

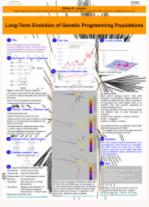
Long-Term Stability of Genetic Programming Landscapes

Workshop on Landscape-Aware Heuristic Search, 16 July 2017, Nadarajen Veerapen et al., GECCO-2017, Berlin, Germany. Room Diamant

W. B. Langdon Department of Computer Science

Technical report RN/17/05 https://arxiv.org/abs/1703.08481

Long-Term Evolution of GP Populations Poster Monday 17:50-20:00 GECCO companion p235-236



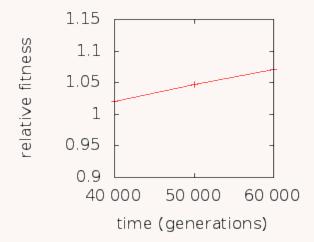
Genetic Programming and Long-Term Evolution Experiments

- Why we care about LTEE
- Evolving Bacteria 60,000 generations v. evolving programs 100,000 generations
- LTEE continuous innovation v convergence
- Existing results on landscape of large trees
- New results
 - Increase in code (bloat), end of bloat
 - Theory some true, some less so
 - Evolution has smoothed large tree landscape although fitness distribution remains rugged.

Why Long Term Evolution Matters

- More challenging problems may require running evolution for longer.
- Hence the need to study what happens in long runs.
- By mapping landscape far from origin, perhaps we can anticipate and solve problems that may occur.

Long-Term Evolution Experiment



Mean fitness of nine E. coli populations from the LTEE

Evolving Bacteria 60,000 generations Even after 60000 gens fitness still improving

Richard Lenski pulls frozen bacteria cultures out of a freezer 15 Oct 2009

R. E. Lenski *et al.* 2015. <u>Sustained fitness gains and</u> variability in fitness trajectories in the long-term evolution experiment with Escherichia coli. Proc. Royal Soc.

Convergence of Fitness Distribution

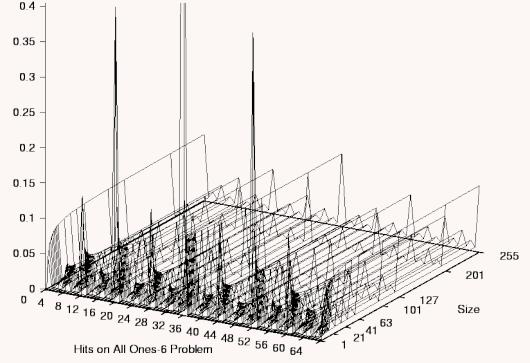


Fig. 7.7 Foundations of Genetic Programming

E S

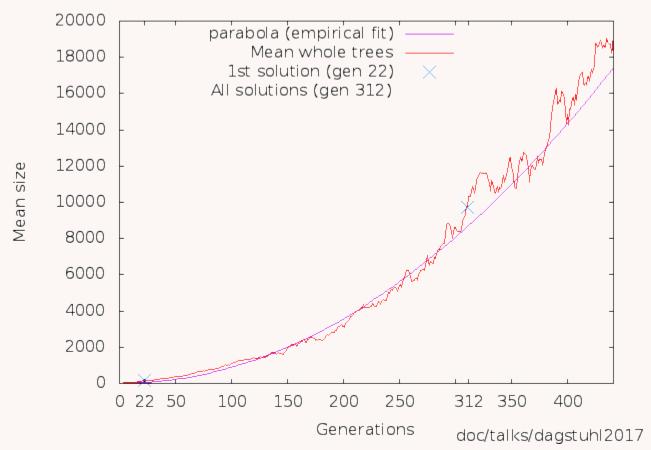
Large tree fitness distribution remains rugged like small trees but as we will see GP population maintains smooth landscape

Genetic Programming and Long-Term Evolution Experiments

- GP system able to run thousands of generations. (Do not stop when solved)
 - Expect bloat (tree growth)
 - Compact representation of trees
 - Fast fitness evaluation
 - GPquick C++, written by Andy Singleton
 ≈ two bytes per tree node
- <u>Submachine code</u> genetic programming

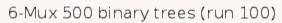
Evolution of Program Size

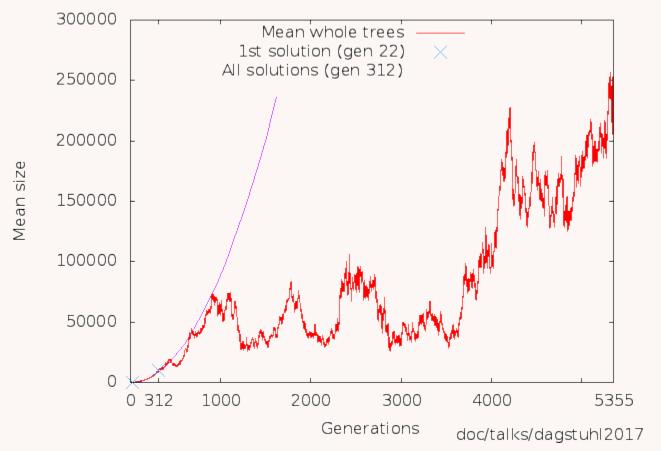
6-Mux 500 binary trees (run 100)



Note evolution continues after 1^{st} solution found in generation 22 and even after 1^{st} population when everyone has maximum fitness (generation 312). <u>GP+EM (1)1 pp95-119</u>

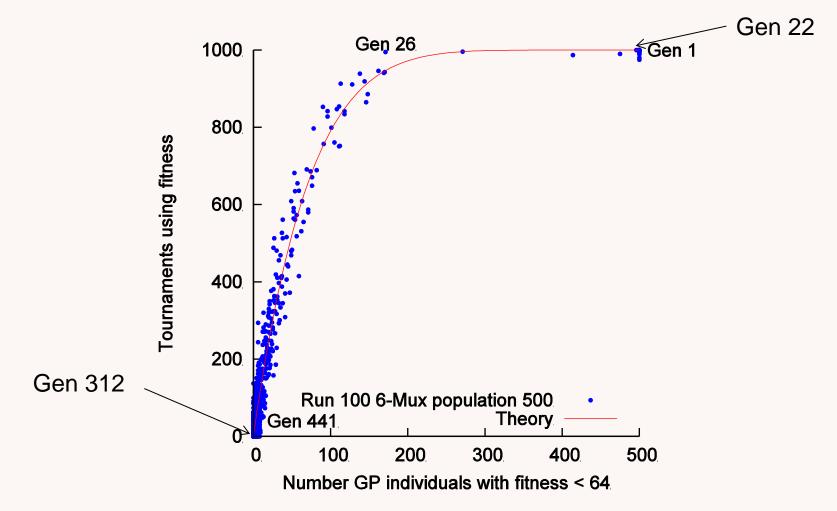
Evolution of Program Size





Note evolution continues even after 1st population when everyone has maximum fitness (generation 312) but tree size falls as well as rises.

6-Mux Fitness Convergence



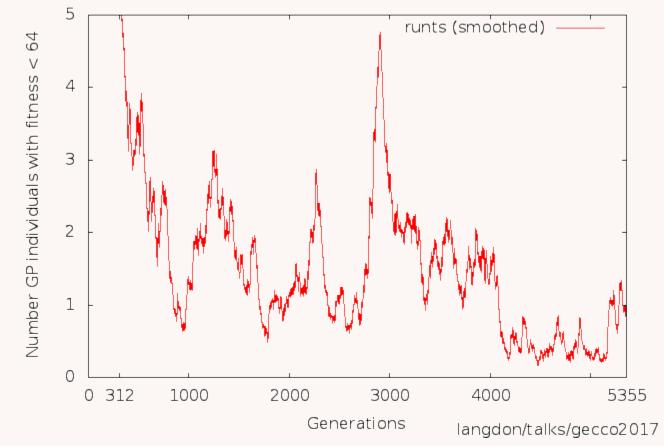
Theory $y = 2popsize(1-(1-x/popsize)^7)$ matches experiment

REST

6-Mux Fitness Convergence

REST

6-Mux 500 binary trees (run 100)



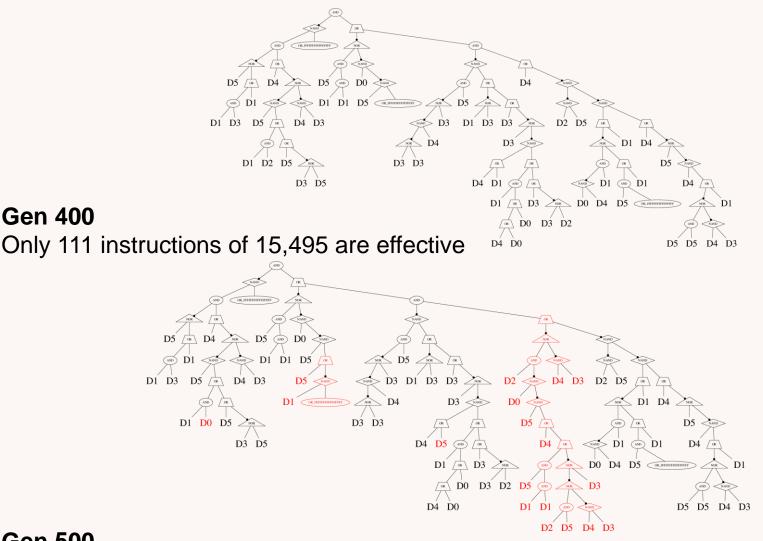
Plot smoothed by taking running average over 30 generations

Convergence in Genetic Programming

- GP genotypes do not converge. Even after many generations every tree in the population is different, BUT...
- Every (or almost all) trees give the same answers (phenotypic convergence)
- Effective code, i.e. code to solve problem, does converge.

Effective code other runs converges differently

Convergence of typical Effective Code



Gen 500

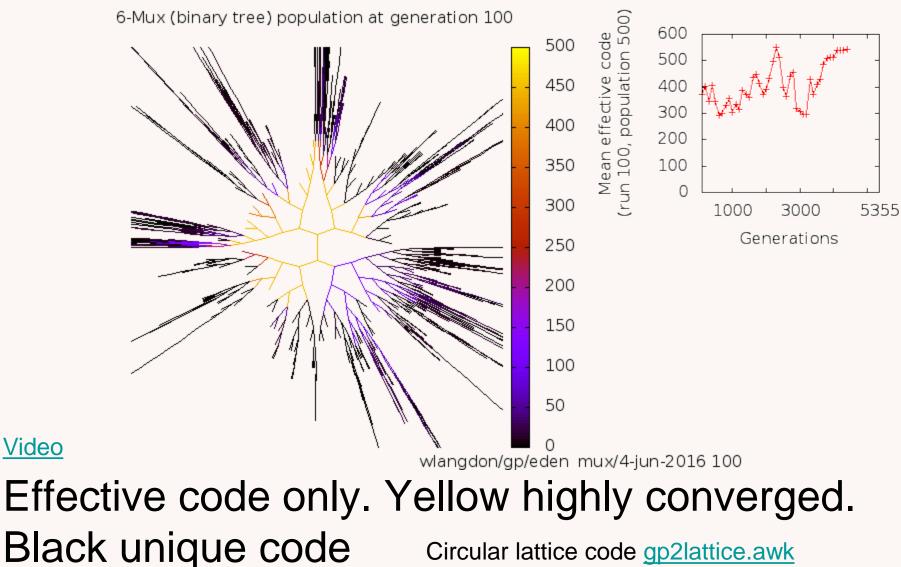
Only 141 instructions of 16,831 are effective

Tree drawing code <u>lisp2dot.awk</u>

Convergence of Effective Code

REST

<u>Video</u>

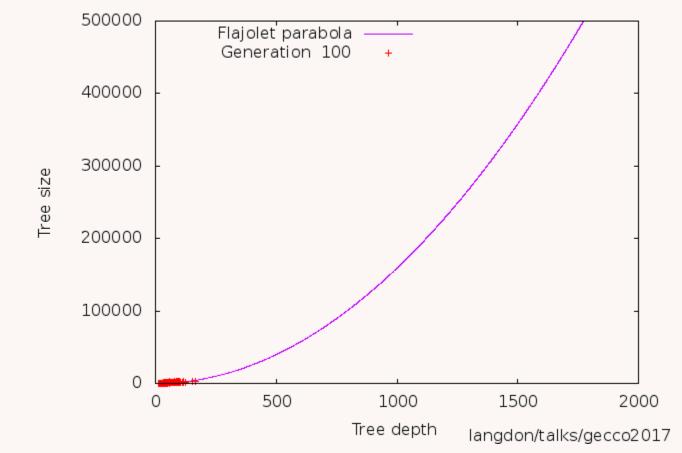


Circular lattice code <u>gp2lattice.awk</u>

Video

Shapes of Evolved Trees

6-Mux 500 binary trees (run 100)



Both whole trees + and subtrees lie near Flajolet Depth $\approx 2\left(\frac{\pi \ size}{2}\right)^{\frac{1}{2}}$ limit for random trees

Bloat limited by Gambler's ruin

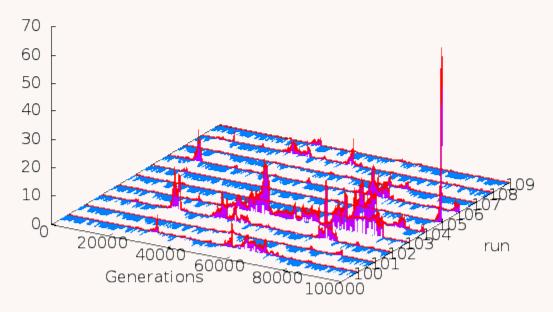
- Tiny fraction of disrupted (low fitness) children sufficient to drive evolution towards ever bigger trees.
- As trees get bigger chance of hitting protected effective code near root node falls.
- In a finite population eventually no child will be disrupted.
- Size, without fitness, wanders at random.
- But wondering towards lower limit will re-establish the conditions for bloat.

cf. Gambler's ruin.

 Very approximate limit on tree size: tree size ≈ number of trees × core code size

Bloat limited by Gambler's ruin

Mean size (millions). Ten runs, population 50 trees



- tree size ≈ number of trees × core code size
- tree size ≈ 50 × 497 ≈ 25 000
- Across ten runs and 100,000 generation, median mean size 42 507 (smallest tree in pop size=10 513)

In all ten runs the whole population repeatedly collapses towards smaller trees

Conclusions

- Studied long term evolution (>>any other GP)
- 100s gens where everyone has same fitness
- No selection to drive size increase
- Gambler's ruin with size falling as well as rising
- Evolved effective code surrounded by ring of sacrificial constants and introns
- Trees and subtrees resemble random trees
- Landscape looks smooth but fitness is rugged

Poster Monday 17:50-20:00 GECCO companion p235-236

Technical report RN/17/05 https://arxiv.org/abs/1703.08481

END

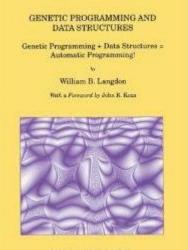
http://www.cs.ucl.ac.uk/staff/W.Langdon/

http://www.epsrc.ac.uk/ EPSRC

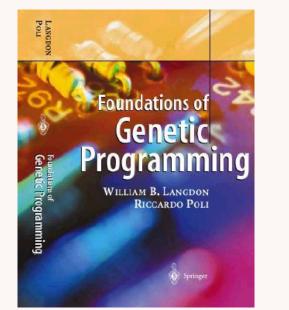
W. B. Langdon, UCL

Genetic Programming

CREST Department of Computer Science



KLUWER ACADEMIC PUBLISHERS



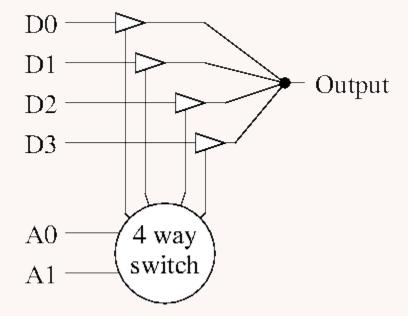
Riccardo Poli William B. Langdon Nicholas F. McPhee

> with contributions by John R. Koza

GPquick

- GPquick C++, written by Andy Singleton
 ≈ two bytes per tree node
- Submachine code GP
 - Boolean (bit) problems.
 - AND, NAND, OR, NOR operate simultaneously in parallel on bits in word (e.g. 32 or 64 bits)
 - 64 bit computer can do 64 test cases in parallel

6 Multiplexor



- GP bench mark.
- Six inputs:
 - Use two (D4 D5) as binary number to connect corresponding data lines (D0-D3) to the output
- Test on all 2⁶=64 possible combinations
- Fitness score (0-64) is number correct

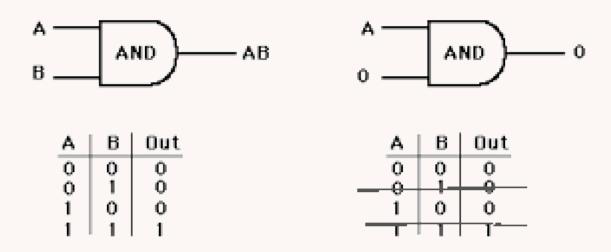
Genetic Programming to solve 6-Mux

- Terminals (tree leafs)
 D0,D1,D2,D3 D4,D5
- Function set: 2 input gates → binary trees
 AND, NAND, OR, NOR. No side effects
- Generational population of 500 trees
- Tournament selection: choose best of 7
- 100% subtree crossover
- Initially hard limit on tree size (10⁶)

Impact of Subtrees

- Subtree like whole tree.
- Output of subtree is via its root node
- Intron: subtree which has no effect on overall fitness. I.e. its output does not impact on root node of whole tree.
- **Constant** subtree always has same output, i.e. same output on all 64 test cases.
- Remaining effective code has an impact on root node. Typically it is next root node

Example Intron: AND Function



Left: two input AND node.

Right: same but input B is always 0.

So output always 0. Input A has no effect.

Subtree A is always ignored, even in child.

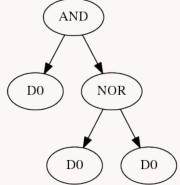
(NB no side effects)

CREST

Constants

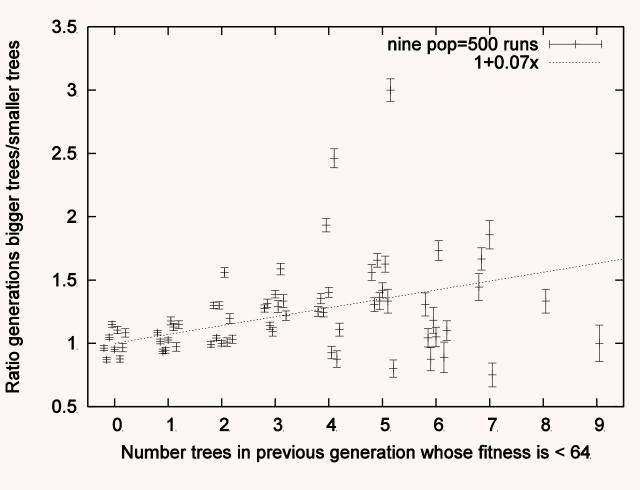
- Two constants: always 0 and always 1 (FFFFFFFFFFFFFFF).
- E.g. evolve by negating input and ANDing with same input

(AND D0 (NOR D0 D0)) = 0



- Constants help form introns but may be disrupted by crossover.
- However large subtrees which always output either 0 or 1 tend to be resilient to crossover

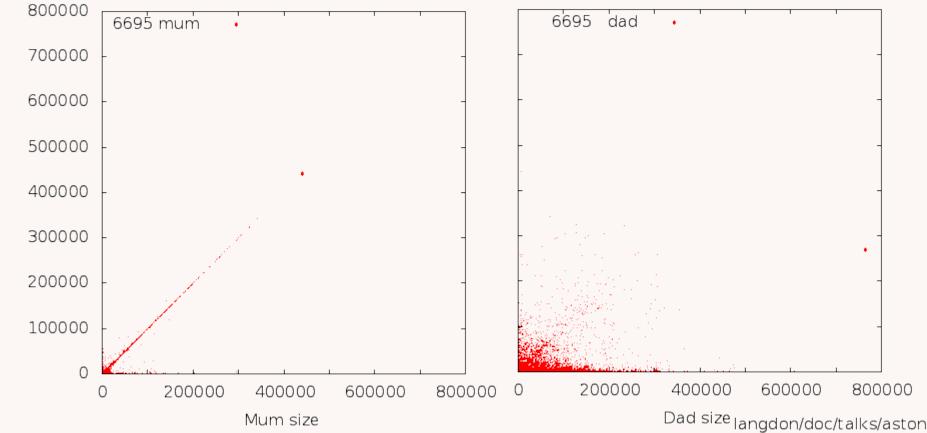
Runts Drive Evolution



Don't plot ratio if less than 5 data

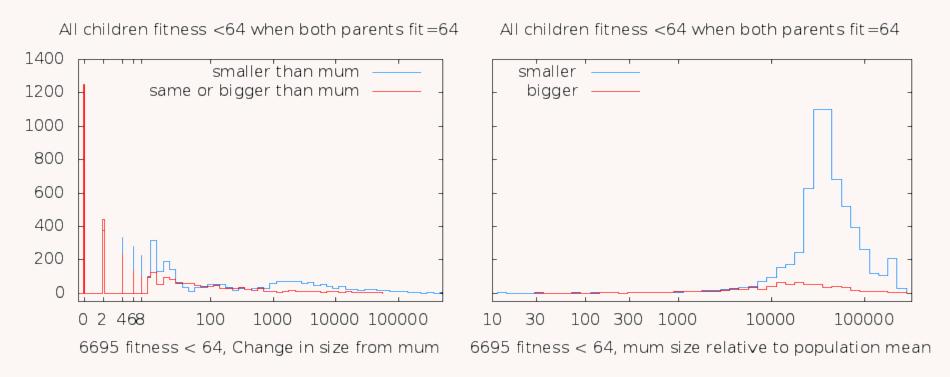
Importance of Mothers

All children fitness <64 when both parents fit =64 $\,$ All children fitness <64 when both parents fit =64 $\,$



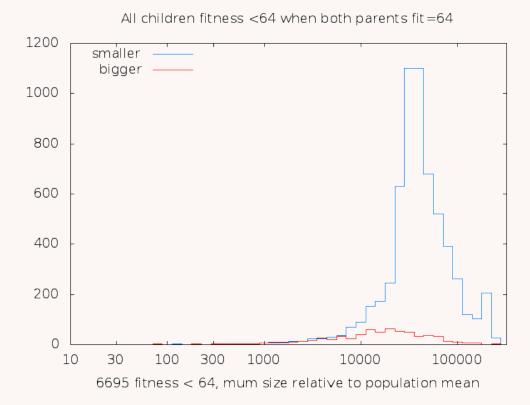
Size of poor fitness children closely related to parent who they inherit root from (mum).

Importance of Mothers



- Although many runts are smaller than their mum,
- many mothers of runs are smaller than average.
- Selection removes all low fitness children,
- Since these are smaller than average, the average size increases

A few runts drive size increase



Many mothers of runts are smaller than average (blue)

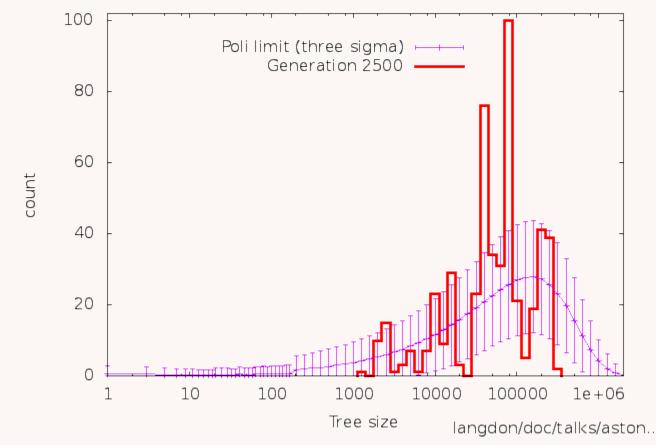
- Selection removes all low fitness children (runts)
- Since these are smaller than average

REST

Although there is noise, on average size increases

Testing Theory

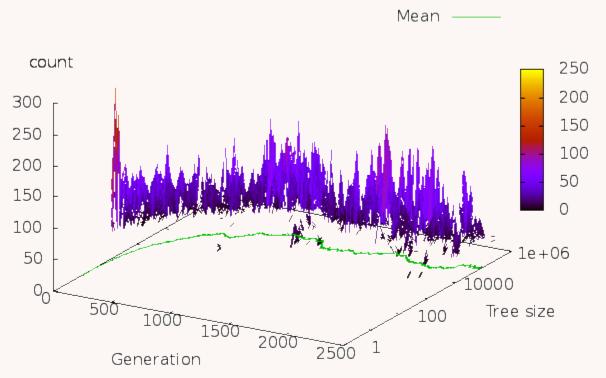
6-Mux 500 binary trees (run 100 at Gen 2500)



- Theory assumes crossover only (no selection). In earlier work distribution of sizes converged to limit rapidly.
- Selection caused by a few runts modifies size distribution

Testing Theory

6-Mux 500 binary trees (run 100 up to Gen 2500)



- Same as testing theory plot but do every generation
- Colour only part of histogram $\ge 3\sigma$
- Small tree and large tree tails ok (not coloured)

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

11628 references, 10000 authors

Make sure it has all of your papers!

E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

RSS Support available through the Collection of CS Bibliographies.

Co-authorship community. Downloads

bibliography

A personalised list of every author's GP publications.

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

Downloads by day

