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Genetic Programming and  

Long-Term Evolution Experiments 

• Why we care about LTEE 

• Evolving Bacteria 60,000 generations v. 

evolving programs 100,000 generations 

• LTEE continuous innovation v convergence 

• Existing results on landscape of large trees 

• New results 

– Increase in code (bloat), end of bloat 

– Theory some true, some less so 

– Evolution has smoothed large tree landscape 

although fitness distribution remains rugged. 



Why Long Term Evolution Matters 

• More challenging problems may require 

running evolution for longer.  

• Hence the need to study what happens in 

long runs. 

• By mapping landscape far from origin, 

perhaps we can anticipate and solve 

problems that may occur. 

W. B. Langdon, UCL 3 



Long-Term Evolution Experiment 

Evolving Bacteria 60,000 generations 

Even after 60000 gens fitness still improving 

 

Mean fitness of nine E. coli 

populations from the LTEE 

Richard Lenski pulls 

frozen bacteria 

cultures out of a 

freezer 15 Oct 2009 

R. E. Lenski et al. 2015. Sustained fitness gains and 

variability in fitness trajectories in the long-term evolution 

experiment with Escherichia coli. Proc. Royal Soc. 

https://www3.beacon-center.org/blog/2017/02/15/richard-lenski-wins-2017-friend-of-darwin-award/
http://rspb.royalsocietypublishing.org/content/282/1821/20152292
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Convergence of Fitness Distribution 

Fig. 7.7 Foundations of Genetic Programming 

Large tree fitness distribution remains 

rugged like small trees but as we will see 

GP population maintains smooth landscape 

http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/index.html


Genetic Programming and  

Long-Term Evolution Experiments 

• GP system able to run thousands of 

generations. (Do not stop when solved) 

– Expect bloat (tree growth) 

– Compact representation of trees 

– Fast fitness evaluation 

• GPquick C++, written by Andy Singleton 

≈ two bytes per tree node 

• Submachine code genetic programming 

W. B. Langdon, UCL 6 

https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html
https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html


Evolution of Program Size 

7 

Note evolution continues after 1st solution found in generation 22 and even 

after 1st population when everyone has maximum fitness (generation 312). 

GP+EM (1)1 pp95-119 

http://dx.doi.org/doi:10.1023/A:1010024515191
http://dx.doi.org/doi:10.1023/A:1010024515191
http://dx.doi.org/doi:10.1023/A:1010024515191


Evolution of Program Size 
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Note evolution continues even after 1st population when everyone has 

maximum fitness (generation 312) but tree size falls as well as rises. 



6-Mux Fitness Convergence 
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Theory   y = 2popsize(1-(1-x/popsize)7)   matches experiment 

Gen 312 

Gen 22 



6-Mux Fitness Convergence 
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Plot smoothed by taking running average over 30 generations 

W. B. Langdon, UCL 



Convergence in Genetic Programming 

• GP genotypes do not converge. Even after 

many generations every tree in the 

population is different, BUT… 

• Every (or almost all) trees give the same 

answers (phenotypic convergence) 

• Effective code, i.e. code to solve problem, 

does converge.  

 Effective code other runs converges differently 

W. B. Langdon, UCL 11 



Convergence of typical Effective Code 

Gen 500 

Only 141 instructions of 16,831 are effective 

Gen 400 

Only 111 instructions of 15,495 are effective 

Tree drawing code lisp2dot.awk 

http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot


Convergence of Effective Code 

Effective code only. Yellow highly converged. 

Black unique code Circular lattice code gp2lattice.awk 

Video 

http://www0.cs.ucl.ac.uk/staff/W.Langdon/gp2lattice/gp2lattice.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/bmux6.100.gif


Shapes of Evolved Trees 

Both whole trees + and subtrees lie near 
Flajolet Depth ≈ 2

π 𝑠𝑖𝑧𝑒

2

½ 
 limit1 for random trees 14 

 

 

Video 

https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2000_fairxo.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/bmux6_100_sizea.gif


Bloat limited by Gambler’s ruin 

15 

• Tiny fraction of disrupted (low fitness) children sufficient 

to drive evolution towards ever bigger trees. 

• As trees get bigger chance of hitting protected effective 

code near root node falls. 

• In a finite population eventually no child will be disrupted. 

• Size, without fitness, wanders at random. 

• But wondering towards lower limit will re-establish the 

conditions for bloat. 

cf. Gambler’s ruin. 

• Very approximate limit on tree size: 

tree size ≈ number of trees × core code size 

W. B. Langdon, UCL 



Bloat limited by Gambler’s ruin 

In all ten runs the whole population 

repeatedly collapses towards smaller trees 

• tree size ≈ number of trees × core code size 

• tree size ≈ 50 × 497 ≈ 25 000 

• Across ten runs and 100,000 generation, median mean 

size 42 507 (smallest tree in pop size=10 513) 



• Studied long term evolution (>>any other GP) 

• 100s gens where everyone has same fitness 

• No selection to drive size increase 

• Gambler’s ruin with size falling as well as rising 

• Evolved effective code surrounded by ring of 
sacrificial constants and introns 

• Trees and subtrees resemble random trees 

• Landscape looks smooth but fitness is rugged 

Conclusions 

W. B. Langdon, UCL 
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GPquick 

• GPquick C++, written by Andy Singleton 

≈ two bytes per tree node 

• Submachine code GP 

– Boolean (bit) problems. 

– AND, NAND, OR, NOR operate simultaneously 

in parallel on bits in word (e.g. 32 or 64 bits) 

– 64 bit computer can do 64 test cases in 

parallel 

W. B. Langdon, UCL 20 

https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_1999_aigp3.html


6 Multiplexor 

• GP bench mark. 

• Six inputs: 

• Use two (D4 D5) as binary number to connect 

corresponding data lines (D0-D3) to the output 

• Test on all 26=64 possible combinations 

• Fitness score (0-64) is number correct 
21 



Genetic Programming to solve 6-Mux 

• Terminals (tree leafs) 

– D0,D1,D2,D3  D4,D5 

• Function set: 2 input gates→ binary trees 

– AND, NAND, OR, NOR. No side effects 

• Generational population of 500 trees 

• Tournament selection: choose best of 7 

• 100% subtree crossover 

• Initially hard limit on tree size (106) 

22 W. B. Langdon, UCL 



Impact of Subtrees 

• Subtree like whole tree. 

• Output of subtree is via its root node 

• Intron: subtree which has no effect on 

overall fitness. I.e. its output does not 

impact on root node of whole tree. 

• Constant subtree always has same output, 

i.e. same output on all 64 test cases. 

• Remaining effective code has an impact 

on root node. Typically it is next root node 

23 W. B. Langdon, UCL 



Example Intron: AND Function 

Left: two input AND node. 

Right: same but input B is always 0. 

So output always 0. Input A has no effect. 

Subtree A is always ignored, even in child. 

(NB no side effects) 
24 



Constants 
• Two constants: always 0 and always 1 

(FFFFFFFFFFFFFFFF). 

• E.g. evolve by negating input and ANDing 

with same input  

      (AND D0 (NOR D0 D0)) = 0 

 

 

• Constants help form introns but may be 

disrupted by crossover. 

• However large subtrees which always output 

either 0 or 1 tend to be resilient to crossover 



Runts Drive Evolution 

26 

Don’t plot ratio if less than 5 data 



Importance of Mothers 

27 

Size of poor fitness children closely related to parent who they 

inherit root from (mum). 



Importance of Mothers 

28 

• Although many runts are smaller than their mum,  

• many mothers of runs are smaller than average. 

• Selection removes all low fitness children, 

• Since these are smaller than average, the average size 

increases 



A few runts drive size increase 

• Many mothers of runts are smaller than average (blue) 

• Selection removes all low fitness children (runts) 

• Since these are smaller than average 

• Although there is noise, on average size increases 29 



Testing Theory 

• Theory assumes crossover only (no selection). In earlier 

work distribution of sizes converged to limit rapidly. 

• Selection caused by a few runts modifies size distribution 



Testing Theory 

• Same as testing theory plot but do every generation 

• Colour only part of histogram ≥ 3σ 

• Small tree and large tree tails ok (not coloured)  
31 



The Genetic Programming Bibliography 

 http://www.cs.bham.ac.uk/~wbl/biblio/ 

11628 references, 10000 authors 

RSS Support available through the 

Collection of CS Bibliographies. 

 

Co-authorship community. 

Downloads  

 

A personalised list of every author’s 

GP publications. 

 

blog 

Search the GP Bibliography at 

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html 

 

Make sure it has all of your papers! 

E.g. email W.Langdon@cs.ucl.ac.uk   or   use | Add to It | web link 
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