
Boundary Value Testing Using Integrated Circuit Fault Detection Rule

Ruilian Zhao1 Zheng Li
Department of Computer Science CREST, Department of Computer Science

Beijing University of Chemical Technology King’s College London
Beijing 100029, China Strand, London WC2R 2LS, United Kingdom.

rlzhao@mail.buct.edu.cn zheng.li@kcl.ac.uk

Abstract

Boundary value testing is a widely used functional test-
ing approach. This paper presents a new boundary value
selection approach by applying fault detection rules for in-
tegrated circuits. Empirical studies based on Redundant
Strapped-Down Inertial Measurement Unit (RSDIMU) of
the 34 program versions and 426 mutants compare the new
approach to the current boundary value testing methods.
The results show that the approach proposed in this paper
is remarkably effective in conquering test blindness, reduc-
ing test cost and improving fault coverage.

Keywords: Boundary Value Testing, Test case generation,
fault detection

1 Introduction

An investigation showed that U.S. users suffered annual
economic losses total more than $59 billion. More impor-
tant from the viewpoint of developers is that more than one-
third of these losses could have been removed with the help
of software testing [26]. Therefore, software testing is an
essential technique for ensuring software quality and reli-
ability. One of most difficult and expensive problems in
software testing is the effective generation of test cases.

To test a program, it is necessary to select test cases from
the domain of input variables. Testing all possible inputs
would provide the most complete behavior of a program,
but the input domain is usually too large to be completely
exercised. Instead, an usual way is to select a relatively
small subset, which is a representative of the input domain
in some sense [21]. Therefore, a key problem in software
testing is how to develop test cases from the input domain
to detect as many faults as possible with a minimum cost.

1On sabbatical leave to King’s College London.

There are a large number of test cases generation strategies,
such as random testing [4, 8], equivalence partitioning [1,
23], boundary value testing [9, 16, 22], path testing [15, 8],
and domain testing [12, 29].

Testers have frequently observed that domain boundaries
are particularly fault-prone and should therefore be care-
fully checked. Howden and Foster [11, 7] gave careful
analyses of the error sensitivity of boundary values test-
ing. Some studies on retrospective fault data showed that
boundary value testing outperforms all the other methods,
by comparing statement coverage, branch coverage, ran-
dom testing, boundary value testing and several other test-
ing approaches to find these faults [1, 20]. Standards such as
IEC61508 permit the use of boundary values to reduce the
number of test cases. As the name suggests, boundary value
testing focuses on software testing efforts at the extreme
ends of the input domain. There are some existing boundary
value testing methods, including boundary value analysis
(testing), robustness testing, worst case testing and robust-
ness worst case testing. However, some of these methods
are hardly used in the practical software testing, because a
large amount of test cases are required, thus the test gener-
ation is hard to manipulate.

As we know, there are many mature testing technologies
in hardware systems. It gives us an inspiration of using full-
grown hardware approaches in testing for software. In this
paper, we present a novel boundary value testing approach
based on the principle of fault diagnosis in integrated cir-
cuits. Moreover, a corresponding automatic test cases gen-
eration tool is developed. According to a real-world ap-
plication Redundant Strapped-Down Inertial Measurement
Unit (RSDIMU) specification, we design three boundary
test suites. Two of them are produced by using current
boundary value testing methods, the third is developed by
the new boundary testing approach proposed in this paper.
34 RSDIMU program versions and 426 mutants conducted
by Chinese University of Hong Kong (CUHK) are checked



by these test suites. All 426 mutants are killed and 8 new
software faults are found. The experiment results show that
the new boundary value testing approach, compared with
existing boundary testing method, is of less test cases, and
of high capability in detecting faults. The efficiency of soft-
ware testing can be thus largely improved.

The primary contributions of the paper are as follows:

1. A novel boundary value testing approach by applying
fault detection rules for integrated circuits to boundary
value selection is proposed.

2. Empirical study based on 34 RSDIMU program ver-
sions and 426 mutants provides the evidence that the
new approach proposed in this paper produces much
smaller test suites while keeping strong fault detection
ability.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces existing boundary value testing
methods. Section 3 describes main principle of the test
cases selection by the new boundary value testing approach.
Section 4 presents an experimental study to show how to
use the method in practice. Section 5 discusses the experi-
mental results. Section 6 reviews related work in this area.
Finally, conclusion is provided in Section 7.

2 Boundary value testing methods

Boundary value testing is one of most effective func-
tional testing strategies in common use. The idea and moti-
vation behind boundary value testing is that errors are most
likely to occur at those points when input values change
from valid to invalid. Existing boundary value testing meth-
ods include boundary value testing, robustness test-
ing, worst case testing and robustness worst case test-
ing [9, 10, 14, 30].

1. Boundary Value Testing (BVT)

The basic idea of applying boundary value testing on
the program under test is to maintain all but one of
the input variables at their normal (or average) val-
ues and the remaining variables are set its extreme
values in turn. The values used to test the extrem-
ities are: the minimum value, a bit more than the
minimum value, normal value, a bit less than the
maximum value, and the maximum value, referring
to min,min+, nom,max− and max, respectively.
There is one instance that all variables take their nom-
inal value. The test cases selection in a program
with two input variables is shownin Figure 1(a), where
x1(a ≤ x1 ≤ b) and x2(c ≤ x2 ≤ d) are input vari-
ables of the program. As there are four extreme val-
ues, 4n+1 test cases should be developed for a program
with n input variables.

2. Robustness Testing (RT)

Robustness testing is an extension of boundary
value testing, and it pays more attention on ex-
ception behaviors of the system under test.In ad-
dition to the aforementioned five testing values
min,min+, nom, max− and max, robustness test-
ing uses two more values for each variable i.e., min−
and max+, which are designed to capture the values
just outside of boundaries of the input domain. The
test cases selection in a program with two variables is
shown in Figure 1(b). Each variable has to take on its
six different extreme values, respectively, and the other
variables hold their nominal value. As a result, 6n+1
test cases should be designed for a program with n in-
put variables.

3. Worst Case Testing (WCT)

Worst case testing performs the Cartesian prod-
uct in terms of the original five element sets:
min,min+, nom, max− and max. The principle of
test point selection in a program with two variables is
shown in Figure 1(c). We can see from Figure 1(c) that
worst case testing is more comprehensive. As each
variable has to take five values for each permutation,
5n test cases are generated for a program with n in-
put variables. Obviously, the test suite produced using
boundary value testing is a proper subset of that using
worst case testing.

4. Robustness Worst Case Testing (RWCT)

Robustness worst case testing, as its name implica-
tion, draws it attributes from robustness testing and
worst case testing. The method makes the Carte-
sian product in terms of the seven element sets:
min−,min,min+, nom, max−,max and max+.
Figure 1(d) gives the test cases selection in a program
with two variables. For a program with n input vari-
ables, 7n test cases need to be generated as each vari-
able require to hold seven values. Clearly, the test suite
of robustness testing is a proper subset of that of ro-
bustness worst case testing.

Boundary value testing and robustness testing are based
on single-fault assumption in software reliability theory.
The assumption relies on the statistic that failures are only
rarely the product of two or more simultaneous faults. If
we disregard the single fault assumption, this is to say, we
believe software failures are caused by two or more than
two simultaneous faults. It is called multi-faults assump-
tion in reliability theory. Consequently, (robustness) worst
case testing is based on the multi-faults assumption. The
outcomes of the program under test are checked when more
than one variables are taken its extreme values. As ex-
pected, it results in a larger set of tests and requires more



c

d

a                                          b x1

x2

(a) Boundary value testing

x1

x2

c

d

a                                          b

(b) Robustness testing

x1

x2

c

d

a                                          b

(c) Worst case testing

x1

x2

c

d

a                                           b
(d) Robustness worst case testing

Figure 1. Principles of test point selection in a program with 2 input variables

efforts to produce. Therefore, (robustness) worst case test-
ing is generally used in the situations that high reliability is
required and the consumption of time and efforts may not
be taken into account. For many software, this can be too
expensive to be put in practice.

However, some researches showed that 20% ∼ 40% soft-
ware faults are caused by only a system parameter, and an-
other 20% ∼ 40% software faults are involved in the in-
teractions of two or more than two parameters [17]. As a
result, some common software faults will be not detected
while using test cases designed based on single-fault as-
sumption. In this paper, a novel approach of boundary test
cases generation based on the multi-faults assumption is
proposed.

3 A novel boundary test generation approach

This section presents how to generate efficient boundary
test cases based on the principle of fault detecting in digital
system.

Stuck-at fault diagnosis has been one of the well-known
techniques in integrated circuit testing. A Stuck-at fault is
a particular fault model which is applied to gate level cir-
cuits. These faults are called stuck-at-0 or stuck-at-1 fault.
To check whether a gate circuit return the right outputs, a
test vector need to be developed to indicate that the circuit

is faulty or not. Moreover, some research results illustrate
that a series of tests for stuck-at faults can often find a large
number of other faults [25].

This paper proposed a novel approach to developing soft-
ware boundary test cases base on the test vector generation
for stuck-at faults in integrated circuits.

Let F be the function of a software under test,

F : (x1, x2, · · · , xn → y1, y2, · · · , ym)

where xi (i = 1, 2, · · · , n) is an input variable and yj (j =
1, 2, · · · , m) is an output variable of the function F . The
domain Dxi is a set of all values that input variable xi

can hold. Let D be the domain of a function F , D is
a Cartesian product D = Dx1 × Dx2 × · · · × Dxn =
{(x1, x2, · · · , xn)|∀x1 ∈ Dx1, x2 ∈ Dx2, · · · , xn ∈
Dxn}. A single point x(x ∈ D) is referred to as a func-
tion input. Let I = (x1, x2, · · · , xn) be the vector of input
variables, and E denotes a space of n-dimension vectors,
namely input space. Thus, the domain D of a function can
be thought of a subset of input space E.

Assume that the distance between two points is defined
as the length of the line segment between them. The domain
D is said to be bounded if there exists a positive number δ
such that every point x = (x1, x2, · · · , xn) ∈ D satisfies
|xi| ≤ δ for all i = 1, 2, · · · , n. A point q (q ∈ D) is
called a boundary point if, for every neighborhood N(q)



of q, there exists q′, q′′ ̸= q such that q′ ∈ N(q) ∩ D and
q′′ ̸∈ N(q)∩D. Here a neighborhood N(q) of points q is a
set consisting of all points x′ whose distance with q is less
than a small positive numeral r. Boundary of domain D is
composed of all the boundary points of domain D.

Definition 1. The projection of domain D on xi axis
The projection of domain D on xi axis, represented by

D|xi, is a subset of the one dimension space Dxi, where

D|xi = {xi ∈ Dxi|∃(x0
1, · · · , x0

i−1, xi, x
0
i+1 · · · , x0

n) ∈ D}

It can be drawn that the minimum value and the maxi-
mum value of D|xi are two boundary points. They are de-
noted by ximin and ximax respectively, and ximin ≤ xi ≤
ximax.

If replacing the value of ximin and ximax with logical
value 0 and 1, respectively, the domain Dxi can be repre-
sented as D′

i = {x′
i}, where 0 ≤ x′

i ≤ 1, (i = 1, 2, · · · , n).
As a result, the domain D is presented as follows:

D = D′
1 ×D′

2 × · · ·D′
n = {(x′

1, x
′
2, · · · , x′

n)|0 ≤ x′
i ≤ 1}

Considering from the logical input value, functions F
can be thought of an logical circuit with n inputs, as shown
in Figure 2.

D1
D2
.
.
.

Dn

D′1
D′2
.
.
.

D′n

Figure 2. Logical circuit with n inputs.

According to the principle of fault detection in
the logical circuits, a set of test vectors (0, 1, · · · , 1),
(1, 0, 1, · · · , 1), · · · , (1, 1, · · · , 0, 1) and (1, 1, · · · , 1, 0)
should be developed to check input faults and stuck-at-1
faults for an AND gate with n inputs. In addition, an-
other test vector (1, 1, · · · , 1) is required to detect stuck-
at-0 faults. For a OR gate with n inputs, a set of test vec-
tors (1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, · · · , 1, 0) and
(0, 0, · · · , 0, 1) is demanded to discover stuck-at-0 faults,
and another test vector (0, 0, · · · , 0) is needed to reveal
stuck-at-1 faults. In total, there are 2n+2 test vectors
needed [28].

To generate boundary test cases for a software with
n input variables, we need to consider boundary points
of input domain D, inside points of the boundary, and
outside points of the boundary. Therefore, we focus on the
boundary and robust value of each input variable of the
software under test, namely consider each variable xi takes
its ximin, ximax, and beyond ximin and ximax by adding

or subtracting a small offset ε(ε > 0), respectively. As a
result, test cases of n-dimension variables are designed as
follows:

(x1min, x2min, · · · , xnmin)

(x1max, x2max, · · · , xnmax)

(x1min − ε, x2min, · · · , xnmin)
(x1min, x2min−ε, · · · , xnmin)

· · ·
(x1min, x2min, · · · , xnmin−ε)

(x1max+ε, x2min, · · · , xnmin)
(x1min, x2max+ε, · · · , xnmin)

· · ·
(x1min, x2min, · · · , xnmax+ε)

(x1max+ε, x2max, · · · , xnmax)

(x1max, x2max+ε, · · · , xnmax)
· · ·

(x1max, x2max, · · · , xnmax+ε)

(x1min−ε, x2max, · · · , xnmax)
(x1max, x2minx−ε, · · · , xnmax)

· · ·
(x1max, x2max, · · · , xnmin−ε)

There are 4n+2 test cases required in total. Obviously,
these test cases fall on the boundary of domain D or
near it from outside. Some additional test cases within
domain D, similar to existing boundary value testing, need
to be considered. But, different from existing methods
where normal or average values are taken into account, we
consider the value within domain D and near the boundary.
All test cases locate outside of domain D except two
settling on its boundary. Thus, test cases within domain D
can be developed by adding or subtracting a small offset on
the two valid boundary test cases, which are designed as
follows:

(x1min+ε, x2min+ε, · · · , xnmin+ε)

(x1max−ε, x2mmx−ε, · · · , xnmax−ε)

As a result, 4n+4 test cases are required by the new
boundary test generation approach.

For example, as shown in Figure 3, for a program with
two inputs, 12 test cases need to be developed. It can be
seen that points 1 and 2 fall on the boundary of domain D,
points 3–10 are without the domain D, and points 11 and 12
are within the domain D. These test points and correspond-
ing extreme values are given below the diagram.



x1

x2

c

d

a                                           b

1

2

4

3 5

6

7

8

9

11

10

12

1 (x1min, x2min) 2 (x1max, x2max)
3 (x1min − ε, x2min) 4 (x1min, x2min−ε)
5 (x1max+ε, x2min) 6 (x1min, x2max+ε)
7 (x1max+ε, x2max) 8 (x1max, x2max+ε)
9 (x1min−ε, x2max) 10 (x1max, x2min−ε)

11 (x1min+ε, x2min+ε) 12 (x1max−ε, x2max−ε)

Figure 3. Boundary test points selection for
the new approach.

The number of test cases required by four existing and
the new boundary testing approach, with different input
variables, are listed in Table 1. It is obvious that the number
of test cases of the new approach is much less than that of
(robustness) worst case testing. For example, for the pro-
grams with 10 input variables, WCT and RWCT require
separately 9765625 and 282475249 test cases, but the new
approach only needs 44 test cases. In addition, the new test
cases set is a proper subset of robustness worst case testing.
According to the test cases selection principle, we devel-
oped a test generation tool to implement automatic genera-
tion of 4n+4 boundary test cases.

Table 1. Number of test cases with different
input variables.

Number of test cases
#Inputs BVT RT WCT RWCT New BVT

1 5 7 5 7 8
2 9 13 25 49 12
3 13 19 125 343 16
4 17 25 625 2401 20
5 21 31 3125 16807 24
6 25 37 15625 117649 28
7 29 43 78125 823543 32
8 33 49 390625 5764801 36
9 37 55 1953125 40353607 40
10 41 61 9765625 282475249 44

4 Experimental Study

This section shows how to use the new boundary testing
approach to develop test cases according to a real applica-
tion project RSDIMU.

4.1 Subjects

The Redundant Strapped-Down Inertial Measurement
Unit project (RSDIMU) was first developed for a NASA-
sponsored 4-university multi-version software experi-
ment [6]. It is part of the navigation system in a space-
craft. In this application, the vehicle acceleration is esti-
mated using the eight accelerometers mounted on the four
triangular faces of a semi-octahedron in the vehicle. Ac-
cording to the RSDIMU specification, 20 program versions
were developed, which were systematically tested by 1200
test cases designed by aviation industry experts and schol-
ars. In 2002, the Chinese University of Hong Kong involved
more than one hundred students on the same specification
and 34 program versions were developed within 12 weeks.
1200 test cases were applied to acceptance testing after RS-
DIMU programs developed. All the 34 program versions
passed acceptance test after faults detecting, removing and
retesting. 21 program versions were selected for creating
mutants. The other 13 versions were disqualified as their
developers did not follow the development and coding stan-
dards which were necessary for generating meaningful mu-
tants from their projects.

Software faults, which were detected during the stage of
unit testing, integration testing and acceptance testing, were
injected into the final program versions, and 426 mutants
were created, each contains one programming fault. Each
program version’s size in terms of the Source Lines of Code
(SLoc), the number of functions, and number of mutants
developed from each program version are shown in Table 2.
The details of the project and development procedures are
discussed in [19, 2].

4.2 Boundary test cases generation

There are two kinds of input processing in RSDIMU
project. The first type is the information describing the
system geometry. The second type is the accelerometer
readings from the accelerometers, which need to be prepro-
cessed through calibration and scaling. Except from the in-
put variables concerned with geometry information of test
unit and parameter calibration, we focus on five major in-
put variables for boundary value testing, involving linStd,
linFailIn[8], rawLin[8], displayMode and nsigTolerance.
Their input domains can be found in RSDIMU specifica-
tion, which are [0,65535], [0,1], [0,4095], [0,99] and [2,7]
respectively. Table 3 lists these five variables, their data



Table 2. Subjects.
Version-ID SLoC Functions Mutants

1 1628 70 25
2 2361 37 21
3 2331 51 17
4 1749 39 24
5 2623 40 26
6 1638 65 0
7 2918 35 19
8 2154 57 17
9 2161 56 20
10 2522 55 0
11 1723 34 0
12 2559 46 31
13 2249 49 0
14 3196 49 0
15 1849 47 29
16 1700 34 0
17 1768 58 17
18 2177 69 10
19 2297 52 0
20 1807 60 18
21 2207 46 0
22 3253 68 23
23 2671 54 0
24 2131 90 9
25 2145 56 0
26 4512 45 22
27 1455 21 15
28 3039 52 0
29 1627 43 24
30 2054 30 0
31 1914 24 23
32 1919 41 20
33 2022 27 16
34 2763 30 0

Total 77122 1630 426

types, corresponding input domains, boundary values and
normal values.

Besides linFailin is a boolean variable, the others are in-
tegral ones. We used the boolean array linFailIn[8] as an
integral variable and the array rawLin[8] was handled as 8
variables in the experiment. Therefore, the total number of
input variables of RSDIMU programs is 12 (i.e., n = 12).
As the kinds of variables are integral and boolean, 1 is con-
sidered as a small offset.

Base on the information mentioned above, 52 (4n + 4)
test cases should be designed by using the new generation
approach. However, if using the four existing approaches,
49 (4n + 1) should be designed for boundary value testing,
73 (6n + 1) for robustness testing, 248832 (5n) for worst

instances testing, and 35831808 (7n) for robustness worst
instances testing. The numbers of test cases of latter two
test methods are too large to manipulate.

4.3 Experiments implementation

We can use 4 test suites designed in terms of the specifi-
cation of RSDIMU, including 1200 test cases (Test1200)
mentioned in [6], 49 test cases (Test49) designed for
boundary value testing, 73 test case (Test73) for robustness
testing and 52 test cases (Test52) which were designed by
the approach we developed, to test 34 program versions and
426 mutant programs.

5 Results and Discussion

This section first discusses the fault detecting results re-
lated to 426 mutant programs for four test suites. It then
presents the details of new faults detected in the 34 program
versions by the latter three test suites. The section finally
discusses the comparison of our boundary value testing ap-
proach to traditional ones.

5.1 Fault detecting results of 4 test suites
for 426 mutant programs

Overall, the total number of mutants killed by four test
suites of Test1200, Test49, Test73 and Test52 are 303,
249, 319 and 426, i.e., the rates of faults detection are
71.1%, 58.5%, 74.8% and 100% respectively. Obviously,
Test1200, Test49 and Test73 just killed some of the 426
mutants, while Test52 that was generated using our new
boundary value testing approach killed all the 426 mutants.

The mutants killed by four test suites for the 21 program
versions with injected mutants are shown in Figure 4, where
the horizontal coordinate represents the 21 program version
ID with mutants and the vertical axis represents the number
of mutants killed by the test suites. Four different types of
lines represent four test suites.

As can be seen in Figure 4, Test52 has the largest num-
ber of killed mutants for each subject, while the other three
test suites with varying number of that for different sub-
jects. In particular, there are 25 mutants with respect to the
program version 1. Test52 and Test73 killed all 25 mu-
tants, but Test1200 and Test49 just killed 16 and 14 out of
25 mutants, respectively. Studying these saving mutants in
detail, we find that the faults in these mutants are related to
the exception behaviors of the RSDIMU. So, Test1200 and
Test49, which have paid no attention on test cases outside
of the input domain, take an poor effect on the mutants.

In addition, since Test52 is subset of robustness worst
case testing, the test cases of robustness worst case testing



Table 3. Input variables of RSDIMU
Input Variable Type Domain Min-1 Min Min+1 Nom Max-1 Max Max+1

linStd int [0, 65535] -1 0 1 32768 65534 65535 65536
linFailIn[8] array [0, 1] 11111111 00000000 00000001 1000000 11111110 11111111 00000000
rawLin[8] array [0, 4095]×8 -1 0 1 2048 4094 4095 4096
displayMode int [0, 99] -1 0 1 50 98 99 100
nsig-Tolerance int [2, 7] 1 2 3 4 6 7 8

Figure 4. Faults coverage of four test suites
for each subject.

must detect all faults detected by Test52, i.e., the 426 mu-
tants in the experiments. However, regarding to 12 input
variables in the experiments, the number of test cases using
robustness worst case testing will be up to 35831808, which
is very much more than 52 of the new approach.

5.2 Fault detecting results of 3 new test
suites for 34 program versions

The 34 program versions had been already tested using
Test1200. The three new test suites for boundary value
testing were used to test 34 programs again and 8 new faults
were detected.

Based on the faults severity category method proposed
in [3, 19], the eight faults are analysed and the severity and
category of the 8 faults are presented in Table 4. The pro-
gram version ID and the function name that contains the
corresponding fault are reported. Severity is classified to 4
levels: level A is the most serious, level B is better than level
A and level D is the lowest. The results in Table 4 show that
there are seven B level faults and one A level fault. Table 5
shows IDs of faults that were detected by each test suites.
It is interesting that no one test suites can find all the eight
faults. Fault 7 is not discovered by the Test73 and Fault 6
is not revealed by the Test52.

These are discussed in the following description of each
fault.

Fault 1 Inspection of the statement inverse[j][i]/=det on
the line 63 of the subprogram transin.c in the version

Table 5. Faults detected by 3 test suites.
Test suites Fault ID

Test49 1, 4, 5, 6
Test73 1, 2, 3, 4, 5, 6, 8
Test52 1, 2, 3, 4, 5, 7, 8

ID 13 finds that the value of det equals to that of linStd
when linStd is set to 0. Therefore, the result is incon-
sistent to the expected one. The statement should be if
(fabs(det)>(1e-6)) inverse[j][i]/=det.

Fault 2 The code segment on the line 64 of the subprogram
test.c in the version ID 13 is listed as follows:

for (i=0;i<8;i++)
{
if (inp.rawLin[i]>65536)

inp.rawLin[i]=inp.rawLin[i]-65536;
else if (inp.offRaw[j][i]>32768)

inp.rawLin[i]=inp.rawLin[i]-32768;
else if (inp.rawLn[i]>16384)

inp.rawLin[i]=inp.rawLin[i]-16384;
else if (inp.rawLin[i]>8192)

inp.rawLin[i]=inp.rawLin[i]-8192;
else if (inp.rawLin[i]>4096)

inp.rawLin[i]=np.rawLin[i]-4096;
}

It is obvious that there is a copy error on the second if-
clause if (inp.offRaw[j][i] > 32768). inp.offRaw[j][i]
is a 2-dimensional array with 50 rows and 8 columns,
and j equals to 50 when the for loop is executed. There
will be an overflow for array inp.offRaw[j][i] and the
value of inp.offRaw[j][i] is set to that of linStd. As a
reault, the predicate of if (inp.offRaw[j][i] > 32768)
will become True, thus the error occurs.

Fault 3 According to the specification of RSDIMU, the
sensor values of 12-bit should be handled. Therefore,
the ‘>’ should be replaced with ‘>=’ on the line 64 of
the subprogram test.c in the version ID 13, line 15 of
the subprogram s.c in the version ID 30 and line 63 of
the subprogram Scale.c in the version ID 33, respec-
tively.



Table 4. Severity level of the eight faults.
Fault ID Version ID Function Name Fault Category Severity

1 13 calilmate assign/init A
2 13 Scale calibration B
3 13,30,33 Scale calibration B
4 15,16 Failure Detection Algorithm/method B
5 16,18 Failure Detection Algorithm/method B
6 17,18 Failure Detection Algorithm/method B
7 18 Failure Detection Interface/messages B
8 20 Failure Detection Algorithm/method B

Fault 4 According to the specification of RSDIMU, the
input variable linStd is able to be operated directly.
Therefore, we should remove ‘%4096’ in the state-
ments linStdVolt = (inputVar→linStd%4096)/409.6
on the line 34 of the subprogram detectIso-
late.c in the version ID 15 and the statement
temp=inputVar.linStd%4096 on line 105 of the subpro-
gram Edge-Vector-Test.c in the version ID 16.

Fault 5 If the value of input variable linStd is equal to 0,
all the 4 sides of sensors will come to invalidation, and
the system cannot be run. But the function Bad-Face(),
on the line 178 of the subprogram Edge-Vector-Test.c
in the version ID 16, only can detect one of the invalid
sides. The function findFailFace() on the line 423 of
the subprogram failDetect.c in the version ID 18 does
not count the number of failure sides. Thus, the status
of system occur an error.

Fault 6 If the value of input variable linFailIn[8] is not
equal to all 0 or 1, the statement edgediff [i] =
threshold ∗ 2 (0≤i≤5, threshold>0) will be imple-
mented to identify the invalid sides before system
startup. If the value of input variable linStd equals to
zero, then the value of variable threshold will be set to
0, and the value of edgediff[i] will be the same. As re-
sult, the output is incorrect. Therefore, the ‘>’ should
be replaced with ‘>=’ in the condition statements on
line 220 of the subprogram failDetect.c in the version
ID 17 and line 192 of the subprogram failDetect.c in
the version ID 18.

Fault 7 The code segment of function findFailSensor() on
the line 610 of the subprogram failDetect.c in the ver-
sion ID 18 is as follows:

if (exceedThreshold(fabs(accA[X][0]-
linOut[sensor1]), threshold)&&
(!linFailIn[sensor1])) result=sensor1;

if (exceedThreshold(fabs(accA[Y][0]-
linOut[sensor2]), threshold)&&
(!linFailIn[sensor2])) result=sensor2;

return(result);

The function just returns the value of sensor2 where
both sensor1 and sensor2 values should be returned
when the sensor1 and sensor2 are invalid. Thus, the
fault appears.

Fault 8 The function all-faces-ok() computes the edge vec-
tors and the value of threshold to decide whether the
face is valid or not. There are 6 edge vectors in the
RSDIMU system, but the function all-faces–k(), on the
line 145 of the subprogram evt.c in the version ID 20,
just considers 4 of them. Thus, the result is incorrect.

5.3 Discussion

Considering the number of test cases required for each
boundary value testing approach, for a program with n in-
put variables, 4n + 1 test cases should be designed using
boundary value testing, 6n + 1 for robustness testing, 5n

for worst case testing, 7n for robustness worst case testing,
while only 4n + 4 is required for the approach proposed in
this paper. Empirical results showed that the test suite gen-
erated using the new approach has a very strong fault detec-
tion ability where all 426 mutants were killed. Certainly, the
test suite by the new approach is a subset of the test suite by
robustness worst case testing, which means the test suites
generated using robustness worst case testing must kill all
mutants as well. However, the number of test cases required
is 7n that is significant larger than 4n + 4. If there are more
input variables, the number of worst case testing or robust-
ness worst case testing is absolutely very large, thus the test
cases generation is hard to manipulate.

The experimental results show that eight new faults were
detected in the 34 program versions, which had been tested
by Test1200. In the 1200 test cases, 800 are functional
test cases designed by experienced programmers according
to the specification of RSDIMU and 400 are random test
cases [19]. Robustness worst case testing is not considered
for the test cases generation as the number of test cases re-
quired for five input variables is 16807, which is difficult



to implement. The new faults detected in the experiments
indicate the evidence that the boundary testing based ap-
proaches have strong faults detection ability and the new
boundary testing approach proposed in this paper provides
a piratical implementation in reality as the number of test
cases required is only 4n + 4.

Furthermore, the test suite designed for robustness test-
ing detects 7 new faults, and the test suite developed accord-
ing to the new boundary testing method also finds 7 new
faults. The test cases that can find new faults are inspected
carefully. The number of the input variables, whose values
are separately set to min,min+1, nom, max,max−1 and
max+1, is 4, 1, 1, 1, 1 and 5 for RSDIMU programs. This
is to say, the test cases with max+1 have a strong faults de-
tection ability. The probability of faults found achieves the
highest when the input variable is set to max + 1. This is
related to the representation of integers stored in the mem-
ory of computer. When an integer is represented by n-bit
binary system, the maximum must be less than 2n − 1. So,
max+1 is a special value beyond extreme, which can easily
catch the faults over the boundary. Consequently, its fault
detecting capacity is quite great.

In a word, considering the number of faults detected,
the number of mutants killed, the number of test cases,
maneuverability, time to implement and efficiency, the test
suite developed for the new boundary testing is the best one
among the 4 test suites.

6 Related Work

Equivalence partitioning and boundary value testing are
two related black-box testing techniques. The equivalence
partitioning technique divides the input domain of a variable
into partitions so that all members of a partition cause the
same program behaviour. Subsequently, only one represen-
tative of each partition is picked out as a test case. Bound-
ary value testing is different from equivalence partitioning
in that it focuses on the values that are usually on or out of
range rather than a random value inside the partition. Stan-
dards such as IEC61508 permit the use of equivalence par-
titions/boundary values to reduce the number of test cases.

A.Beer thought that the simple equivalence partitioning
method was insufficient in many cases, and presented a test
cases generation method combining the equivalence par-
titioning, boundary value analysis and cause-effect analy-
sis [1]. Jeng et al partitioned a system’s input domain D
into a finite set of subdomains D1, · · · , Dn according to the
specification, such that the system’s behaviours were uni-
form on each Di, and then produced test inputs that were
close to the boundaries of the subdomains with the aim of
finding shifts in boundaries [27, 13]. Clarke et al considered
the use of boundary testing for path testing [5]. Hierons dis-
cussed how boundary value analysis was adapted to reduce

the likelihood of coincidental correctness [9]. Hoffman de-
scribed an automated boundary test generation system, and
defined a family of boundary heuristics (k-bdy), where 1-
bdy generated all combinations of maximum and minimum
values of an N-dimensional integer input space [10].

Legeard presented a boundary value test generation ap-
proach from a B or Z formal specification [18]. The method
took both B and Z specification as an input, computed
boundary values and produced boundary test cases. Philip
proposed a boundary test cases generation method based on
UML state chart specifications [24]. Nikolai defined a fam-
ily of model-based coverage criteria based on formalizing
boundary-value testing heuristics [16].

Above researches have no similarity to our boundary test
cases generation approach. We emphasize boundary test
generation of input domain based on multi-faults assump-
tion.

7 Conclusion and Future Work

Software testing is a primary technical method to insure
software quality and improve software reliability. It is help-
ful to improve fault detection ability and achieve great test
efficiency if we pay more attention to boundary of input
domain and develop special test cases to check the compu-
tation near the boundary.

This paper discuss a new boundary test case selection
approach by applying fault detection rules in integrated cir-
cuits. The number of test cases, which is just involved in the
dimension of input variables but not the number of paths, is
4n + 4. Therefore, the cost of test is really low. According
to the RSDIMU specification, we designed 52 boundary test
cases to check the 34 RSDIMU program versions and 426
mutant programs. 7 new software faults were found in the
34 program versions and all 426 mutants were killed. The
experiment results show that the approach proposed in this
paper is remarkably effective in conquering test blindness,
reducing test cost and improving fault coverage.

The further work is to develop an automatic tool to iden-
tify key input variables based on program structures. We
believe that it can further improve the test generation effi-
ciency of boundary test cases.

Acknowledgements

Prof. Michael R. Lyu and Ph.D Cai provided a lot of help
and support. Here we express our heartfelt appreciation.

The work described in this paper was supported by Bei-
jing Natural Science Foundation under Grant No.4072021
and the National Natural Science Foundation of China un-
der Grant No.60473032.



References

[1] A. Beer and S. Mohacsi. Efficient test data generation for
variables with complex dependencies. In Software Testing,
Verification, and Validation, 2008 1st International Confer-
ence on, pages 3–11, 2008.

[2] X. Cai and M. R. Lyu. An empirical study on reliability
modeling for diverse software systems. In ISSRE ’04: Pro-
ceedings of the 15th International Symposium on Software
Reliability Engineering, pages 125–136, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
D. S. Moebus, B. K. Ray, and M.-Y. Wong. Orthogonal
defect classification-a concept for in-process measurements.
IEEE Trans. Softw. Eng., 18(11):943–956, 1992.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: Adap-
tive random testing for object-oriented software. In Inter-
national Conference on Software Engineering 2008, May
2008.

[5] L. A. Clarke, J. Hassell, and D. J. Richardson. A close look
at domain testing. IEEE Trans. Softw. Eng., 8(4):380–390,
1982.

[6] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee,
D. F. McAllister, M. A. Vouk, and J. J. P. Kelly. An exper-
imental evaluation of software redundancy as a strategy for
improving reliability. IEEE Trans. Softw. Eng., 17(7):692–
702, 1991.

[7] K. Foster. Error sensitive test cases analysis (estca). IEEE
Transactions on Software Engineering, 6(3):258–264, 1980.

[8] A. Gotlieb and M. Petit. Path-oriented random testing. In
RT ’06: Proceedings of the 1st international workshop on
Random testing, pages 28–35, New York, NY, USA, 2006.
ACM.

[9] R. M. Hierons. Avoiding coincidental correctness in bound-
ary value analysis. ACM Trans. Softw. Eng. Methodol.,
15(3):227–241, 2006.

[10] D. Hoffman, P. Strooper, and L. White. Boundary values and
automated component testing. Software Testing, Verification
and Reliability, 9(1):3 – 26, 1999.

[11] W. E. Howden. Weak mutation testing and completeness of
test sets. IEEE Transactions on Software Engineering, SE-
8(4):371–379, July 1982.

[12] B. Jeng. Toward an integration of data flow and domain
testing. J. Syst. Softw., 45(1):19–30, 1999.

[13] B. Jeng and I. Forgács. An automatic approach of domain
test data generation. J. Syst. Softw., 49(1):97–112, 1999.

[14] P. C. Jorgensen. Software Testing: A Craftsman’s Approach.
CRC Press, Inc., Boca Raton, FL, USA, 2002.

[15] N. Kosmatov. All-paths test generation for programs with
internal aliases. Software Reliability Engineering, Interna-
tional Symposium on, 0:147–156, 2008.

[16] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting.
Boundary coverage criteria for test generation from for-
mal models. Software Reliability Engineering, International
Symposium on, 0:139–150, 2004.

[17] D. Kuhn, D. Wallace, and J. Gallo, A.M. Software fault in-
teractions and implications for software testing. Software
Engineering, IEEE Transactions on, 30(6):418–421, June
2004.

[18] B. Legeard, F. Peureux, and M. Utting. Automated bound-
ary testing from z and b. In FME ’02: Proceedings of the
International Symposium of Formal Methods Europe on For-
mal Methods - Getting IT Right, pages 21–40, London, UK,
2002. Springer-Verlag.

[19] M. R. Lyu, Z. Huang, S. K. S. Sze, and X. Cai. An empirical
study on testing and fault tolerance for software reliability
engineering. In ISSRE ’03: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, page
119, Washington, DC, USA, 2003. IEEE Computer Society.

[20] J. Mcdonald, J. Mcdonald, L. Murray, L. Murray, P. Lindsay,
P. Lindsay, P. Strooper, and P. Strooper. A pilot project on
module testing for embedded software, 2000.

[21] P. McMinn. Search-based software test data generation:
a survey: Research articles. Softw. Test. Verif. Reliab.,
14(2):105–156, 2004.

[22] M. Ramachandran. Testing software components using
boundary value analysis. EUROMICRO Conference, 0:94,
2003.

[23] S. C. Reid. An empirical analysis of equivalence partition-
ing, boundary value analysis and random testing. Software
Metrics, IEEE International Symposium on, 0:64, 1997.

[24] P. Samuel and R. Mall. Boundary value testing based on uml
models. Asian Test Symposium, 0:94–99, 2005.

[25] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Taka-
matsu. On diagnosing multiple stuck-at faults using mul-
tiple and singlefault simulation in combinational circuits.
IEEE Trans. on CAD of Integrated Circuits and Systems,
21(3):362–368, 2002.

[26] G. Tassey. The economic impacts of inadequate infrastruc-
ture for software testing. Technical report, National Institute
of Standards and Technology, 2002.

[27] L. J. White and E. I. Cohen. A domain strategy for com-
puter program testing. 6(3):247–257, May 1980. Special
Collection on Program Testing.

[28] S. Yang. Fault Diagnosis and Reliability Design of Digital
System. Tsinghua University Press, 2000.

[29] S. J. Zeil, F. H. Afifi, and L. J. White. Detection of linear er-
rors via domain testing. ACM Trans. Softw. Eng. Methodol.,
1(4):422–451, 1992.

[30] R. Zhao. Software Testing. China Higher Education Press,
2008.


