CCCCC

Efficient Multi-Objective
Higher Order Mutation Testing with
Genetic Programming

W. B. Langdon
University College, London

CREST

Introduction

e 2 objectives: Hard to kill, little change to
source

* Higher order mutation testirgmutant has
more than one change

« How we use genetic programming

* Results on 4 benchmarks (triangle, schedule,
tcas, gzip)

e Coupling Hypothesis
e Non-Deterministic Mutants
e Conclusions

W. B. Langdon, UCL 2

CREST

Multi-Objective Search

* By extending mutation testing to higher orders
we allow mutants to be more complicated,
emulating expensive post release bugs which
require multiple changes to fix.

e To avoid trivial mutants which are detected by
many tests we search for hard to kill mutants
which pass almost all of the test suite.

 Two objectives—Pareto multi-objective search

W. B. Langdon, UCL 3

CREST

Evolving High Order Mutants

Evuluiiun of Hulti-0Ob jective Higher Order Hutants with NSGA-II and Genetic Progranning

al Generation 0 Pareta ?ruhtl—L¥—Ll_
Ho children

196 | 1 child : J

2 Children :

B .

B

119
112 ¢
189
o8
o1
84
77+
A r
63
56 |-
49
42
35 -
28 + -
21 7
14 -
7 L i

1 18 188 264 1688

langdon/=sebase/re_gp/tcas
Humber test cases with different uutpu% &P

B
i
g.

Syntax distance

W. B. Langdon, UCL 4

Evolving High Order Mutants

e C source converted to BNF grammar
 BNF describes original source plus mutations
* All comparisons can be mutated

o Strongly Typed GP crosses over BNF to give
new high order mutants.

o Compile population of mutants to give one
executable. Run it on test suite to give fithess.

e Select parents of next generation.

W. B. Langdon, UCL 5

CREST

SOUrCe.C

BNF

(Grammar

;

NSGA-II

Pareto \

Evolution

- — (3p— 10000 mutants

|

gcc

!

[1

population.exe

Test Cases

1. Number of tests passed

2. Syntatic difference

W. B. Langdon, UCL

CREST

NN
int gettri(int sidel, int side2, int side3){ _ _ _
int triang ; Potential mutation sites
if(sidel<=0 || sidex=0 || side3<=0){ (comparisons) imed
return 4;
}
triang = 0O;

if(sidel==side2){
triang = triang + 1,

}

if(sidel==side3){
triang = triang + 2;

}

if(side2==side3){
triang = triang + 3;

}

if(triang == 0){
if(sidel + sideX side3 || side2 + side3sidel || sidel + side3side2){

return 4;

}

else {

CREST

NN
Triangle BNF syntax
<linel> := 'int gettri (int sidel, int side2, int side3)\n
<line2> ::= \n"
<line3> := "An"
<line4d> ::= 'int triang ;\ni
<line5> ::= "An"
<line6> ::= <line6A> <line6B> <line6C>
<line6A> .= "if(sidel' <compare>'0 || side2
<line6B> ::= <compare>'0 || side3
<line6C> ::= <compare>'0){\n"
<line7> ::= ‘return 4;\ri
<line8> ::= "\n"
<line9> ::= "A\n"
<linel0> ::= 'triang = O;\nY
<linell> ::= "n"
<linel2> ::= 'If(sidel' <compare>'side2){\n'
<linel3> ::= triang = triang + 1;\h
<linel4> ::= Nn"
<linel5> ::= 'If(sidel' <compare=>'side3){\n'
<linel6> ::= triang = triang + 2;\h
<linel7> ::= Nn"
<linel8> ::= "if(sidez" <compare>"side3){\n’

CREST

Triangle BNF syntax 2

<linel> <line2> <line3> <line4> <line5}re6-23> <line24-41>
<line42> <line43> <line44> <line45> <line46>

<start> =

<line6-23>
<line6-14>
<line6-9>
<linel10-12>
<line15-23>
<line15-19>
<linel5-16>

<compare>
<compare0>
<compare00>
<compare01>
<comparel>
<comparel0>

<line6-14> <linel5-23>

<line6-9> <linel10-12> <linel3> <linei4
<line6> <line7> <line8> <line9>
<linel0> <linell> <linel2>
<line15-19> <line20-23>

<line15-16> <linel7-18> <linel9>
<linel5> <linel6>

<compare0> | <comparel>
<compare00> | <compareQ1>

{II ll<:II

£:II ll!:II
<comparel0>
$:II ll>”

W. B. Langdon, UCL 9

CREST

Yue’s Triangle Test Cases

3454
3451

3-454 60 test cases chosen to test all branches
34 -54 e

AR In triangle.c

3 -4 -54

2 44-22 Three integers followed bgxpected result
3544

3-544

53 -44

5-3 44

3352

5352

3442

3484

3954

12 4 54

45 124

W. B. Langdon, UCL 10
-4 12 54

CREST

Triangle

7/ first order mutants are very hard to kill (fall
only 1 test).

8 first order mutants are equivalent (pass all)

Yue's triangle

silent 1 median 95% all 60
firstorder 0.094118 0.082353 4 15 0
second 0.008235 0.016177 9 18 0
third 0.000659 0.002224 11 20 0
fourth 0.000047 0.000249 11 21 0
Random 0 0 10 18 0

W. B. Langdon, UCL 11

CREST

High Order Triangle Mutants

Syntax distance

42

39

28

21

14

Yue's triangle.c Compariszon Hutants, 68 tests HBL 15 Jan 2809

ST,
I-' .

+o
o

+ - = 78 order 4 killed by 8

1487568 4th order
. 8956800 3rd order
371 nutants killed by 1 3488 ?nd order

56 order 3 killed by B 85 1=t order

189 nutants killed by 1

28 order 2 killed by B

559 mutants killed by 1

8 first order nutants are killed by no test cases
7 first order nutant killed by 1 test case

] 18 15 28 23 38 35 48

Hunber test cases with different output

45

CREST

High Order Triangle Mutants

Yue's triangle.c Comparizon Hutants, 68 tests HBL 13 Jan 2889
1EH T T T T T T

148 - i

128 - .

1688 - .

Syntax distance
="
-
T
1

18888 Random high order mutant
1487508 4th order
89808 3rd order :
3488 2nd order ©

89 1st order + |

42 -
35 -
2g
o1 o

14 é-
Frt g

a 18 28 38 48 a8 68

Humber test cases with different output

The 10 normal operation tests detect >99% of ranchtants

o+

CREST

Coupling Hypothesis

“Complex mutants are coupled to simple mutants
INn such a way that a test data set that detects all
simple mutants in a program will also detect a
large percentage of the complex mutants.”

— Richard DeMillo

Plots strengthen this.
Created 16,383 test suites

W. B. Langdon, UCL 14

CREST

ﬂa?upling First and Second Order Mutants

triangle.c Comparizon Mutants 16383 Test Suites

3311 |
et
.!!!!!
Fo0a l!ii.
!
£ 2500 | i==
= $i
= ;ﬁ x
g L x”ﬁ
& 2000 W "
= ++ ﬁ?fé* ®
5 HE
5 N
= 1500 .
2 u
5 :
E wl
§ 1000 | 5
]
o0
any triangle +
0 1 I | . not a triangle error ¥
4] 10 20 a0 i A0 60 -

85 First Order Triangle Mutants langdon/zehaze/re_gpltriangled

Fraction of 2dorder mutants killed by a triangle test suite
strongly correlated to fraction oftbrder mutants it Kills.

CHEST

Coupllng Flrst and Third Order Mutants

Comparison Mutants 16333 Test Suites

o000 | HH
iiiill!!lil!!!!!!i!!
- el

GOO00 -
M
R E
50000 T
N
40000 | ® !

30000
K

80000 Third Order Triangle Mutants
-4
=
b1
=

20000

1000

ard any triangle +
I3rd only nnﬁ a triangle L

1 1 1
0 10 20 30 i] G 71
85 First Order Triangle Mutants langdon/zehaze/re_gpltriangled

Fraction of third order mutants killed by a triaagést suite is
strongly correlated to the fraction of first oraheutants it kills.

CREST
NN

Competent Programmer Hypothesis

“errors should be detectable as small deviations
from the intended program.”

— Richard DeMillo

Purushothaman and Perry suggest faults that
remain after testing are complex.

W. B. Langdon, UCL 17

CREST

first order

second
third

fourth

Random

silent
0.1429
0.0189
0.0023
0.0002
0

Schedule

1 first order very hard to kill (only 1 test).
« 10 first order mutants are equivelent (pass all)

1
0.0143
0.0044
0.0009
0.0002

0

median
1806
2235
2324
2395
2611

W. B. Langdon, UCL

0.95
2413
2649
2649
2650
2650

all 2650

0.0143
0.0303
0.0480
0.0672
0.2954

18

CREST

Syntax distance

High Order Schedule Mutants

168

128

188

i}

68

42
35
28
21
14

schedule 1-4th Order and Randon Conparison Hutants

HBL 5

Feb 2889

e
- h}:‘. :_:-,_ﬂ'
ﬁif 25

180088 High
625625 4th
45508 3rd

2975 ond

78 1st

order
order
order
order
order

oa8

Hunber test cases with different output

23580 2658

CREST

tcas

1 first order hard to kill (only passes 3 tests).
* No first order passes only 1 or 2 tests.
o 24 first order mutants are equivelent (pass all)

« As with triangle and schedule, high order tcas
mutants (HOM) are easy to kill but show some
Interesting structure:

— 428 tests are ineffective against HOM
— 936 tests are almost ineffective against HOM

— 264 tests kill almost all HOM. These tests cheaexk f
aircraft threats.

CREST

Syntax distance

Evolution of tcas Mutants

Evuluiiun of Hulti-0Ob jective Higher Order Hutants with NSGA-II and Genetic Progranning

126
119
112
185
o8
o1
84
77
7a
63
56
49
42
35
28
21
14

Generation 8 Par

Ho children

1 child

2 children
B .- .

B

B
i
g.

eta ?ruhtl—L¥—Ll_

18

Humber test cases with differe

W. B. Langdon, UCL

188
nt outpu

1688

G
lan%dunfsehasefre_gpftcas

21

CREST

Evolved tcas Mutants

« GP finds 7 order mutant which is killed by
only one test in generation 14.

 Fifth order mutant found in generation 44

« Second GP run found"4rder (generation 90)
and third order mutant (generation 105).

 All of these are harder to kill than any first erd
mutant. They affect similar parts of the code but
are not all semantically identical.

W. B. Langdon, UCL 22

CREST

Evolved 39 order tcas Mutant
 Changes lines 101, 112, 117:

result = Own_Below_Threat() && (Cur_Vertical_Sep MHNSEP) && (Down_Separatior =ALIM());
result = Own_Below_Threat() && (Cur_Vertical Sep MHENSEP) && (Down_Separation >= ALIM());

return (Own_Tracked Ak= Other_Tracked_Alt);

return (Own_Tracked_Alt < Other_Tracked_Alt); Line 112 Own_Below_Threat()

return (Other_Tracked_A#= Own_Tracked_Alt);
return (Other_Tracked Alt< Own_Tracked Alt);

e 101 and 117 are silent but 112 fails 12 tests.

e Passes all tests except test 1400. Should return O
but mutant returns DOWNWARD RA.

e Fitness 1,23 (1 tests failed, syntax distance=23).

Line 117 Own_Above_Threat()

W. B. Langdon, UCL 23

CREST

Efficiency Techniques

Problems

Solutions

Comparison of text (including
error messages)

Replaceprintf results and error messages by saving
output inside test harness and using status codes

Array indexing errors

Automatic array index checking before all array
accesses

Run out of memory or corrupt
the heap

Allocate heap memory large enough for all of trst te
cases

Read or write illegal memory

Automatic pointer chiagkbefore it is used.

Compiler overhead

Compile once with ability to selaatants

Non-terminated loops

Loop counter technique torkilitants

Harmful system calls and IO
operations

Record original program's use of system calls &nty
instrumenting the code.

Intercept and check system & 10 during mutationings

Heavy disk usage

Combine tests into a single file.
A potential alternative might be to use RAM disk

Non-deterministic mutants

Force the initialisatidralh variables

gzip
 Time to compile. Time to test
e Frame work needs to be robust to mutant code:

— Time out looping mutants (For and goto)

— Protect against invalid array indexes and pointers
ngcc —fbounds_checking

— Protect against trashing files. Intercept 1O aystein
— Trap exceptions

* heavy use of macros and conditional compilation

— Avoid mutations changing configuration but allaw |
.n by operating on source after include/macro
expansion. gcc —E

gzip
5680 lines of C. SIR test suite (only 211 tests).

* Highly non-uniform testing.
e Concentrate on well tested code.

W. B. Langdon, UCL 26

CREST

Humber times executed

gzip first order mutants

S5IR gzip 211 of 214 tests 1st Order Conparison Hutants HBL 6 Hov 2889

1 688 6888

168 e668

18 @88

1866

168

18

gzip source line

W. B. Langdon, UCL

T T T T T
+ allfile.c +
* * - le.
zip.h # ~
N N + gzip
o+ i
+
+
+ + 4
+
+
* +++'I+ +
* + #14.q$ + +
* Ty
+ o M .
+# +
+ o+
o+ + O+ +
N i
+ ++:':tF + +
& + + +
+
S s + g # T+ ey
+ + + .
+ + ;; 1 +1F W
++ + +
+ *i + . N gy +
. + ot L E
+ b ++
+ +
+ + + + H+ + o+ 4+
+ - + + +
Y S A + +m + At B
1 1 1 1 1 1
18688 2808 388 4888 5888 G888 Fooa

27

CREST

gzip first order mutants

SIR gzip 211 of 214 tests 1st Order Conparison Hutants HBL 13 Sep 2889

First order
Code where Hutant iz equivalent or fails most #

Count

668

189,199

g
o
T T T ITTIT TN T AT T 017

cases when executed % ﬂ

o a5-189 11
35151

8-40-18 test cases with different output

W. B. Langdon, UCL

28

gzip well tested code

5680 lines of C. SIR test suite (only 211 tests).
* Highly non-uniform testing.

e Concentrate on well tested code.

e 496 F'order mutation sites

e 84 well tested
— 78 potentially equivalent
— 342 fail more than half SIR test suite

W. B. Langdon, UCL 29

CREST
NN

gzIip 2nd order sow’s ear mutants

SIR pzip 211 of 214 tests dummest 2nd Order Comparison Hutants HBL 17 Hov 2889

24 I +
a3
22
21 i)
20 i
19 F + i §
"
18 | +

17 r

Syntatic Distance

16

13 +

14

Of 87,150 2d mutants all except 4 are similar to 1st order.

CREST
NN

2"d order interactions of “easy™torder

e Two easy to kill ¥ partially conceal each other
* Both infor loop ofscan_tree()

» if (count < min_count) mutated to<= Falls 89% of
tests. Otherstorder is 13 lines later

e if (curlen == nextlen) ..else.. mutated td= Causes
min_count=3 to be replaced bwin_count=4 and
vice-versaFails more than 99% of tests.

e |n many tests first line ig(count<4) sometimes with

noth changes this becomfgsount<=23) and the test Is
nast.

CREST
NN

gzIip 2nd order sow’s ear mutants

SIR gzip 211 of 214 tests dummest Znd Order Comparizon Mutants

24 | | * .
23 ; -
2z -
2t 1 -
20 - J ! i
ST ! 1 :
L 18F £ + -
o 3 :. i
5 UL #d .
ﬁ :E"' . e
a 161 §ow & 1
. ‘. w
2 45 | + 1‘% C+ ﬂ; + .
% ; %
£ 14 % O 1
] = " "
L]

I= with <

. Replace

9r _
. Replace > with I=
o . Replace == with <
. Replace != with »
Tr . Replace » with »>= First orde irst order
1 1 1 1
0 fatal 150 200
Number tests failed langdonszehaze/ jas/ezip_2nd_order

Of 87,150 2d mutants all except 4 are similar to 1st order.

CREST
NN

2hd order interactions of equivelent brder

 Two equivelent ¥ make each other visible
e Both mutation sites are langest_match()

o Al=at the start of the outer loop Is replaced<by
1= |s partially for efficiency, whenslorder makes
a difference it is trapped y8 lines later

« if(len>best_len) Is replaced bylen>= best_len) so
the last occurrence of the longest match rather
than first Is used.

 When both changes are madeitm® longer
traps the effect of and most tests are failed.

CREST

133-136 167-173 199 204
T T TTIT TIT TITTTIT T T
10000 Randon Order 1672
10000 dth Order :
10000 3rd Order : 4 565
ALl 87150 2nd order :
ALl 420 1=t Order + 4651
1 637
q 623
- 609
§ 15995
[
]
i -1 581
s 49 - : -
b
13
4
5 42
L2y
/"
28
[]
21 F
® []
14 W ®
A4 :
1 1 1 1
0 fatal 123 150-154 1583-189 211

uuNumber‘ test cases E‘i__ié_h different nutpuiilfﬂgdﬂhfsebasef.jSSHQELE._End_DPdEP

Hunber tests failed

All but 7 tests highly effective against
(as with other benchmarks). 7 in main() or closg.to

CREST

Non-Deterministic Mutants

e Mutating, even correct code, may cause it to pcedu
different output when run again with the same input
Thus a non-deterministic mutant may or may not be
killed by a test suite.

e Catching non-repeatable faults by repeated runetis
practical.

e Mutation test harness attempts to avoid non-
determinism by:
— Ensuring all variable are initialised (even in atatl code)
— Controlling I/O and system calls.

— Avoiding timing problems. Using loop counting,lvat than
time out, to detect and report indefinite loops.

— Avoiding tests which rely on variable details stuinput
(eg. timing).

CREST

Conclusions

 Random high order mutants are easy to kill but may
provide insight into code and test suite.

e Mutation testing can be viewed as multi-objective
search.

e Genetic programming can find high order mutants
which are both hard to kill and do not make too ynan
changes to the original source code.

* Evidence for the Coupling Hypothesis
e Importance of non-deterministic mutants

Journal of Systems and Software
W. B. Langdon, UCL 36

The End !!!

W. B. Langdon, UCL

37

CREST

More information on GP

— A Field Guide to Genetic Programming, Free, 2008
— Foundations of GP, Springer, 2002

— GP and Data Sructures, Kluwer, 1998

A
Field
Guide

to Genetic

Programming

Riccardo Poli
William B. Langdon
Nicholas F. McPhee

with contributions by
John R. Koza

