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Introduction  
Synchronous EA and its problem
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General EA=Synchronous EA
evolves individuals depending on evaluations of entire population

If evaluation time of individuals differs from each other

→sync. EA needs to wait for the slowest one

e.g., (μ+λ)-selection



Asynchronous EA
evolves individuals independently (asynchronously)

e.g., TAGP [Harada2013]

Advantage : Async. EA needs not to wait for other individuals

→can continue an evolution even in different evaluation time
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Difficulties of Async. EA

1. How to preserve good individuals?

!
2. How to delete bad individuals?
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Objective

To propose EA using Asynchronous Reference-based 
Evaluation (ARE-EA)

To investigate effectiveness of ARE-EA in situation where 
evaluation times are excessively different
1. Different computing speed

2. Evaluation failure                 

(e.g., Difference of processing ability)

(e.g., Infinite loop, Communication error)

‣ Archive mechanism to preserve good individuals

‣ Reference individual to delete bad individuals



Proposed method 
ARE-EA
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Experiment

Employing Linear GP (LGP) testbeds
Instruction set

+, -, ×, /, sin, cos, exp, ln 
x0…x7, constant={1, 2, …, 9}

Symbolic regression
1 f(x)=x4+x3+x2+x
2 f(x)=x6-2x4+x2

3 f(x)=sin(x2)×cos(x)-1
4 f(x)=ln(x+1)+ln(x2+1)

Testbed problem

vs.
(asynchronous) (synchronous)
ARE-GP (μ+λ)-GP

in situation where evaluation times are excessively different

Comparison

[J. McDermott, et al., 2012]



Settings

(2) Evaluation failure (e.g., Infinite loop, Communication error)

Different evaluation time situations

Same Different
(1) Different computing speed (e.g., Difference of processing ability)

No failure Failure

…

80insts./unit time
100insts./unit time

20insts./unit time

60insts./unit time
40insts./unit time

…

100insts./unit time
100insts./unit time

100insts./unit time

100insts./unit time
100insts./unit time

… …
 5% Failure

×



Cases

Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

Evaluation Criterion 
	 Average fitness according to the same elapsed unit time

20 trials

*(μ+λ)-GP uses ideal limitation time to cut off evaluations in Cases3&4

*ARE-GP : archive size as=5, deletion probability Pd=0.5

 : target valuey⇤i : outputŷi
fitness =

1

m

mX

i=1

(ŷi � y⇤i )
2  : # of test datam



Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed



(4)f(x)=ln(x+1)+ln(x2+1)

Result : Case1 Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

fit
ne

ss

0

0.05

0.1

0.15

0.2

0.25

0.3

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.001

0.002

0.003

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.005

0.01

0.015

Elapsed unit time (10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.02

0.04

0.06

0.08

0.1

Elapsed unit time (x10^5)
0 20 40 60 80 100

(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1

(μ+λ)-GP
ARE-GP

ARE-GP>(μ+λ)-GP

→ARE-GP evolves individuals without waisting time



Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed



Result : Case4 Same Different

No failure Case1 Case2
Failure Case3 Case4

Failure
Speed

fit
ne

ss

0
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0.2

0.3

0.4

0.5

0.6

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.001

0.002

0.003

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0

0.005

0.01

0.015

Elapsed unit time (x10^5)
0 20 40 60 80 100

fit
ne

ss

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

Elapsed unit time (x10^5)
0 20 40 60 80 100

(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1 (4)f(x)=ln(x+1)+ln(x2+1)

(μ+λ)-GP
ARE-GP

(Ideal limitation time is used)

ARE-GP evolves individuals without any limitations

even though evaluation failure occurs

ARE-GP>(μ+λ)-GP

ARE-GP efficiently evolves individuals in situation 

where evaluation times are excessively different



Result

only uses a few evaluations can use all evaluations
ARE-GP (μ+λ)-GP

ARE-GP > (μ+λ)-GP 

in all cases and in all testbeds
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(1)f(x)=x4+x3+x2+x (2)f(x)=x6-2x4+x2

(3)f(x)=sin(x2)×cos(x)-1 (4)f(x)=ln(x+1)+ln(x2+1)

ARE-GP has possibility to improve search performance

in different evaluation time



Conclusion

Objective 
‣ Proposing EA using Asynchronous Reference-based 

Evaluation (ARE-EA)

‣ Investigating effectiveness of ARE-EA in excessively 

different evaluation times

- different computing speed

- evaluation failure


Implications 
‣ ARE-GP>(μ+λ)-GP


- in excessively different evaluation time

‣ ARE-GP improves performance in different evaluation time


Future works 
‣ Validation in parallel computing environment

‣ Adaptation of parameters Pd and as


