
Butterflies Considered Harmful
Wednesday 12 January 2022

11.1.2022

Information theory suggests software is not chaotic.

Instead in deeply nested programs
most disruption fails to propagate to the output.

Exponential decay of failed disruption propagation
says optimal test oracles are at the error,
but next to the error is only 18% to 28% worse than optimal.
Suggesting software being tested should not be more than about seven levels deep

W. B. Langdon

W. B. Langdon, UCL

Information Theory and Experiments
on Deep Genetic Programming Trees

 Information theory and failed disruption propagation
 Started with deep floating point polynomials

● Injected errors lost mostly due to rounding error
 Evolve deep integer trees

● Inject run time error everywhere, retest
● 92% to 99.97% of errors have no effect

 Variation between programs
 Exponential decay with depth

● Need to be close to error for tests to find them
● On average <7 more than 50% errors detected

 Conclude by drawing lessons for programming

3W. B. Langdon, UCL

Information Funnel

Computer operators are irreversible. Meaning input state
cannot be inferred from outputs. Information is lost

W. B. Langdon 4

Information funnel

More information
enters than leaves

Information flow in five nested functions

Potential information loss at each (irreversible) function

5

Disruption may fail
to reach reach
output.

(No side effects.)

Output
(often drawn at top of picture)

Evolve 10 Deep Integer GP Trees
 Most GP experiments use float or Boolean, choose Koza’s

Fibonacci Problems.
● Recursive program to generate Fibonacci sequence

 X
J
 = X

J-1
 + X

J-2
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

● 0 1 2 3 J + - * SRF

SRF(j,default) = jth value. default applies if j is invalid
● Twenty tests J=0 … 19
● Population 50000, 1000 generations
● Ten runs

 Change at run time each point in tree on each of the 20 tests
● Two run time disruptions: +1, replace with random int
● +1 and RANDINT very similar

 Almost all run time disruptions make no difference

6

+1 Disruption. Run 7, tree depth 33
red 16-20 test cases, blue 1 test cases

W. B. Langdon 7

Only disruption near root node reaches output

Run 7, tree depth 33
Red 26-20 test cases, blue 1 test cases

W. B. Langdon 8

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

Run 2, tree depth 160
Red 6-20 test cases, blue 1-2 test cases

W. B. Langdon 9

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

Run 3, tree depth 220
Red 4-20 test cases, blue 1-3 test cases

W. B. Langdon 10

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

Run 8, tree depth 425
Red 17-20 test cases, no blue

W. B. Langdon 11

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

Run 10, tree depth 360
Red 10-20 test cases, no blue

W. B. Langdon 12

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

Exponential fall in fraction of run time disruption
changing program output with depth

W. B. Langdon 13

Exponential fall in fraction of run time disruption
changing program output with depth

W. B. Langdon 14

Fraction disruption reaching output in deep Fibonacci trees

15

depth sum |error| +1 RANDINT
 663 20 0.114% -0.31 0.092% -0.31
 160 10 1.449% -0.30 1.449% -0.33
 220 184 3.010% -0.27 3.053% -0.27
 449 130 0.127% -0.28 0.121% -0.29
 454 632 0.253% -0.20 0.256% -0.20
 626 0 0.056% -0.27 0.056% -0.27
 33 0 7.523% -0.21 7.523% -0.22
 425 0 0.073% -0.30 0.073% -0.30
 485 0 0.032% -0.33 0.032% -0.33
 360 0 0.137% -0.26 0.137% -0.26

Variation between trees but smallest +1 and large RANDINT %disruption
and exponential regression (-0.33 to -0.20) are both similar

Effectiveness of whole test suite varies with depth
50% chance of detecting disruption depth 5 to 15

W. B. Langdon 16

1) More fitness test cases has only small effect, <= log(n)
● 1000 test cases only marginally more effective than 48
● Test value 0.0f can be least effective

2) Testing is hard. Need to place test probe near error
● Problem dependent but next to 18 – 28% reduction
● Try to minimise depth of software being tested.
● Problem dependent but here on average 7 levels

3) Write testable code: ie write units which are <7 levels deep

4) Programs are not chaotic, tiny errors often have no effect.
Instead programs are robust because most (large or small)
errors fail to propagate.

W. B. Langdon, UCL 17

Conclusion: Deep nesting hides errors

Genetic Programming

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/

The Genetic Programming Bibliography

14736 references, 13000 authors

Co-authorship community.
Downloads

A personalised list of every author’s
GP publications.

blog

Googling GP bibliography, eg:
Evolutionary Medicine site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/blog.html
http://gpbib.cs.ucl.ac.uk/blog.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi

Best independent tests but
test suite effectiveness only log(n)

20

Number of functions disruption must pass through before reaching the root
node before the chance of detection is less than 1% v. test suite size.
(Vertical axis normalised by dividing by mean of geometric distribution.)

Side Effect Free: Disruption Falls Monotonically

21

Deeper disruption tends to have less impact on fitness

Deeper than 144
No impact at all

Deeper than 44 ½ tests observe no impact

Deeper than 13
3 tests see no impact

At each GP node: 32 bits + 32 bits => 32 bits
Information funnel. Information is lost.

Random (fun 4) sample 25001 nodes depth 491

22

Deeper disruption tends to have less impact on fitness

Changed code (red)
Blue nodes at least one test case is different.
Change does not reach root node.

Most Difficult to Conceal Polynomial test case

23

For large random polynomials, most effective test cases |X| ~ 1.3

