
Industrial Experience of Genetic Improvement in
Facebook

Nadia Alshahwan

Facebook Inc.

Abstract—Facebook recently had their first experience with
Genetic Improvement (GI) by developing and deploying the
automated bug fixing tool SapFix. The experience was successful
resulting in landed fixes but also very educational. This paper will
briefly outline some of the challenges for GI that were highlighted
by this experience as well as a look at future directions in the
area of mobile apps.

INTRODUCTION

While developing and deploying SapFix (the automated

end-to-end repair tool) at Facebook, a few open problems were

highlighted as the more pressing challenges for this type of

technique to be successful. This paper will focus on three

of those challenges: fix detection, engineer perception and

participation and scalability and timeliness. Details about the

tool itself can be found in the paper by Marginean, et al[1].

Fix Detection

Any fault repair tool is only as good as the tests it uses

to validate the produced fixes. If the tests have low repro-

ducibility, we can not determine with high confidence if the

fault disappeared because it was fixed or because our tests are

flaky. Even if the tests were 100% reproducible, there is still

a possibility that the fix only masked the fault while another

test we are not using could reveal it in a different way.

Moreover, the fix could have introduced another fault that

our tests cannot expose. Human reviewers might catch these

cases but not as fast as an automated tool. It would be more

efficient for such cases to never make it to the review process.

Any development in reproducibility and coverage of testing

approaches can help mitigate these issues.

Engineer Perception and Participation
It comes as no surprise that engineers were split in their

reaction to the tool between enthusiasts and skeptics. We

would only be worried if SapFix was met with indifference.

Each of these reaction poses its own risks and challenges.

Skeptics might refrain from engaging with the tool until

it delivers the quality they would find satisfying. This could

mean that we miss important feedback that can help us im-

prove and develop the tool. The challenge here is to understand

and address any concerns these engineers might have and to

be open about the technique’s strengths and limitations.

Enthusiasts on the other hand pose a risk if they trust the tool

too much and maybe accept changes that might have hidden

side effects. A way to mitigate that is to add disclaimers and

warnings on patches submitted by the tool reminding engineers

that these are generated by an error prone automated approach.

Scalability and Timeliness
There is a great tension between the quality of the solution

an automated technique can produce and the timeliness of this

solution. This is a problem we also face in Sapienz[2] the

automated test design tool.

Naturally if you give a technique more resources and time,

the solution produced is expected to be of higher quality.

However, for an automated repair tool to be successful, it needs

to produce a fix before engineers spend time and effort trying

to solve the same fault. We saw examples of this in practice

when some of our fixes were deemed correct but did not land

because the issue was already fixed by an engineer.

The number of mutants produced by a repair tool has a

great effect on the scalability and timeliness of the technique.

Each mutant has to be built and tested which could be very

time consuming. For that reason, SapFix incorporates fix

templates mined from human fixes into the mutation process

to produce a smaller number of possible patches that have a

higher probability of being at least compilable. However, this

limits the issues we can fix to those that have fix templates.

Being able to produce a large number of random mutants but

also have smart rules to filter then down before reaching the

build/test step of the process would be ideal.

FUTURE DIRECTION

One of the biggest areas of interest for mobile apps in

industry currently is performance improvement. Any reduction

in execution or load times or the size of data transferred is

important.

Another direction for GI could be improving the layout of

an app to enhance usability and engagement. We could utilize

time spent data to determine which parts of the app we want

to highlight. Once those popular features are determined, the

fitness could be how easy those parts are to reach and how

close features are if they are usually used together. Determin-

ing the fitness could be done by running a random approach

such as Android Monkey and calculating the probability of

covering those parts over multiple runs.

REFERENCES

[1] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: Automated end-to-end repair at scale,”
in International Conference on Software Engineering (ICSE) Software
Engineering in Practice (SEIP) track, Montreal, Canada, 2019.

[2] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with Sapienz at
Facebook (keynote paper),” in SSBSE 2018, 2018, pp. 3–45.

1

2019 IEEE/ACM International Workshop on Genetic Improvement (GI)

978-1-7281-2268-7/19/$31.00 ©2019 IEEE
DOI 10.1109/GI.2019.00010

