m"

compilation abandoned

It is strongly advised that patterns should be mutually exclusive wherever possi-
ble. However, the guideline for designing functions with overlapping alternative
patterns is to arrange the patterns such that the more specific cases appear first.
In the above example (False,False) was less general than x and should have
been the first pattern to be matched against.

Lazy evaluation of function arguments

Finally, a word of caution regarding the “lazy evaluation” of function arguments,
as discussed in Section 2.1. Miranda uses a “call-by-need” style of argument eval-
uation, so that in the following program a divide-by-zero error is avoided:

myfst (x,y) = x

result = myfst (34, (23 / 0))

Miranda result

34

However, if myfst were to use pattern matching with constants, then the divide-
by-zero error is not avoided:

myfst (x,0) = x

myfst (x,y) = x

result = myfst (34, (23 / 0))

50 Functions

Miranda result

program error: attempt to divide by zero

The error occurs because the pattern matching on the second component of the
tuple (to see if it is equal to zero) forces Miranda to evaluate the division, so that
it can decide whether to use the first or the second function body.

2.5.3 Guards

This section demonstrates how pattern matching may be made more selective and
powerful by using the keywords if and otherwise.

if

In the example of toupper in Section 2.1.1 there was no check to see if the character
to be converted was within the expected range. In the following example, use of
Miranda’s “guard” mechanism demonstrates how patterns may be constrained:

safe toupper c

= decode ((code c) - (code ’a’) + (code ’A’)),

if (c >= ’a’) & (c <= ’z’)

safe toupper c = c

Here, the first action is only executed when the guard condition (which follows the
comma token (,) and the keyword if) evaluates to True.6 In general, the guard can
be any expression that evaluates to a Boolean result and more than one guard is
permitted. For example:

whichsign n = "Positive", if n > 0

= "Zero", if n = 0

= "Negative", if n < 0

otherwise

The use of the keyword otherwise demonstrates another way of trapping the
default case. The action associated with it is only taken when the pattern does
not satisfy any guard. The function safe toupper could have been written:

6In fact the if can be omitted but it probably makes the code easier to read if it is included. To
ensure good documentation, Miranda has an optional /strictif directive that actually enforces
the use of the if keyword. The comma is mandatory in either case.

Type information 51

safe toupper c

= decode ((code c) - (code ’a’) + (code ’A’)),

if (c >= ’a’) & (c <= ’z’)

= c, otherwise

Note that this keyword can only appear as the default case to the last body for
any given pattern.

Alternative and guarded patterns

There is no restriction on the combination of alternative patterns and guarded
patterns. For example:

check equiv (0,x) = "Equivalent", if x="Zero"

= "Not equivalent", otherwise

check equiv (1,x) = "Equivalent", if x="One"

= "Not equivalent", otherwise

check equiv (n,x) = "Out of range of this check"

2.6 Type information

This section shows how Miranda can be helped to distinguish the type of formal
parameters and introduces a mechanism for interaction with the Miranda type
system.

2.6.1 Type declarations

For all the functions defined so far, the Miranda system has been able to work
out the types of the function parameters from their context. However, this is not
always the case. For example, the keyword show is overloaded and, on leaving
the editor, it is not always possible for Miranda to determine the implicit type of
a function that uses show in its function body. Thus, Miranda will raise a type
error if given a script file containing the following attempted definition:

wrong echo x = (show x) ++ (show x)

The solution is to employ the type indicator :: which not only reports the type of
a function or value identifier when used with the Miranda command interpreter,
but can also be used to declare the intended type of a function or identifier inside
a script file. The general template for its use is:

function name :: parameter type -> target type

52 Functions

The actual code can then be given. Hence wrong echo can be corrected as shown
in the function right echo:

right echo :: num -> [char]

right echo x = (show x) ++ (show x)

In addition to resolving any possible type ambiguity, the use of :: is recommended
for three other important reasons:

1. As a design aid, since the program designer is forced to consider the nature
of the input and output before implementing any algorithm.

2. As a documentation aid; any programmer can immediately see the source
and target types of each function.

3. As a debugging aid, since Miranda will indicate differences between inferred
types and declared types.

Whilst some of the examples in the rest of this book may not contain explicit
type constraints (for pedagogic reasons of simplicity and clarity), the approach is
encouraged as being a good programming discipline and all the extended examples
will adopt this style.

2.6.2 Polymorphic type constraint

A polytype may also be included as a type constraint. The following functions
third same and third any are two versions of the same function which exemplify
this property. In the first version, the use of the same polytypes constrains the ac-
tual parameters to be of the same type. The second version uses different polytypes
to permit actual parameters to be of different types.
Same type version:

third same :: (*,*,*) -> *

third same (x,y,z) = z

Miranda third_same (1,2,3)

3

Miranda third_same (1,2,’3’)

type error in expression

cannot unify (num,num,char) with (num,num,num)

Any type version:

third any :: (*,**,***) -> ***

third any (x,y,z) = z

Type information 53

Miranda third_any (1,2,3)

3

Miranda third_any (1,2,’3’)

’3’

There is no way to constrain the parameters to have different polytypes.

Exercise 2.5

Define a function nummax which takes a number pair and returns the greater of its two

components.

2.6.3 Type synonyms

As a further aid to program documentation, Miranda allows a type to be given
a name, which may be any legal identifier as described in Chapter 1 (and which
must also start with a lower case character). For example the tuple (13, "March",

1066) has the type (num,[char],num). For clarity this type could be given the
name date by using the == facility as follows:

date == (num, [char], num)

Unfortunately, if a value is constrained with the type name date then Miranda will
respond with the underlying types rather than the new type name. Thus, though
type synonyms are very useful for shortening type expressions in script files, they
do not help to make type error messages clearer:

mybirthday :: date

mybirthday = (1, "April", 1900)

Miranda mybirthday ::

(num,[char],num)

For all purposes other than documentation of the script file, the value mybirthday
will be treated as a (num,[char],num) aggregate type. Using the == notation does

not introduce a new type. Values of type date and type (num,[char],num) can
be compared and otherwise mixed, unlike the strong type discipline imposed, for
instance, between nums and chars. Thus, the following is legal:

abirthday = (1, "April", 1900)

Miranda mybirthday = abirthday

True

54 Functions

Polymorphic type synonyms

It is also legal to have type synonyms that are entirely or partially comprised of
polytypes. If a polytype appears on the right-hand side of a declaration then it
must also appear on the left-hand side, between the == token and the new type
name. For example, sametype triple can be declared to be a triple of any type
such as numbers or characters by defining it as a polytype:

sametype triple * == (*,*,*)

An alternative and more general type synonym would be:

triple * ** *** == (***,**,*)

This is more general than the first version because it does not require all the
elements of the three-tuple to have the same type.

Polymorphic type synonyms can be used to declare the types of functions in much
the same way as other type synonyms. The only constraint is that it is necessary
to indicate whether the type of the function is intended to be polymorphic or have
a specific monomorphic type:

revNumTriple :: (sametype triple num)

-> (sametype triple num)

revNumTriple (x,y,z) = (z,y,x)

or

revAnyTriple :: triple * ** *** -> triple *** ** *

revAnyTriple (x,y,z) = (z,y,x)

2.7 Simple recursive functions

Miranda, like other functional programming languages, uses recursion as its main
iteration control structure; this general mechanism can achieve the same effect as
the imperative language features such as “while”, “repeat” and “for” loops.7 A
recursive function definition is one where the name of the function being defined
appears inside the function body. When the function is applied to an argument,
an appearance of the function name in the function body causes a new copy of the
function to be generated and then applied to a new argument. If the function name
appears as part of an expression then the evaluation of the expression is suspended
until the recursive function application returns a value.

Recursion is a very powerful and general mechanism which must be used care-
fully. At its simplest, it can be used to generate an infinite number of applications
of the same function, for example:

7See also Chapter 4.

Simple recursive functions 55

loop forever () = loop forever ()

If this function is ever evaluated, it will loop for ever, calling itself again and again
and achieving nothing. The function loop forever could also be defined to take
a non-empty argument, but is equally useless:

loop forever x = loop forever x

Miranda loop_forever 2

BLACK HOLE

Evaluating this function by hand shows that whenever loop forever is applied
to the message "BUY US A DRINK" it immediately invokes another copy of the
function loop forever and applies it to another copy of the message.

loop_forever "BUY US A DRINK"

==> loop_forever "BUY US A DRINK"

==> loop_forever "BUY US A DRINK"

==> loop_forever "BUY US A DRINK"

....

To create a more useful recursive function definition, it is necessary to ensure that
there is some terminating condition for the function and also that the recursive
calls are successively applied to arguments that converge towards the terminating
condition.

A number of recursive styles can be identified which achieve the above criteria,
the rest of this section shows the most common simple recursive styles: stack and
accumulative recursion.

2.7.1 Stack recursive functions

The following function printdots is an example of the recursive style known as
stack recursion. This function prints the number of dots indicated by its parameter.
Firstly, there is a terminating pattern 0. Secondly, each recursive application of
printdots is to a different n. Thirdly, each successive n decreases towards the
terminating pattern 0.

printdots :: num -> [char]

printdots 0 = ""

printdots n = "." ++ (printdots (n - 1))

56 Functions

A hand evaluation reveals:

printdots 3

==> "." ++ (printdots (3 - 1))

==> "." ++ (printdots 2)

==> "." ++ ("." ++ (printdots (2 - 1)))

==> "." ++ ("." ++ (printdots 1))

==> "." ++ ("." ++ ("." ++ (printdots (1 - 1))))

==> "." ++ ("." ++ ("." ++ (printdots 0)))

==> "." ++ ("." ++ ("." ++ ("")))

==> "." ++ ("." ++ ("." ++ ""))

==> "." ++ ("." ++ ".")

==> "." ++ ("..")

==> "..."

This hand evaluation illustrates the appropriateness of the name stack recursion;
the arguments of all the calculations being stacked (rather like a stack of playing
cards) until the terminating pattern is met.

Exercise 2.6

Define a recursive function to add up all the integers from 1 to a given upper limit.

2.7.2 Accumulative recursive functions

An alternative style of recursive function is now shown. The following example
plus exploits the fact that two positive numbers can be added, by successively
incrementing one of them and decrementing the other until it reaches zero.

plus :: (num,num) -> num

plus (x,0) = x

plus (x,y) = plus (x + 1, y - 1)

Hand evaluating the application of plus to the tuple (2,3) gives:

plus (2, 3)

==> plus (2 + 1, 3 - 1)

==> plus (2 + 1, 2)

==> plus (2 + 1 + 1, 2 - 1)

==> plus (2 + 1 + 1, 1)

==> plus (2 + 1 + 1 + 1, 1 - 1)

==> plus (2 + 1 + 1 + 1, 0)

==> 2 + 1 + 1 + 1

==> 5

Who needs assignment? 57

This function also meets the fundamental requirements of having a terminating
condition and a convergent action. The terminating condition is met in the first
pattern, which if matched halts the recursion and gives the result. The convergent
action is satisfied by the body of the second pattern which will eventually decrement
y towards the first pattern’s terminating condition. It can be seen that the name
accumulative is appropriate in that one of the component arguments is used as an
accumulator to gather the final result.

Exercise 2.7

Write printdots in an accumulative recursive style. This will require more than one
function.

Exercise 2.8

Write the function plus in a stack recursive style.

2.8 Who needs assignment?

Imperative programming languages use a memory-store model with “variables”
whose names refer to memory locations. Central to the imperative style is the
action of changing the values held in these variables through a process called “as-
signment”. For example, in the C++ language the statement int x; gives the
variable name x to a previously unused memory location which is big enough to
store an integer. The value stored at this location might initially be set to 3 using
the assignment statement x = 3; and subsequently overwritten with a new value
25 using the assignment statement x = 25;. Multiple assignment (reassignment)
of values to the same memory location is vitally important to the imperative style,
yet this mechanism seems absent in the functional style.

In Miranda there is no assignment operator. It is not possible for a programmer
to make an explicit change to the value held at a given storage location and it is
not possible for a function to change the value of its argument. To those who have
some experience of programming in an imperative language, this may come as a
shock.

In order to understand why assignment is not necessary in a functional language,
it is worthwhile analysing its rôle in imperative programs:

1. To store input and output values.
A memory location is set aside to receive incoming data; the program reads
in that data and then uses assignment to save the data in the appropriate
memory location.

2. To control iteration.
A memory location is set aside to hold an integer which counts how many

58 Functions

times an iteration construct has looped. Each time around the loop, an
assignment statement is used to increment or decrement the value held in
the “counter” memory location.

3. To store the results of intermediate calculations.
Often it is necessary to remember an intermediate value whilst the program
does some other calculation; the intermediate result can then be used later.
This is usually achieved by assigning the intermediate value to a memory
location.

4. To store a history of intermediate results (known as “state” information).
This is much the same as the previous rôle except that a collection of different
memory locations may be required. This involves some additional memory
management (using direct addressing of memory) to ensure that each value
is stored (using assignment) in the appropriate location, possibly overwriting
the existing value at that location. The collection of memory locations is
often known as the “state” of the computation.

All of the above imply the need to consider the nature of data storage. In functional
languages, it is not necessary to think in terms of data storage locations and
so it is correspondingly unnecessary to think in terms of the alteration of the
contents of data storage locations. The rôle taken by assignment is either provided
transparently by the Miranda system or is a natural consequence of the recursive
style of programming:

1. Input to a program appears as the actual parameter to its topmost function
and output from the program is the result of the topmost function applica-
tion. The allocation of storage locations to hold these values is automatically
managed by the system and the output of the topmost function application is
printed to the screen without the programmer having to specify this action.

2. Iteration control is provided by recursion; the number of iterative steps being
controlled by the value of the initial argument.

3. The results of intermediate calculations need not be stored (although a result
can be “remembered” as a definition for later use). The automatic storage
allocation mechanism of Miranda hides store allocation and deallocation from
the programmer, as seen in the following comparison of the imperative and
functional treatments of the function swap.
An ANSI C definition of swap is:

void swap(int *xp, int *yp) {
int t;

t = *xp;

*xp = *yp;

*yp = t;

}

Error messages 59

An alternative imperative approach is to pass the two integers as an aggregate
type, for example:

typedef struct {
int x;

int y;

} PAIR;

PAIR swap (PAIR arg){
PAIR result;

result.x = arg.y;

result.y = arg.x;

return result;

}

For both imperative approaches it is necessary to assign to a specific storage
variable—either to hold a temporary (intermediate) value or to hold the
result. By contrast, the Miranda approach is much simpler:

swap (x,y) = (y,x)

4. The storage of state information is also dealt with automatically by a func-
tional language implementation. For example, the accumulative recursive
style “remembers” the changing state of values from one recursive applica-
tion to the next by means of the “accumulative” parameter.

Program control

It is worth noting that the three classic program control structures of imperative
programming languages are also available to the functional programmer:

1. Iteration: by means of recursion.

2. Selection: by means of pattern matching.
3. Sequencing: by means of the nesting of function applications.

2.9 Error messages

Some functions may not have a sensible result for all of their possible argument
values. For example, if the built-in function div is applied with a zero denominator
then it will terminate with the error message:

program error: attempt to divide by zero

60 Functions

Figure 2.4 Example of a partial function.

A function which has no defined result for one or more of its input values is known
as a partial function, as illustrated in Figure 2.4. It is often the case that a
programmer will need to define a partial function. For example, the function
printdots (given in Section 2.7.1) should give an error if applied to a value of
n which is less than zero. Unfortunately, in the current definition the parameter
of recursion, n, will never converge to its terminating condition if it is initially
negative. There are three options available to the Miranda programmer to handle
this situation:

1. Impose a dummy answer. A negative number of dots is clearly meaningless,
but could be dealt with by indicating that negative values generate no dots.

2. Ignore it and let the Miranda system recurse for ever or generate some not
very helpful error message, such as:

<<not enough heap space -- task abandoned>>

Unfortunately this will not necessarily pinpoint which function has failed
inside a complex expression or program.

3. Force the Miranda system to give a more meaningful message, by stating
which function has failed and why it has failed.

This last option can be achieved using the built-in function error as follows:

Programming with functions 61

string == [char]

printdots :: num -> string

printdots 0 = ""

printdots n

= "." ++ (printdots (n - 1)), if n > 1

= error "printdots: negative input", otherwise

Miranda printdots (-1)

program error: printdots - negative input

The function error is polymorphic in its return type. It can take any input string
and will evaluate to the return type of the function where it appears. As a side-

effect, its parameter string is printed as a user-provided diagnostic. No further
evaluation can occur after error is applied.

Exercise 2.9

Write a function called int divide which divides one whole number by another; the
function should not use any arithmetic operators except for subtraction, addition and
unary minus.

2.10 Programming with functions

This section shows the design of a small program to convert an integer to a string
value. This mirrors the function shownum for integers, though it must be noted
that due to Miranda’s strong type system it is not possible for the user to write a
show program to convert all types. The design of this program is presented in a
top-down manner. This technique is known as top-down design because each step,
except the final step, assumes the existence of functions defined at a later step.8

Specification

The program will take an integer as its parameter and will evaluate to a string.
The string will be a denary representation of the integer; for a negative integer the
string will start with a minus sign character.

8Chapter 5 shows a way to more closely associate the functions within a program.

62 Functions

Design

Firstly, the sign of the input integer is determined and dealt with. Secondly, a
function to process positive integers is developed. This breaks its input into two
parts: an integer less than 10 (which can be represented as a single character),
together with an integer greater than 10 which requires exactly the same processing.

Implementation

Step 1: Converting any integer to a string

Assuming that a positive number can be represented as a string, then a negative
number can also be represented by taking its absolute value (using abs) and pre-
ceding the string representation by a - character. This description converts directly
to the Miranda code for a top-level function int to string which will translate
an integer value to a string value:

string == [char]

int to string :: num -> string

int to string n = "-" ++ pos to string (abs n), if n < 0

= pos to string n, otherwise

Step 2: Converting a positive integer to a string

The next stage of the design is to define pos to string to convert a positive integer
to a string. Since only integers less than 10 have a single character ASCII repre-
sentation, the integer to be converted must either be less than 10 (the terminating
condition of the function) or requires further processing.

The integer must be split into two parts: the least significant digit (which can be
obtained using mod), and the integer without its least significant digit (which can
be obtained using div). At each step, the least significant digit must be converted
to a single character string using the function int to char. The rest of the integer
forms the parameter to another application of pos to string. At each successive
application, the parameter will reduce and eventually converge to a number less
than 10.

Because individual digits are discovered in the reverse order to that which they
must appear, it is necessary to concatenate them on the right of any recursive
application of pos to string.

This description leads directly to the following Miranda code:

Summary 63

pos to string :: num -> string

pos to string n

= int to char n, if n < 10

= pos to string (n div 10)

++ (int to char (n mod 10)), otherwise

Step 3: Converting an integer less than 10 to a string

The code for this function is based on the same rationale as for the function toupper

shown in Section 2.1.1 and should be self-explanatory:

int to char :: num -> string

int to char n = show (decode (n + code ’0’))

Note that int to char is presented as a separate function because it is concerned
with type conversion, whilst pos to string has an iterative purpose.

Putting it all together

In Miranda it does not matter in which sequence the definitions are written. How-
ever, it is good style to present the functions in the order of their top-down design.

One function per function

It must be stressed that each function in the above program has a single pur-
pose. This recommended method allows easier testing and easier modification of
individual parts of the program.

2.11 Summary

This chapter has discussed the definition and use of functions. Functions translate
a value from a source type to a value in a target type, with tuples being used to
represent composite domains. An alternative style that does not need tuples is
discussed in Chapter 4.

There are many choices available to the designer of functions, including the
following:

1. The types of the function parameters—this includes the choice of which types

64 Functions

may be used, whether they are monomorphic or polymorphic and whether
the function is defined for all input values.
Functions may either be monomorphic, which means that their definition
absolutely specifies the required types of the input data, or they may be
polymorphic, whereby the actual types of the input data may be different for
different applications of the function. Polymorphic function definitions are
an important extension to the strong type system introduced in Chapter 1.
Functions that are only defined for some values of their input parameter
are known as partial functions; if they are applied to an argument for which
they have no definition, the programmer may signify that the program should
terminate immediately with an error message.

2. The use of recursion as a general-purpose control structure.
The mechanism of recursion has been shown to provide the iterative control
structures of imperative programming languages (such as “for loops” and
“while loops”). Recursive function definition is of fundamental importance
to programming in Miranda and in this chapter the two most common forms
of recursion (stack and accumulative) have been introduced. The nature of
recursive definitions is further explored in Chapters 3 and 4.

3. The use of the pattern matching style of definition.
The technique of pattern matching may be used when defining functions; this
has many advantages, including the introduction of a selection mechanism
and providing a way to ensure that a programmer gives consideration to all
of the possible inputs to a function.

