Asynchronously Evolving Solutions with Excessively Different Evaluation Time by Reference-based Evaluation

2014/07/15

Tomohiro Harada^{1,2}, Keiki Takadama¹

¹The University of Electro-Communications, Japan

²Research Fellow of the Japan Society for the Promotion of Science DC1, Japan

Introduction Synchronous EA and its problem

General EA=Synchronous EA

evolves individuals depending on evaluations of entire population If evaluation time of individuals differs from each other →sync. EA needs to wait for the slowest one

Asynchronous EA

evolves individuals independently (asynchronously)

Advantage : Async. EA needs not to wait for other individuals \rightarrow can continue an evolution even in different evaluation time

Difficulties of Async. EA

- 1. How to preserve good individuals?
- 2. How to delete **bad** individuals?

Objective

To propose EA using Asynchronous Reference-based Evaluation (ARE-EA)

- Archive mechanism to preserve good individuals
- Reference individual to delete bad individuals

To investigate effectiveness of ARE-EA in situation where evaluation times are excessively different

- 1. Different computing speed (e.g., Difference of processing ability)
- 2. Evaluation failure

(e.g., Infinite loop, Communication error)

Proposed method **ARE-EA**

Proposed method ARE-EA

(2) Selection	

utilized for selection

Experiment

Comparison

ARE-GP vs. $(\mu + \lambda)$ -GP

(asynchronous) (synchronous)

in situation where evaluation times are excessively different

Testbed problem

Employing Linear GP (LGP) testbeds

Symbolic regression	Instruction set
1 $f(x) = x^4 + x^3 + x^2 + x$	+, -, ×, /, sin, cos, exp, ln
2 $f(x) = x^6 - 2x^4 + x^2$	x_0x_7 , constant={1, 2,, 9}
3 $f(x)=sin(x^2) \times cos(x)-1$	
$4 f(x) = ln(x+1) + ln(x^2+1)$	
[J. McDermott, et al., 2012]	

Settings

Different evaluation time situations

(1) Different computing speed (e.g., Difference of processing ability)

Same

100insts./unit time 100insts./unit time 100insts./unit time 100insts./unit time 100insts./unit time

Different

100insts./unit time
80insts./unit time
60insts./unit time
40insts./unit time
20insts./unit time

(2) Evaluation failure (e.g., Infinite loop, Communication error)

Failure

Cases

Speed Failure	Same	Different
No failure	Case1	Case2
Failure	Case3	Case4

*(μ + λ)-GP uses ideal limitation time to cut off evaluations in Cases3&4 *ARE-GP : archive size *as*=5, deletion probability *P*_d=0.5

Evaluation Criterion 20 trials

Average fitness according to the same elapsed unit time $fitness = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i^*)^2 \quad \begin{array}{c} m : \text{# of test data} \\ \hat{y}_i : \text{output} \quad y_i^* : \text{target value} \end{array}$

Speed Failure	Same	Different
No failure	Case1	Case2
Failure	Case3	Case4

Result : Case1

			-
	Speed Failure	Same	Different
	No failure	Case1	Case2
	Failure	Case3	Case4
(2) 0.003	$f(x) = x^6 - 2x^4$	$+x^{2}$	_
0.002		~	_
0.001			_
	20 40 6 Elapsed unit tim	60 80 1 ne (x10^5)	_ 00
(4)f(x)= 0.1	<u>=ln(x+1)+l1</u>	$n(x^2+1)$	
.08			_
.06			_
.04			
02			_
vithou	t waistir	ng time	,

Speed Failure	Same	Different
No failure	Case1	Case2
Failure	Case3	Case4

Result

ARE-GP

only uses **a few** evaluations

(μ+λ)-GP

can use all evaluations

Comparison of Case1&Case4

Ratio of fitness between Case1 and Case4

Comparison of Case1&Case4

in different evaluation time

Conclusion

Objective

- Proposing EA using Asynchronous Reference-based Evaluation (ARE-EA)
- Investigating effectiveness of ARE-EA in excessively different evaluation times
 - different computing speed
 - evaluation failure

Implications

- ► ARE-GP>(µ+λ)-GP
 - in excessively different evaluation time
- ARE-GP improves performance in different evaluation time

Future works

- Validation in parallel computing environment
- Adaptation of parameters P_d and as