
Identifying High-Level Dependence Structures

Using Slice-Based Dependence Analysis

Zheng Li

CREST, Department of Computer Science,

King’s College London,

Strand, London, United Kingdom.

zheng.li@kcl.ac.uk

Abstract

This thesis presented a framework of the possible combi-

nation of approaches for low-level program slicing-based-

dependence analysis and high-level concept assignment.

Three combination techniques, concept extension, con-

cept abbreviation and concept refinement, are presented

and empirical studied to address the problem of program

maintenance. The ten C subject programs are studied and

more than 600 concept bindings are identified. Dependence

based metrics are defined to evaluate three techniques that

provides evidence of both advantages and disadvantages.

Keywords: Slicing, Dependence Analysis, Concept Assign-

ment

1 Introduction

Program comprehension plays an important role in

nearly all software related tasks. In software maintenance, it

is estimated that up to 60% of the total time allotted is spent

on program comprehension [7]. The main task in program

comprehension is the identification of components and the

reconstruction of the essential relations between them. A

variety of analysis based techniques were proposed either at

domain knowledge based high-level or at source code based

low-level.

High-level analysis retrieves a knowledge-based view

that is more abstract than the source code, such as pattern

recognition [16] and concept assignment [3]. Low-level

analysis represents the details of source code and analyses

their relations, such as control and data flow analysis [1, 8]

and dependence analysis[15].

Both high-level and low-level analysis have advantages

and disadvantages [17], where each individual analysis

technique at either high-level or low-level outperforms the

others in certain situations. The lack of a general method

triggers the demand for a reasonable combination of the

single analyses between high-level and low-level which can

benefit both by overcoming the weaknesses of each other.

For example, high-level analysis techniques can provide a

reasonable analysis scope with domain knowledge for low-

level analysis techniques, then avoiding the scalability prob-

lem of low-level techniques; low-level analysis techniques

can improve the accuracy of high-level techniques.

In this thesis, three combination techniques of high-

level and low-level analysis techniques, Concept Exten-

sion, Concept Abbreviation and Concept Refinement,
are presented and empirical investigated. Hypothesis-Based

Concept Assignment (HB-CA) [12] and slicing based de-

pendence analysis are selected as representations of high-

level and low level techniques.

The three combination approaches have tackled the prob-

lem of program maintenance. An engineer can locate por-

tions of source code (i.e., the concept bindings) related to

the target using concept assignment. If the concept binding

is still quite large, Concept Abbreviation that extracts key

statements can help to focus attention more rapidly on the

core of a concept binding, and Concept Refinement can

remove the non-concept related statements within the bind-

ing. Once the code is changed as required by the task, Con-
cept Extension can build executable concept slice with re-

spect to the concept binding, of which the test cost would

be reduced compared to testing the whole program.

Figure 1 provides a simple example of the three combi-

nation techniques. The portion of source code is the com-

putation of cylinder area and volume. Suppose the domain

model includes indicators for the concept area, indicating

the computation of the area concept. The fifth and seventh

statements include an indicator (the variable area) for the

area concept. In this simplified example, Lines 5-7 are as-

signed to the area concept, which is indicated using bold

font in Figure 1. Note that HB-CA generally assigns con-



1 Diameter=2*r;

2 perimeter=PI*Diameter;

3 undersurface=PI*r*r;

4 sidesurface=perimeter*h;

5 area=2*undersurface+sidesurface;

6 volume=undersurface*h;

7 printf(”\nThe Area is %d\n”, area);

8 printf(”\nThe Volume is %d\n”, volume);

Figure 1. An example.

cepts to regions rather than single lines.

In the example shown in Figure 1, the key statements

extracted using Concept Abbreviation for the portion of

source code have been shadowed (i.e., Line 3). This

statement has contributed to the computation for both prin-

cipal variables area and volume that highlighted using box

(i.e., two variables in Line7 and 8). Consider the concept

binding area (i.e., Lines 5-7), Concept Refinement re-

moves the non-concept related statements (i.e., Line 6) and

the refined dependence based concept binding have been

shaded (i.e., Line 5 and Line 7). Concept Extension

builds the executable concept slice with respect to the con-

cept binding area.

The contributions of this thesis are as follows:

1. The proposal of a conceptual framework for three com-

bination approaches between concept assignment and

program slicing which extend, abbreviate and refine

the concept binding using dependence analysis.

2. The proposal of a new approach for dependence based

concept refinement: the Vertex Rank Model (VRM).

3. Experimental demonstration that dependence based

concept refinement is better than the other two com-

bination approaches.

4. The introduction of dependence based metrics that

evaluate high-level source code extractions.

2 Experimental Design

To implement the three types of combination approaches

of concept assignment and slicing based dependence analy-

sis, the data of concept bindings and slices need to be pro-

duced first. WeSCA is an HB-CA implementation tool that

identify concept bindings in the source programs of C and

COBOL [9]. CodeSurfer [13], a commercial tool developed

by Grammatech for C is employed as the slicer in the exper-

iments.

The ten programs used in the studies are summarised

in Table 1, which lists each program with some statistics

related to the program and its System Dependence Graph

(SDG). These include the size of the program in lines of

code (LOC) and source lines of code (SLOC), and the size

of the resulting SDG in vertices. The fifth column reports

whether the program includes large dependence clusters or

not and the sixth column provides the brief description for

each program.

The ten programs used in the studies cover various types

of code, including industry code and open source, without

and with large dependence clusters [5]. The subject size

ranges between 3KLOC and 29KLOC. Within the ten sub-

jects, more than 600 concept bindings are identified and

studied.

Dependence analysis and slices are constructed using

CodeSurfer. Three algorithms are designed for the three

combination approaches. In this thesis, the analysis scope

for three approaches is HB-CA concept bindings, of which

the size is smaller than a procedure, so the computation cost

of each algorithm would not be expensive.

Informally, dependence clusters can be thought of as

strongly connected statements in the dependence graph.

From the standpoint of a dependence analysis, such as slic-

ing, including any part of a dependence cluster causes the

inclusion of the dependence cluster. Large dependence clus-

ters have been defined as those that include more than 10%

of the program [5]. Because they tend to affect any and

all slicing based techniques, the effects of large dependence

clusters need to be investigated for the combination tech-

niques.

Statistical analysis is used to analyse the experimental

data in the study. These include correlation analysis and

mean (or meant) comparison analysis.

3 Concept Extension ∗

Concept extension uses program slicing to ‘extend’ a

concept binding by tracing its dependencies. The slicing

makes concept binding larger in size in order to make it ex-

ecutable, thus it is named concept extension.

Executable Concept Slicing (ECS) [9, 14] is a frame-

work that unifies program slicing and concept assignment

for higher-level executable source code extraction. Though

concept assignment derives a high degree of expressibil-

ity from the domain level at which its extraction criteria

are expressed, it lacks the executability of program slic-

ing. However, slicing, though it produces executable sub-

programs, can only do this using extremely low level cri-

teria. The study of concept extension presents the first ex-

perimental evidence that it is possible to combine the ex-

pressive power of these concept assignment techniques with

∗This chapter is based on the work published by the author at WCRE

2006 [10] and JSS[11]



Table 1. Experimental Subjects used in the thesis.
Large

Subjects LoC SLoC Vertices Cluster Description

acct-6.3.2 3,890 2,384 9,827 No Process monitoring tools

EPWIC-1 7,943 4,232 19,545 No Image compressor

space 9,126 6,576 34,684 No ESA space program

oracolo2 9,477 5,842 24,754 No Antennae array set-up

CADP 12,930 10,246 52,591 No Protocol toolbox

userv-1.0.1 7,301 5,320 95,056 Yes Access control utility

indent-2.2.6 8,259 5,424 20,776 Yes Text formatter

bc-1.06 10,449 7,342 32,381 Yes Calculator

diffutils-2.8 10,743 6,767 26,997 Yes File comparison utilities

findutils-4.2.25 28,887 19,216 96,073 Yes File finding utilities

Total 109,005 73,349 421,684

the semantic guarantees that accrue from the executability

of program slicing. It defines four criteria types from the

ostensibly most coherent (ECS) down to the least coher-

ent (random) and compares the resulting slice sizes. More

formally, the investigation attempts to verify the hypothe-

sis that a slice criterion formed from a concept binding will

produce smaller slices than an equivalently–sized slice cri-

terion formed without any consideration for conceptual in-

formation.

The results from the study provide evidence to support

the claim that the statements identified by concept assign-

ment are not arbitrary: they form a coherent set of related

parts of the program, because the slices constructed from

them have a small degree of Coverage and Overlap be-

tween each other. This is an encouraging finding, because it

indicates that there is no ‘size explosion’ when constructing

executable concept slices.

4 Concept Abbreviation ∗

Concept abbreviation uses a slicing-based technique to

shorten a concept binding without losing the computational

impact of the concept. The resulting statements contribute

more to the computation embodied by the binding than oth-

ers, namely key statements. As the set of key statements is

smaller in size than the original concept binding, this tech-

nique is named concept abbreviation.

The approach of concept abbreviation, parameterised

Key Statement Analysis (KSA), is presented in the study

of concept abbreviation.

The algorithms for KSA [14, 9] are based on the notion

of Bieman and Ott’s ‘principal’ variables, which are those

which might be considered to be the result of a set of state-

ments [2, 18]. Three kinds of principal variables are de-

fined, i.e., global and assigned variables, call-by-reference

∗This chapter is based on the work published by the author at SCAM

2008 [4]

and assigned variables, or the parameter to an output state-

ment of a concept binding. Key statements are computed as

an optimised intersection of the intraprocedural static back-

ward slices on these principal variables.

The framework together with an improvement over pre-

vious approaches to KSA is shown. The keyness of the

identified statements is measured using their Impact and

Cohesion. The experiments were implemented not only

for concept bindings but also for functions. The results in-

dicate that the identified key statements have high Impact

and Cohesion and thus represent the core of a function’s

computation. The identification of key statements can be

helpful for users to focus attention more rapidly on the core

of a concept binding. However, the results also reveal that

only approximate one third analysis scope contains princi-

pal variables.

5 Concept Refinement

Concept refinement uses program chopping to remove

non-concept-dependent statements within a concept bind-

ing and produces a more accurate dependence based con-

cept binding. As the remaining statements are highly de-

pendent without losing domain knowledge, this technique

is named concept refinement.

This technique first builds and optimises dependence

graphs for HB-CA concept bindings, where the vertices

are the program points of the binding and the edges are

the data dependence and control dependencies between ver-

tices. It then uses program chopping to extract the re-

fined dependence-based concept bindings. The Vertex Rank

Model (VRM) is proposed to rank all vertices in a depen-

dence graph by assigning a weight value to each vertex

based on the dependencies between them. A vertex with

higher dependence (directly or indirectly) upon others is as-

signed a higher value. Essentially, the VRM is the PageR-

ank Model [6] used by Google to rank web pages. In this



study of concept refinement, the VRM is used to identify

the source and the sink for chopping.

The results from the experiments and the statistical anal-

ysis indicate that the VRM is an efficient technique for com-

puting the source and sink vertices and more than 80% of

the refined the dependence based concept bindings have the

same impact as the original HB-CA concept bindings. The

significance of size reduction confirms the approach has the

ability to rule out the non-concept-dependent statements.

Therefore, the resulting refined concept bindings are more

accurate than the original concept bindings, which reduces

cost and effort of analysing.

6 Summary and Future Work

This thesis is geared toward providing a whole frame-

work of the possible combination of approaches for low-

level program slicing-based-dependence analysis and high-

level concept assignment. Three combination techniques

are empirically studied using ten subject programs. Apart

from a knowledge base for concept assignment with hu-

man involvement, the process can be implemented automat-

ically. More than 600 concept bindings were identified and

studied to provide evidence of both advantages and disad-

vantages of these three approaches. Within the three combi-

nation techniques, concept refinement may be more suitable

for program comprehension.

In the future, further approaches for dependence based

concept could combine HB-CA concept assignment with

both syntactic and dependence analysis. Applying syn-

tactic analysis could help the segmentation of the HB-CA

concepts to give more precise concept boundaries. Further

work on the effect of large dependence clusters could be im-

plemented by investigating the causes of large dependence

clusters and removing large dependence clusters.

Acknowledgements

The author is funded by EPSRC Grant GR/T22872/01

and GR/S93684/01. The author wishes to thank his super-

visor Mark Harman and second supervisor Nicolas Gold

for providing the support and motivation to do research

throughout the duration of this work.

References

[1] F. E. Allen and J. Cocke. A program data flow analysis pro-

cedure. Commun. ACM, 19(3):137, 1976.

[2] J. M. Bieman and L. M. Ott. Measuring functional cohesion.

IEEE Transactions on Software Engineering, 20(8):644–

657, Aug. 1994.

[3] T. J. Biggerstaff, B. Mitbander, and D. Webster. The con-

cept assignment problem in program understanding. In 15th

International Conference on Software Engineering, pages

482–498, Los Alamitos, California, USA, May 1993. IEEE

Computer Society Press.
[4] D. Binkley, N. Gold, M. Harman, Z. Li, and K. Mah-

davi. Evaluating key statements analysis. In 8
th Interna-

tional Workshop on Source Code Analysis and Manipula-

tion (SCAM 08), pages 121–130, Beijing, China, Sept. 2008.

IEEE Computer Society Press.
[5] D. Binkley and M. Harman. Locating dependence clus-

ters and dependence pollution. In 21
st IEEE International

Conference on Software Maintenance, pages 177–186, Los

Alamitos, California, USA, 2005. IEEE Computer Society

Press.
[6] S. Brin and L. Page. The anatomy of a large-scale hyper-

textual web search engine. Comput. Netw. ISDN Syst., 30(1-

7):107–117, 1998.
[7] G. Canfora, L. Mancini, and M. Tortorella. A workbench for

program comprehension during software maintenance. In

WPC ’96: Proceedings of the 4th International Workshop on

Program Comprehension (WPC ’96), page 30, Washington,

DC, USA, 1996. IEEE Computer Society.
[8] J. B. Dennis. First version of a data flow procedure lan-

guage. In Programming Symposium, Proceedings Colloque

sur la Programmation, pages 362–376, London, UK, 1974.

Springer-Verlag.
[9] N. Gold, M. Harman, D. W. Binkley, and R. M. Hi-

erons. Unifying program slicing and concept assignment

for higher-level executable source code extraction. Software

Practice and Experience, 35(10):977–1006, 2005.
[10] N. Gold, M. Harman, Z. Li, and K. Mahdavi. An empiri-

cal study of executable concept slice size. In 13
th Working

Conference on Reverse Engineering (WCRE 06), pages 103–

114, Benevento, Italy, Oct. 2006. IEEE Computer Society

Press.
[11] N. Gold, M. Harman, Z. Li, and K. Mahdavi. An empirical

study of the relationship between the concepts expressed in

source code and dependence. Journal of Systems and Soft-

ware, 81:2287–2298, 2008.
[12] N. E. Gold. Hypothesis-Based Concept Assignment to Sup-

port Software Maintenance. PhD Thesis, Department of

Computer Science, University of Durham, 2000.
[13] Grammatech Inc. The codesurfer slicing system, 2002.
[14] M. Harman, N. Gold, R. M. Hierons, and D. W. Binkley.

Code extraction algorithms which unify slicing and concept

assignment. In IEEE Working Conference on Reverse Engi-

neering (WCRE 2002), pages 11 – 21, Los Alamitos, Cali-

fornia, USA, Oct. 2002. IEEE Computer Society Press.
[15] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural

slicing using dependence graphs. ACM Transactions on Pro-

gramming Languages and Systems, 12(1):26–61, 1990.
[16] R. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-

based reverse-engineering of design components. Software

Engineering, 1999. Proceedings of the 1999 International

Conference on, pages 226–235, 1999.
[17] W. Löwe, M. Ericsson, J. Lundberg, and T. Panas. Software

comprehension - integrating program analysis and software

visualization. In Software Engineering Research and Prac-

tice - SERPS, 2002.
[18] L. M. Ott. Using slice profiles and metrics during software

maintenance. In Proceedings of the 10
th Annual Software

Reliability Symposium, pages 16–23, 1992.


