
Efficient Multi-Objective 
Higher Order Mutation Testing with 

Genetic Programming

W. B. Langdon
University College, London

1



W. B. Langdon, UCL 2

Introduction

• 2 objectives: Hard to kill, little change to 
source

• Higher order mutation testing→mutant has 
more than one change 

• How we use genetic programming
• Results on 4 benchmarks (triangle, schedule, 

tcas, gzip) 
• Coupling Hypothesis
• Non-Deterministic Mutants
• Conclusions



W. B. Langdon, UCL

Multi-Objective Search

• By extending mutation testing to higher orders 
we allow mutants to be more complicated, 
emulating expensive post release bugs which 
require multiple changes to fix.

• To avoid trivial mutants which are detected by 
many tests we search for hard to kill mutants 
which pass almost all of the test suite.

• Two objectives →Pareto multi-objective search

3



W. B. Langdon, UCL

Evolving High Order Mutants

4



W. B. Langdon, UCL

Evolving High Order Mutants

• C source converted to BNF grammar

• BNF describes original source plus mutations

• All comparisons can be mutated

• Strongly Typed GP crosses over BNF to give 
new high order mutants.

• Compile population of mutants to give one 
executable. Run it on test suite to give fitness.

• Select parents of next generation.

5



W. B. Langdon, UCL 6



Triangle.c
int gettri(int side1, int side2, int side3){ 

int triang ; 
if( side1 <= 0 || side2 <= 0 || side3 <= 0){

return 4;
}
triang = 0;
if(side1 == side2){

triang = triang + 1;
}
if(side1 == side3){

triang = triang + 2;
}
if(side2 == side3){

triang = triang + 3;
}
if(triang == 0){

if(side1 + side2 < side3 || side2 + side3 < side1 || side1 + side3 < side2){
return 4;

}
else {

Potential mutation sites
(comparisons) in red



Triangle BNF syntax
<line1> ::= "int gettriXXX (int side1, int side2, int side3)\n"
<line2> ::= "{\n"
<line3> ::= "    \n"
<line4> ::= "int triang ;\n"
<line5> ::= "    \n"
<line6> ::= <line6A> <line6B> <line6C>
<line6A> ::= "if( side1" <compare> "0 || side2"
<line6B> ::= <compare> "0 || side3"
<line6C> ::= <compare> "0){\n"
<line7> ::= "return 4;\n"
<line8> ::= "}\n"
<line9> ::= "  \n"
<line10> ::= "triang = 0;\n"
<line11> ::= "\n"
<line12> ::= "if(side1" <compare> "side2){\n"
<line13> ::= "triang = triang + 1;\n"
<line14> ::= "}\n"
<line15> ::= "if(side1" <compare> "side3){\n"
<line16> ::= "triang = triang + 2;\n"
<line17> ::= "}\n"
<line18> ::= "if(side2" <compare> "side3){\n”



W. B. Langdon, UCL 9

Triangle BNF syntax 2
<start> ::= <line1> <line2> <line3> <line4> <line5> <line6-23> <line24-41>

<line42> <line43> <line44> <line45> <line46> 
<line6-23> ::= <line6-14> <line15-23> 
<line6-14> ::= <line6-9> <line10-12> <line13> <line14> 
<line6-9> ::= <line6> <line7> <line8> <line9> 
<line10-12> ::= <line10> <line11> <line12> 
<line15-23> ::= <line15-19> <line20-23> 
<line15-19> ::= <line15-16> <line17-18> <line19> 
<line15-16> ::= <line15> <line16> 

<compare> ::= <compare0> | <compare1>
<compare0> ::= <compare00> | <compare01>
<compare00> ::= "<" | "<="
<compare01> ::= "==" | "!="
<compare1> ::= <compare10>
<compare10> ::= ">=" | ">”



W. B. Langdon, UCL

Yue’s Triangle Test Cases

10

-3 4 5 4
3 4 5 1
3 -4 5 4
3 4 -5 4
-3 -4 -5 4
3 -4 -5 4
-3 4 -5 4
-3 -4 5 4
-3 5 4 4
3 -5 4 4
5 3 -4 4
5 -3 4 4
3 3 5 2
5 3 5 2
3 4 4 2
3 4 8 4
3 9 5 4
12 4 5 4
4 5 12 4
-4 12 5 4

60 test cases chosen to test all branches 
in triangle.c

Three integers followed by expected result



W. B. Langdon, UCL

Triangle

• 7 first order mutants are very hard to kill (fail 
only 1 test).

• 8 first order mutants are equivalent (pass all)

11

Yue's triangle

     silent 1 median 95% all 60

first order 0.094118 0.082353 4 15 0

second 0.008235 0.016177 9 18 0

third 0.000659 0.002224 11 20 0

fourth 0.000047 0.000249 11 21 0

Random 0 0 10 18 0



High Order Triangle Mutants



High Order Triangle Mutants

The 10 normal operation tests detect >99% of random mutants



W. B. Langdon, UCL 14

Coupling Hypothesis

“Complex mutants are coupled to simple mutants 
in such a way that a test data set that detects all 
simple mutants in a program will also detect a 
large percentage of the complex mutants.”

─ Richard DeMillo

Plots strengthen this.

Created 16,383 test suites



Coupling First and Second Order Mutants

Fraction of 2nd order mutants killed by a triangle test suite 
strongly correlated to fraction of 1st order mutants it kills.



Coupling First and Third Order Mutants

Fraction of third order mutants killed by a triangle test suite is 
strongly correlated to the fraction of first order mutants it kills.



W. B. Langdon, UCL 17

Competent Programmer Hypothesis

“errors should be detectable as small deviations 
from the intended program.”

─ Richard DeMillo

Purushothaman and Perry suggest faults that 
remain after testing are complex.



W. B. Langdon, UCL

Schedule

• 1 first order very hard to kill (only 1 test).

• 10 first order mutants are equivelent (pass all)

18

     silent 1 median 0.95 all 2650

first order 0.1429 0.0143 1806 2413 0.0143

second 0.0189 0.0044 2235 2649 0.0303

third 0.0023 0.0009 2324 2649 0.0480

fourth 0.0002 0.0002 2395 2650 0.0672

Random 0 0 2611 2650 0.2954



High Order Schedule Mutants



tcas

• 1 first order hard to kill (only passes 3 tests).

• No first order passes only 1 or 2 tests.

• 24 first order mutants are equivelent (pass all)

• As with triangle and schedule, high order tcas
mutants (HOM) are easy to kill but show some 
interesting structure:
– 428 tests are ineffective against HOM

– 936 tests are almost ineffective against HOM

– 264 tests kill almost all HOM. These tests check for 
aircraft threats.



W. B. Langdon, UCL

Evolution of tcas Mutants

21



W. B. Langdon, UCL

Evolved tcas Mutants

• GP finds 7th order mutant which is killed by 
only one test in generation 14.

• Fifth order mutant found in generation 44

• Second GP run found 4th order (generation 90) 
and third order mutant (generation 105).

• All of these are harder to kill than any first order 
mutant. They affect similar parts of the code but 
are not all semantically identical.

22



W. B. Langdon, UCL

Evolved 3rd order tcas Mutant

• Changes lines 101, 112, 117:

• 101 and 117 are silent but 112 fails 12 tests.

• Passes all tests except test 1400. Should return 0 
but mutant returns DOWNWARD_RA.

• Fitness 1,23 (1 tests failed, syntax distance=23).

23

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation< =ALIM());
result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation >= ALIM());

return (Own_Tracked_Alt<= Other_Tracked_Alt);
return (Own_Tracked_Alt <   Other_Tracked_Alt);

return (Other_Tracked_Alt<= Own_Tracked_Alt);
return (Other_Tracked_Alt <   Own_Tracked_Alt);

Line 112 Own_Below_Threat()

Line 117 Own_Above_Threat()



Efficiency Techniques
Problems Solutions

Comparison of text (including 
error messages)

Replace printf results and error messages by saving 
output inside test harness and using status codes

Array indexing errors Automatic array index checking before all array 
accesses

Run out of memory or corrupt 
the heap

Allocate heap memory large enough for all of the test 
cases

Read or write illegal memory Automatic pointer checking before it is used.

Compiler overhead Compile once with ability to select mutants

Non-terminated loops Loop counter technique to kill mutants

Harmful system calls and IO 
operations

Record original program's use of system calls and IO by 
instrumenting the code.

Intercept and check system & IO during mutation testing

Heavy disk usage Combine tests into a single file.

A potential alternative might be to use RAM disk

Non-deterministic mutants Force the initialisation of all variables



gzip
• Time to compile. Time to test

• Frame work needs to be robust to mutant code:
– Time out looping mutants (For and goto)

– Protect against invalid array indexes and pointers 
bgcc −fbounds_checking

– Protect against trashing files. Intercept IO and system

– Trap exceptions

• heavy use of macros and conditional compilation
– Avoid mutations changing configuration but allow in 

.h by operating on source after include/macro 
expansion. gcc –E



W. B. Langdon, UCL 26

gzip

• 5680 lines of C. SIR test suite (only 211 tests).

• Highly non-uniform testing. 

• Concentrate on well tested code.



W. B. Langdon, UCL

gzip first order mutants

27



W. B. Langdon, UCL

gzip first order mutants

28



W. B. Langdon, UCL 29

gzip well tested code

• 5680 lines of C. SIR test suite (only 211 tests).

• Highly non-uniform testing. 

• Concentrate on well tested code.

• 496 1st order mutation sites

• 84  well tested 
– 78 potentially equivalent 

– 342 fail more than half SIR test suite



gzip 2nd order sow’s ear mutants

Of 87,150 2nd mutants all except 4 are similar to 1st order.



2nd order interactions of “easy” 1st order

• Two easy to kill 1st partially conceal each other

• Both in for loop of scan_tree() 
• if (count < min_count) mutated to<= Fails 89% of 

tests. Other 1st order is 13 lines later

• if (curlen == nextlen) ..else.. mutated to!= Causes 
min_count=3 to be replaced by min_count=4 and 
vice-versa. Fails more than 99% of tests.

• In many tests first line is if(count<4) sometimes with 
both changes this becomes if(count<=3) and the test is 
past.



gzip 2nd order sow’s ear mutants

Of 87,150 2nd mutants all except 4 are similar to 1st order.



2nd order interactions of equivelent 1st order

• Two equivelent 1st make each other visible

• Both mutation sites are in longest_match()

• A!= at the start of the outer loop is replaced by <
!= is partially for efficiency, when 1st order makes 
a difference it is trapped by if 8 lines later

• if(len>best_len) is replaced by (len>= best_len) so 
the last occurrence of the longest match rather 
than first is used.

• When both changes are made the if no longer 
traps the effect of < and most tests are failed.



gzip Monte Carlo sample of high order

All but 7 tests highly effective against very high order mutants
(as with other benchmarks). 7 in main() or close to it.



Non-Deterministic Mutants

• Mutating, even correct code, may cause it to produced 
different output when run again with the same input. 
Thus a non-deterministic mutant may or may not be 
killed by a test suite.

• Catching non-repeatable faults by repeated runs is not 
practical.

• Mutation test harness attempts to avoid non-
determinism by:
– Ensuring all variable are initialised (even in mutated code)
– Controlling I/O and system calls.
– Avoiding timing problems. Using loop counting, rather than 

time out, to detect and report indefinite loops.
– Avoiding tests which rely on variable details of user input 

(eg. timing).



W. B. Langdon, UCL 36

Conclusions
• Random high order mutants are easy to kill but may 

provide insight into code and test suite.

• Mutation testing can be viewed as multi-objective 
search.

• Genetic programming can find high order mutants 
which are both hard to kill and do not make too many 
changes to the original source code. 

• Evidence for the Coupling Hypothesis

• Importance of non-deterministic mutants

Journal of Systems and Software

doi:10.1016/j.jss.2010.07.027



W. B. Langdon, UCL 37

The End !!!



More information on GP

• http://www.cs.ucl.ac.uk/staff/W.Langdon
– A Field Guide to Genetic Programming, Free, 2008

– Foundations of GP, Springer, 2002

– GP and Data Structures, Kluwer, 1998

38


