
Asynchronously Evolving Solutions with
Excessively Different Evaluation Time by
Reference-based Evaluation

2014/07/15

Tomohiro Harada1,2, Keiki Takadama1

1The University of Electro-Communications, Japan

2Research Fellow of the Japan Society for the Promotion of Science DC1, Japan

Genetic and Evolutionary Computation Conference (GECCO 2014)@Vancouver, BC, Canada
July 12-16, 2014

Introduction
Synchronous EA and its problem

μ

λ

μ

Select best μ individuals

depending on all evaluations

Deletion
sorting

Evaluate

all individuals

Generate

offspring

x1

x2

x3

x4

x5

x6

Needs to wait for evaluation of x6

to select next population

General EA=Synchronous EA
evolves individuals depending on evaluations of entire population

If evaluation time of individuals differs from each other

→sync. EA needs to wait for the slowest one

e.g., (μ+λ)-selection

Asynchronous EA
evolves individuals independently (asynchronously)

e.g., TAGP [Harada2013]

Advantage : Async. EA needs not to wait for other individuals

→can continue an evolution even in different evaluation time

generate offspring

deletion
×
×

×

x1

x2

x3

x4

x5

x6

x3’
x2’
x3’’

Difficulties of Async. EA

1. How to preserve good individuals?

!
2. How to delete bad individuals?

?

?

x1

x2

x3

good? bad?

Objective

To propose EA using Asynchronous Reference-based
Evaluation (ARE-EA)

To investigate effectiveness of ARE-EA in situation where
evaluation times are excessively different
1. Different computing speed

2. Evaluation failure

(e.g., Difference of processing ability)

(e.g., Infinite loop, Communication error)

‣ Archive mechanism to preserve good individuals

‣ Reference individual to delete bad individuals

Proposed method
ARE-EA

Population

ind1

ind2

ind1

ind2

Archive

Archive size

as

(1) Evaluation
(Asynchronous)

Evaluated

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Proposed method
ARE-EA

indref

Population

ind1

ind2

ind1

ind2

Archive

Archive size

asindref

Evaluated

par1

par2

(2) Selection
(1) Evaluation

(Asynchronous)

Reference
randomly selected

from archive

Good individuals (indref) are

utilized for selection

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Proposed method
ARE-EA

indref

Population

ind1

ind2

ind1

ind2

Archive size

asindref

off2

off1

Evaluated

par1

par2

off1

off2

Reference

(2) Selection

(3) Mutation

& Crossover

(1) Evaluation
(Asynchronous)

old

new

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Proposed method
ARE-EA

indref

Population

ind1

ind2

ind1

ind2

Archive

Archive size

asindref

off2

off1

Evaluated

par1

par2

off1

off2

if indi>indref Reference

(2) Selection

(3) Mutation

& Crossover

(4) Archiving

(1) Evaluation
(Asynchronous)

Asynchronously archiving
good individuals

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Proposed method
ARE-EA

indref

Population

ind1

ind2

ind1

ind2

Archive

Archive size

asindref

off2

off1

Evaluated

par1

par2

off1

off2

with probability Pd

if indi>indref Reference

(2) Selection

(3) Mutation

& Crossover

(4) Archiving

(5) Fitness

deletion

if indi<indref (1) Evaluation
(Asynchronous)

Deletion based on comparison with reference

→delete bad individuals

(6) Reaper

deletion

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Proposed method
ARE-EA

indref

Population

ind1

ind2

ind1

ind2

Archive

Archive size

asindref

off2

off1

Evaluated

par1

par2

off1

off2

with probability Pd

if indi>indref Reference

(2) Selection

(3) Mutation

& Crossover

(4) Archiving

(6) Reaper

deletion

if indi<indref

individuals with
long evaluation
time is deleted

(1) Evaluation
(Asynchronous)

(5) Fitness

deletion

(3) Mutation

& Crossover
(6) Reaper

deletion

(5) Fitness

deletion(4) Archiving

(1) Evaluation
(Asynchronous)

(2) Selection

Experiment

Employing Linear GP (LGP) testbeds
Instruction set

+, -, ×, /, sin, cos, exp, ln
x0…x7, constant={1, 2, …, 9}

Symbolic regression
1 f(x)=x4+x3+x2+x
2 f(x)=x6-2x4+x2

3 f(x)=sin(x2)×cos(x)-1
4 f(x)=ln(x+1)+ln(x2+1)

Testbed problem

vs.
(asynchronous) (synchronous)
ARE-GP (μ+λ)-GP

in situation where evaluation times are excessively different

Comparison

[J. McDermott, et al., 2012]

Settings

(2) Evaluation failure (e.g., Infinite loop, Communication error)

Different evaluation time situations

Same Different
(1) Different computing speed (e.g., Difference of processing ability)

No failure Failure

…

80insts./unit time
100insts./unit time

20insts./unit time

60insts./unit time
40insts./unit time

…

100insts./unit time
100insts./unit time

100insts./unit time

100insts./unit time
100insts./unit time

… …
 5% Failure

×

Cases

Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

Evaluation Criterion
	 Average fitness according to the same elapsed unit time

20 trials

*(μ+λ)-GP uses ideal limitation time to cut off evaluations in Cases3&4

*ARE-GP : archive size as=5, deletion probability Pd=0.5

 : target valuey⇤i : outputŷi
fitness =

1

m

mX

i=1

(ŷi � y⇤i)
2 : # of test datam

Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

(4)f(x)=ln(x+1)+ln(x2+1)

Result : Case1 Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

fit
ne

ss

0

0.05

0.1

0.15

0.2

0.25

0.3

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.001

0.002

0.003

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.005

0.01

0.015

Elapsed unit time (10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.02

0.04

0.06

0.08

0.1

Elapsed unit time (x10^5)
0 20 40 60 80 100

(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1

(μ+λ)-GP
ARE-GP

ARE-GP>(μ+λ)-GP

→ARE-GP evolves individuals without waisting time

Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

Result : Case4 Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

fit
ne

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.001

0.002

0.003

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.005

0.01

0.015

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

Elapsed unit time (x10^5)
0 20 40 60 80 100

(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1 (4)f(x)=ln(x+1)+ln(x2+1)

(μ+λ)-GP
ARE-GP

(Ideal limitation time is used)

ARE-GP evolves individuals without any limitations

even though evaluation failure occurs

ARE-GP>(μ+λ)-GP

ARE-GP efficiently evolves individuals in situation

where evaluation times are excessively different

Result

only uses a few evaluations can use all evaluations
ARE-GP (μ+λ)-GP

ARE-GP > (μ+λ)-GP

in all cases and in all testbeds

?
?
?
f4

?
f6 f6

f5

f4

f3

f2

f1

f_
Ca

se
4/

f_
Ca

se
1

0.1

1

10

Elapsed unit time (x10^5)
0 20 40 60 80 100

Comparison of Case1&Case4
Ratio of fitness between Case1 and Case4

(1)f(x)=x4+x3+x2+x
fit

ne
ss

0

0.05

0.1

0.15

0.2

0.25

0.3

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

Elapsed unit time (x10^5)
0 20 40 60 80 100

Case4<Case1

Case4>Case1

Case4 decreases

performance than Case1

Case4 increases

performance than Case1

Case1 Case4

(μ+λ)-GP.fcase4(t)
(μ+λ)-GP.fcase1(t)

ARE-GP.fcase4(t)
ARE-GP.fcase1(t)

f_
Ca

se
4/

f_
Ca

se
1

0.1

1

10

Elapsed unit time (x10^5)
0 20 40 60 80 100

f_
Ca

se
4/

f_
Ca

se
1

0.1

1

10

Elapsed unit time (x10^5)
0 20 40 60 80 100

f_
Ca

se
4/

f_
Ca

se
1

0.1

1

10

Elapsed unit time (x10^5)
0 20 40 60 80 100

f_
Ca

se
4/

f_
Ca

se
1

0.1

1

10

Elapsed unit time (x10^5)
0 20 40 60 80 100

Comparison of Case1&Case4

Case4>Case1

Case4<Case1

Case4>Case1

Case4<Case1

Case4>Case1

Case4<Case1

Case4>Case1

Case4<Case1

(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1 (4)f(x)=ln(x+1)+ln(x2+1)

ARE-GP has possibility to improve search performance

in different evaluation time

Conclusion

Objective
‣ Proposing EA using Asynchronous Reference-based

Evaluation (ARE-EA)

‣ Investigating effectiveness of ARE-EA in excessively

different evaluation times

- different computing speed

- evaluation failure

Implications
‣ ARE-GP>(μ+λ)-GP

- in excessively different evaluation time

‣ ARE-GP improves performance in different evaluation time

Future works
‣ Validation in parallel computing environment

‣ Adaptation of parameters Pd and as

