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Abstract

An Executable Concept Slice extracts from a program
an executable subprogram that captures the semantics of a
specified high-level concept from the program. Executable
concept slicing combines the executability of program slic-
ing, with the expressive domain level criteria of concept as-
signment. This paper presents results from an investigation
of executable concept slice size to assess the effectiveness of
executable concept slicing. The results show that the coher-
ence of concept-based slicing criteria allows them to pro-
duce smaller executable concept slices than arbitrary crite-
ria, providing evidence for the applicability of Executable
Concept Slicing.
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1 Introduction
The simplification offered by program slicing has led to

its application in a number of reverse engineering tasks,
for example, debugging [1, 22, 27, 34], restructuring [12],
reuse [4, 13, 26] and program comprehension [14]. One
drawback shared by many slice based techniques is the low
level at which a slice’s starting point (called a slicing cri-
terion) is specified. Essentially, an engineer has to have
significant internal knowledge about the code (in particu-
lar the program’s variables and the locations of their use)
before slicing can be effectively employed. For a program-
mer familiar with a code base, this may not be a problem,
but for others it is. Programmers new to the code would
benefit from a “higher level” way to specify slicing crite-
rion. Thus, to further broaden the applicability of slicing,
one goal of recent work has been to raise the abstraction of
level of slice criterion [20].

An Executable Concept Slice (ECS) unifies two existing
code extraction techniques [15]: concept assignment and
program slicing. The result extracts an executable subpro-
gram, based on a high-level conceptually-oriented criterion.

For example, consider an accounting program whose
transaction processing code is faulty. The high-level cri-
terion of interest (transaction processing) is apparent. But
where in the code one might slice to extract the transaction
processing code requires in-depth source code inspection.
Concept assignment [15] (described below) maps a high-
level criterion such as “transaction processing” to a con-
tiguous sequence of source statements. An executable con-
cept slice, for domain level criterion, C, is constructed by
forming the distributed union of the slices upon each of the
statements identified by the concept assignment binding for
C. The union of such slices is an executable program; thus,
the resulting union is an executable program that contains
the statements required to support the computation identi-
fied by concept assignment. This combination of concept
assignment and program slicing is referred to as Executable
Concept Slicing [20].

The applicability of any code extraction technique for
reverse engineering crucially depends upon the size of the
subprogram extracted. From this point of view, one might
be forgiven for supposing that Executable Concept Slicing
is simply impractical, because the unioning of several slices
will tend to extract large amounts of code; perhaps the entire
program in many cases. As this paper demonstrates, this is
not the case. The paper presents evidence that the coherence
of the slicing criteria identified by concept assignment lead
to a set of slices with a large intersection; there is no size
explosion when unions of slices for concept-based criteria
are constructed.

The three primary contributions of the paper are the em-
pirical evidence provided that

1. Using concept assignment to choose conceptually re-
lated slicing criteria produces smaller slices than other
similarly-sized criteria.

2. For random collections of slicing criterion there is a
positive correlation between the size of the criterion
and the size of the resulting slice. In contrast, for
conceptually related criterion no such relation exists.



Thus, a concept of n statements does not necessarily
lead to a slice that is n times larger than the slice taken
with respect to any one of the statements.

3. Large dependence clusters [7] impact the size of slices
constructed from all types of slice criteria.

The remainder of the paper is organized as follows.
The next section provides background information on pro-
gram slicing, concept assignment, and their combination in
ECS. Section 3 introduces the empirical study undertaken.
Section 4 presents and discusses the result of the study.
The final sections discuss related work and the conclusions
drawn.

2 Background
2.1 Program Slicing

A static backward program slice extracts from a program
an executable subprogram composed of the statements rele-
vant to the computation of particular variable v at statement
s [32, 33]. Running the program and its slice, the same se-
quence of values for v are computed at statement s.

The pair < s, v > is referred to as a slicing criterion. The
criterion can easily be extended to include set of statements
and a set of variables at each statements. The resulting slice
is the union of the slices taken with respect to the criterion
consisting of a single statement and a single variable.

This paper is concerned with static backward slices [32,
33]. For example, Figure 1 shows a simple program that
computes the sum and product of the first n integers and the
slice highlighted in bold taken with respect to the final value
of the the variable sum.

Many other forms of slicing have been proposed. These
include dynamic slicing [24], amorphous slicing [18, 19]
and conditioned slicing [10]. In the remainder of this paper
only backward slices are considered [21].

The executable static slice used herein can be computed
from a program’s System Dependence Graph (SDG) as the
solution to a graph reachability problem [21, 8]. In doing
so, the slicing criterion is simplified to an SDG vertex. The
variables from the slicing criterion are assumed to be those
referenced by the SDG vertex.

2.2 Concept Assignment
Executable concept slices extend program slicing by re-

placing the low-level criterion used in slicing with a higher-
level criterion. The technique used to identify concepts (i.e.,
map high-level criterion to low-level criterion) acts as a pa-
rameter of the executable concept slicing algorithm. This
section describes the use of Hypothesis-Based Concept-
Assignment to identify the mapping [15]. Alternatives in-
clude, for example, a latent semantic indexing based ap-
proach similar to the work of Maletic and Marcus [28], and
Antoniol et al. [3].

sum = 0;
product = 1;
scanf("%d", &n);
for(i=0; i<n; i++)
{
sum += i;
product *= i;

}
printf("%d", product);
printf("%d", sum);

Figure 1. A example slice taken with respect
to the variable sum at the last statement.

Concept assignment aims to allocate specific high-level
meaning to specific parts of a program. This technique can
be used to identify program fragments associated with a par-
ticular concept in a program. For example, the code associ-
ated with computing the tax on a sale. The concept assign-
ment problem was defined by Biggerstaff et al. as follows
[5]:

Concept assignment is a process of recognizing
concepts within a computer program and build-
ing up an “understanding” of the program by re-
lating the recognized concepts to portions of the
program, its operational context and to one an-
other.

Hypothesis-Based Concept Assignment (HB-CA) [15] is
a plausible-reasoning approach that addresses the first part
of Biggerstaff et al.’s concept assignment problem (recog-
nising concepts and relating them to portions of the pro-
gram).

HB-CA is a three-stage process, Hypothesis Generation,
Segmentation, and Concept Binding. The process requires
a knowledge base of concepts to drive the analysis. This
is a semantic network that contains two node types: the
concepts that the programmer may be interested in and the
indicators that may indicate the presence of a concept in
the program (e.g., words that might be found in the source
code). The knowledge base is constructed by a software
engineer in advance of executing HB-CA (this is not a par-
ticularly difficult task since the relationships between con-
cepts and indicators are quite simple). The concept may
take the form of an Action or Object and the indicators can
be possible string fragments of identifiers, keywords, or
comments.

In the hypothesis-generation stage, the source code is
taken as input and scanned for indicators of the various con-
cepts in the knowledge base. A hypothesis to a concept is
generated for each matching indicator. All hypotheses are
sorted by their indicator position in the source code.



Concept Source
sum sum = 0;
sum for(i=0; i<N; i++
sum sum += Sound[i];

spl effective SPL = 20×log(√sum)

average average = sum / N

Figure 2. A simple HB-CA example that in-
cludes three concepts related to sound vol-
ume. Sound pressure level (SPL) describes
the relative intensity of a sound.

In the segmentation stage, the hypothesis list is analysed
to group hypotheses into segments, initially using natural
segment boundaries such as procedure boundaries. Follow-
ing this, a self-organising map can be used to create non-
overlapping partitions of high conceptual focus [15]. The
output of this stage is a collection of segments, each con-
taining a number of hypotheses.

In the concept-binding stage, the segments are scored
in terms of concept occurrence frequency. Disambiguation
rules select a concept where several different hypotheses oc-
cur equally frequently. The result of this stage is a series of
concept bindings labeled with the winning concepts accord-
ingly.

Figure 2 provides a simple HB-CA example in which
the domain model includes indicators for three concepts:
sum indicates the computation of the sum of a collection of
sound frequencies, spl, pressure, level indicate the com-
putation of the effective sound pressure level of the sound,
and average indicates the computation of the average vol-
ume of the sound’s frequencies. The first and third state-
ment include an indicator for the sum concept. The penul-
timate statement includes an indicator for the spl concept,
and the final statement includes an indicator for the average
concept and the sum concept. In this highly-simplified ex-
ample, Lines 1-3 are assigned to sum concept, Line 4 to the
spl concept and Line 5 to the average. Note that generally
HB-CA assigns to regions rather than single lines and the
results of HB-CA are not guaranteed to be executable.

2.3 Executable Concept Slicing

An ECS is formed using slicing to extend the results of
concept assignment by slicing with respect to the compo-
nents associated with a given concept. This computation
exploits the advantages of both techniques, while overcom-
ing their individual weaknesses. Executable concept slicing
takes advantage of the executability of programs produced
by slicing and the high-level extraction criterion from con-
cept assignment. This contrasts with the unexecutable con-
cept binding produced by concept assignment alone and the
low-level criterion required for program slicing.

Empirical results based on the study of one COBOL
module from a large financial organization and one open-
source C program have indicated that combining concept
assignment and program slicing produces better results than
either is capable of individually [16].

An algorithm for computing all the executable concept
slices is presented in Figure 3. For each concept ci, it com-
putes the slice taken with respect to the set of SDG vertices
that represent statements from c. Slicing on these vertices
produces the ECS.

function ECS (Program P, DomainModel D)
returns: set of Program

let {c1, . . . , cn} = HB-CA-Concepts(P, D)
for each ci ∈ {c1, . . . , cn}

let ECSi = Slice(P, SDG-vertices(ci))
endfor
return {ECS1, . . . , ECSn}

Figure 3. The Executable Concept Slicing Al-
gorithm

Reconsider the example shown in Figure 2. An engineer
interested in the average sound volume could apply HB-CA.
The result is the last statement of the program (shown in
bold italics). Slicing on the SDG vertex (in general ver-
tices) for the statements identified by HB-CA returns the
vertices represented by the bold statements Figure 2. These
statements make up the ECS for the average concept. They
form an executable program that computes average volume.

3 Empirical Study
This section describes the setup of the case study used to

empirically investigate concept slices. The study compares
the size of slices constructed using four different generators
of low-level slicing criteria. Each generator produces a set
of SDG vertices. For example, the HB-CA generator re-
turns the vertices representing all the statements identified
as belonging to a particular concept. The following three
research questions are used to capture the most important
aspects of concept slice construction.

1. Does slicing on a set of conceptually related SDG ver-
tices (i.e., those representing a single HB-CA concept)
produce a smaller slice than slicing on other similarly
sized sets?

2. Is the size of an ECS related to the size of the HB-CA
extracted criterion?

3. Do large dependence clusters [7] affect ECS size?



3.1 Criteria Definitions
In order to answer these questions four alternate tech-

niques for selecting similarly sized sets are compared. The
first of the four, hereafter referred to as Type 1, uses the con-
cept binding produced by a concept assigner (in this case the
WeSCA implementation of HB-CA [15]). This approach is
expected to generate the most coherent sets of criteria and
thus the smallest slices.

The remaining three types generate similar sized, but less
coherent sets of criteria. Types 2 and 3 select SDG vertices
that represent contiguous program statements starting from
a random statement; thus, it is unlikely that these statements
correspond to a single concept. A Type 2 criterion includes
a prescribed number of vertices. In the experiment, this
is always the same number as found in the corresponding
Type 1 criterion. This type of criterion reflects most closely
the structural form of a Type 1 criterion.

A Type 3 criterion includes a prescribed number of lines
of code. In the experiment, this is always the same num-
ber of lines as found in the corresponding Type 1 criterion.
Thus, this type of criterion reflects the lexical structure of a
Type 1 criterion.

Finally, Type 4, the least coherent type, includes a ran-
dom collection of vertices. In the experiment, the size of
this set is the same as that of the corresponding Type 1 cri-
terion.

The four types are formally defined below. In the def-
initions, lines of code include statements, comments, and
blank lines, as these are all relevant to concept assignment.

Type 1: Concept Binding

For program P and a concept C generated by a concept
assigner, the Type 1 criterion for C includes the vertices of
P ’s SDG that represent the statements of C.

Type 2: Contiguous, Same Vertex Count, Random Start

For a program P , given natural number n and starting state-
ment si, a Type 2 criterion includes the first n vertices of
P ’s SDG that represent the statements si, si+1, · · ·.

Type 3: Contiguous, Same LoC Count, Random Start

For a program P , given natural number n and starting state-
ment si, a Type 3 criterion includes the vertices that repre-
sent the n statements si, si+1, · · · si+n−1.

Type 4: Non-Contiguous, Same Vertex Count, Random
Points

For a program P and a given natural number n, a Type 4
criterion is a collection of n randomly selected vertices from
P ’s SDG.

Figure 4 illustrates the four types of criteria. In the figure
a statement is represented by a gray line while an SDG ver-
tex by a gray dot. Selected components are shown in darker
grey. Line 12 separates two concepts. Thus, assuming the
concept from Lines 2-11 is of interest then the 17 vertices
that represent these 10 lines would make up the Type 1 crite-
rion. The example Type 2 criterion is generated by selected
a random starting location (Line 6 in the example) and in-
cluding contiguous statements until 17 vertices are included
(when multiple vertices represent a statement, the starting
and ending positions within the line are used to uniquely or-
der the vertices for selection). The example Type 3 criterion
is generated by selecting a random starting location (Line 4
in the example) and including contiguous statements until
10 lines are included. Finally, the example Type 4 criterion
includes 17 randomly selected vertices.

The primary comparison made in the study is between
Type 1 criterion and Type 4 criterion. In essence the ques-
tion being asked is does using concept assignment to select
a set of slicing criteria differ from just selecting random ver-
tices. If there is no different then an ECS is likely to get
too large to be useful in practice. It is anticipated that the
average ECS size will be similar to the average backward
slice. This should be the case if the statements identified as
belonging to a single concept are related in a dependence
sense.

Comparison of the resulting slices for Type 1 criterion
with those for Type 2 and Type 3 allows the effect of
conceptual coherence (as defined by the hypothesis-based
concept-assignment algorithm) and spatial coherence (adja-
cent lines of code) to be better understood. If the spatial
aspect of Type 1 criterion is all that effects slice size, then
slices on Type 2 and Type 3 criterion will have the same
size as corresponding Type 1 criterion. Conversely, if con-
ceptual coherence has value then Type 1 criterion will lead
to smaller slices.

This difference will never be large because any consec-
utive sequence of statements has some conceptual coher-
ence. To better understand the relationship, consider, for
example, a program that is partitioned into concept bind-
ings each consisting of exactly 10 statements. A randomly
chosen sequence of 10 statements has a 10% probability of
being identical to one of the existing concept bindings (if its
starting point is the starting point of a concept). The other
90% of the time such a randomly selected sequence of 10
statements will include portions of two concepts. If these
two concepts are related (in a dependence sense), then the
slices on both will include significant overlap. Therefore, it
would be realistic to expect that Type 2 and Type 3 criteria
would lead to a size increase compared to Type 1 criterion,
but it would be unrealistic to expect that there would be a
significant difference.
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Figure 4. Example of the four types of criteria

Number of Large
Concept Dependence Brief

Subjects LoC Vertices Bindings Cluster Description
acct-6.3.2 3,204 9,775 24 No Process monitoring utilities
EPWIC-1 7,943 19,545 63 No Image compressor
space 9,126 20,018 67 No ESA space program
indent-2.2.6 8,259 30,311 49 Yes Text Formatter
diffutils-2.8 10,743 33,231 109 Yes File comparison utilities
findutils-4.2.25 28,887 105,535 128 Yes File finding utilities
Total 68,162 218,415 440

Table 1. Experimental Subjects.

3.2 Subject Programs

The six programs used in the study are summarised in
Table 1, which lists each program along with some statis-
tics related to the program and its SDG. These include the
size of the program in LoC and the size of the resulting
SDG in vertices. Both LoC and vertices were counted by
CodeSurfer [17]. The table also shows the number of con-
cept bindings that were identified by WeSCA for each sub-
ject program. Over all six programs there were a total of
440 concept bindings.

To address the third research question, the programs
selected include three subject programs known to be
free of large dependence clusters (acct-6.3.2, EPWIC-
1, and space) and three subject programs known to con-
tain large dependence clusters (indent-2.2.6, diffutils-2.8,
and findutils-4.2.25). Dependence clusters are essentially
strongly connected components (SCCs) in the dependence
graph. From the standpoint of a dependence analysis, such
as slicing, including any part of such an SCC causes the
inclusion of the entire SCC.

3.3 Analysis Tools

WeSCA, a tool based on HB-CA and developed by Gold,
was used to identify concept bindings in the source pro-
grams [16]. WeSCA requires a library of concepts to drive
its analysis. A generic C concept library, used in other stud-
ies [16], was used as the basis for the analysis. It was ex-
tended for each program to reflect the different purposes
(and thus concepts) of each program. To extend the generic
C concept library, source files from each system were ex-
amined to identify possible concepts.

CodeSurfer, Grammatech’s deep-structure analysis tool,
was used to build the SDGs and compute program slices
in the experiments reported herein [17]. The API for
CodeSurfer includes a function that identifiers the depen-
dence graph vertices associated with a range of source line
numbers. After WeSCA identifies the lines associated with
a concept, this API is used to identify the corresponding
SDG vertices used as slice starting points. The resulting
ECS is the (backward) slice taken with respect to these ver-
tices.



3.4 Measurement
Lines of Code (LoC) is a somewhat crude metric for

measuring slice size owing to the lack of a standard defi-
nition for LoC. Following Binkley et al., herein size is more
precisely measured using SDG vertices [9]. In this experi-
ment, both the size of the low-level slicing criterion and the
size of the resulting slices are reported as a percentage of
the source-code representing SDG vertices. Excluded from
this count are internal vertices that do not directly repre-
sent source. The most common source of such vertices is
the representation of global variables as additional function
parameters.

3.5 Method
The case study was performed by executing WeSCA on

the subject programs to generate a set of Type 1 criteria for
each program. These were exported (in terms of the start
and end line numbers) to data files that were imported into
CodeSurfer and mapped into sets of SDG vertices that form
the low-level slicing criterion. Finally, slices for each vertex
of the set were computed using CodeSurfer. The result of
each slicing operation is a set of vertices, and the union of
these sets forms the vertices of the ECS.

The size of the Type 1 criterion was used to determine
the size of the other three criterion types. For example,
consider a Type 1 criterion of 10 LoC that corresponds to
17 SDG vertices. The comparable Type 2 criterion would
include 17 SDG vertices taken from a random contiguous
sequence statements. Similarly, the comparable Type 3 cri-
terion would include a random contiguous sequence of 10
statements. Finally, the comparable Type 4 criterion would
include 17 randomly chosen SDG vertices.

To compare the effect of the different types, for each
Type 1 criterion, a corresponding Types 2, 3, and 4 crite-
ria of a matching size to the Type 1 was generated. Since
Types 2, 3, and 4 rely on random generation they were re-
peated 30 times for each Type 1 criterion and the results
averaged.

4 Results and Discussion
4.1 Relationship between Criterion Co-

herence and Slice Size
Figure 5 shows the average slice size for each program

and each type. Recall that for Type 2, 3, and 4 criteria the
resulting slice size is the average of 30 slices taken from dif-
ferent random starting points. Comparing the slices taken
with respect to Type 1 and Type 4 criteria, it is clear from
the graph that Type 4 criterion always generates larger slices
than the more computationally coherent Type 1 criterion.
This is important for two reasons. First, it provides evi-
dence that HB-CA is identifying conceptually related ver-
tices (and thus vertices with similar slices). Second, it pro-
vides evidence that slicing from a large set of vertices V

Figure 5. Average slice sizes for each type of
criterion.

(e.g., those representing a concept) does not lead to a sig-
nificant increase in slice size when V has a degree of con-
ceptual coherence. In contrast, as can be seen from the re-
sults, slicing on a set of vertices V that are purely random
(and therefore have no conceptual coherence) does lead to a
significant increase in size.

It is possible that the larger slice size when using Type 4
criterion results from a lack of spatial locality, rather than
a lack of conceptual locality. That is, instead of indicat-
ing that HB-CA is identifying semantically related program
components (and thus their slice is smaller), the results
comparing Type 1 and Type 4 might indicate that select-
ing lexically close program components (spatial locality)
produces smaller slices. Type 2 and Type 3 criteria were
included in the experiment in order to investigate this pos-
sibility. Both Type 2 and Type 3 criteria are built from con-
tiguous program statements and thus should have similar
spatial locality with Type 1 criterion.

Using Type 2 or Type 3 criteria provides a very strict test.
Although the starting points for both criteria are random, by
including contiguous program statements, some contiguous
sequence of one or more concepts binding will always be in-
cluded. Indeed, this is inevitable, since concept assignment
partitions the source code into a set of non-overlapping con-
cepts.

Figure 5 provides evidence that Type-1 criterion do lead
to smaller size increases than Types 2 and 3. That is, in
all but one case, the Type 1 criterion lead to smaller size
executable concept slices. Thus, it is conceptual locality
and not spatial locality that causes executable concept slices
to be smaller those computed using Type 4 criterion.

The one exception is for the program EPWIC where
Type 2 criterion produced a smaller average slice size than
the average ECS slice. However, the difference is not sta-
tistically significant. Finally, it is interesting to note for the
programs with large dependence clusters, the average sizes
of slices from all criteria show greater similarity.
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4.2 Relationship between Criterion Size
and Slice Size

Figure 6 presents scatter plots of the size of the resulting
slices for each subject program using all four types of crite-
ria. The columns in the figure represent each program and
the rows the criterion types. For each sub-figure, the X axis
represents the size of criterion (each program uses a slightly
different scale ranging from 0.5% to 4.0% as the largest X
value). The Y axis is the corresponding slice size. The de-
tail of each figure is less important than its overall shape.
Note that for Types 2, 3, and 4, all slices are shown (i.e., 30
slices corresponding is size to each Type 1 criterion).

Looking first across all four types, there is a clear differ-
ence in the pattern for the first three programs and the last
three programs. The limited number of bands for the last
three programs are caused by the presence of large depen-
dence clusters. To better understand this, consider a pro-
gram that is one large dependence cluster (one large SCC
of dependences). Any slice of such a program will include
a component from the cluster and thus will include the en-
tire cluster (entire program). In the more realistic case, the
existence of a few significant dependence clusters means
that only a limited number of output slice sizes are possible.
For example, consider the scatter plot for indent using the
Type 4 criterion. Only 121 of the 1470 runs (less the 10%)
of the slices managed to miss the one large dependence clus-
ter. (The 121 are similar enough in value to appear as two
dots on scatter plot.) As a result the size of most slices is
just over 80%. In contrast using Type 1 criterion, over a
dozen of the 49 concepts (25%) map to vertices outside this
large dependence cluster. As shown in Figure 6 the impact
of large dependence clusters is the presence of character-
istic horizontal lines in the size graphs indicating. These
lines witness the large interdependencies between program
components.

Looking at each criterion type independently, the ran-
dom criterion, Type 4, shows the expected increase in slice
size accompanying an increase in criterion size. This effect
is masked by large dependence clusters; thus, it is easier
to see in the first three programs than in the last three pro-
grams. The best example is the space program where the
pattern is quite visually apparent. This correlation comes
from the probability of a subsequent randomly chosen ver-
tex being in a new area of the program, as vertices are added
more of the program is in the slice and thus the probability
of including a new area diminishes.

Statistically this kind of non-linear relationship should
give rise to a strong Spearman rank correlation, which sim-
ply quantifies how frequently an increase in y accompanies
an increase in x. The relationship between x and y need not
be linear. For acct, EPWIC-1, and space, the data from
the Type 4 scatter plots have Spearman R’s coefficients of
0.91, 0.86, and 0.87, respectively. All being greater than

0.80 these suggest strong rank correlations.
This non-linearity can be explained if the selection of

scattered vertices is seen as a sequential process of adding
slices to the union one at a time (and simultaneously in-
creasing the size of the criterion). The first few vertices
selected have a much greater chance of drawing in large
parts of the program than those selected later (since a large
amount of the program has already been drawn in by earlier-
selected vertices in the criterion). The last few vertices se-
lected have a much smaller amount of new program left to
draw on and thus the size increases as they are added to the
criterion is much smaller.

In contrast, with one exception, Type 1 criterion do not
exhibit any predictive relationship between criterion size
(the number of SDG vertices from which the slice is taken)
and slice size. This is visually apparent in the scatter plots,
which appear as clouds. The one exception is acct where
a linear correlation exists yielding a Pearson’s R coefficient
of 0.79 (a strong linear relation). The model shows a 19%
increase in slice size accompanies a 1% increase in crite-
rion size. This indicates that acct’s concepts are essentially
nested (from a dependence standpoint) based on size; thus,
there is rarely a smaller concept whose vertices depend on
the vertices of a larger concept. This relationship holds for
the graphed data in which the size of the criterion is less that
2% of the SDG vertices. Clearly this growth is not sustain-
able for larger criterion sizes.

Owing to the spacial locality of Type 2 and 3 criteria,
they include a limited number of concepts (most often 1
or 2). The scatter plots reinforce the results shown in Fig-
ure 5. They do show that the averages are not influenced
by any outliers and thus are a fair summary of the slices
sizes. Finally, comparing the scatter plots for EPWIC-1
using Type 1 and Type 2 criterion the cause of the lower
average for Type 2 can be seen. The two plots have similar
structure. The key difference in the larger number of small
slices for Type 2 (the dark line with y being about zero). For
Type 2 criterion there are a slightly larger proportion of cri-
terion that produce these small slices and thus the slightly
smaller average.

5 Related Work
Various approaches have been used to undertake con-

cept assignment besides the HB-CA method used here. The
DM-TAO system [5, 6] used a rich semantic network as its
representation and computation engine to identify source
code in comments. IRENE was designed to extract busi-
ness rules by matching source code information to known
rule patterns [23]. More recent work has adopted neural
networks [30] and latent semantic indexing [28].

The techniques used in concept assignment are similar to
those that apply information processing techniques to soft-
ware engineering. For example, if one considers the knowl-



edge base to be external program documentation then work
on (re)establishing links between the program and the ex-
ternal documentation [3, 28] is similar to the task of identi-
fying which parts of the program represent a particular con-
cept.

Program slicing has been applied in pursuit of exe-
cutable code extraction (using traditional non-conceptual
slicing criteria). Lanubile and Visaggio use slicing to ex-
tract reusable components [25]. Ning et al. adopt a two-step
process for component extraction using statement identifi-
cation and bi-directional slicing [31].

Previous work on alternative types of slicing criteria in-
cludes that of Canfora et al. [10, 11] on conditioned slicing.
Gold et al. [16, 20] described a framework for unifying con-
cept assignment with slicing. Four methods for combining
these two analysis techniques were presented as Executable
Concept Slicing Forward Concept Slicing, Key Statement
Analysis, and Concept Dependence Analysis, respectively.
Two cases, a COBOL module based on one from a large
financial organization and an open source utility program
written in C were used to illustrate the techniques.

Finally, Al-Ekram and Kontogiannis combined concept
assignment, formal concept analysis, and program slicing,
presenting a program representation formalism-“the Lattice
of concept slices” and a program modularization technique
that aims to separate statements in a code fragment accord-
ing to the concept they implement[2].

Though concept assignment derives a high degree of ex-
pressibility from the domain level at which its extraction
criteria are expressed, it lacks the executability of program
slicing. However, slicing, though it produces executable
subprograms, can only do this using extremely low level
criteria. The present paper presents the first empirical ev-
idence that it is possible to combine the expressive power
of these concept assignment techniques with the semantic
guarantees that accrue from the executability of program
slicing.

6 Conclusions and Future Work
This paper empirically studies executable concept slic-

ing using six subject programs. More than 400 concept
bindings were identified and studied. The results from the
study provide evidence to support the claim that the state-
ments identified by concept assignment are not arbitrary:
they form a coherent set of related parts of the program,
because the slices constructed from them have a large de-
gree of overlap. This is an encouraging finding, because
it indicates that there is no ‘size explosion’ when making
executable concept slices.

Future work will expand the scope of this study, adopting
alternative approaches to generated concept-oriented slice
criterion (e.g., Marcus et al.’s LSI-based approaches to con-
cept assignment [29]) and increasing the number of sub-

ject programs. The impact of large dependence clusters on
this and other work suggests that identifying and handling
these artifacts of dependence is an important topic for future
work.
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