
Creating Regular Expressions as mRNA Motifs with GP to
Predict Human Exon Splitting

Technical Report TR-09-02, 19 March 2009

W. B. Langdon, J. Rowsell, A. P. Harrison

Crest, Department of Computer Science, King’s College, London, Strand, London, WC2R 2LS, UK
Departments of Mathematical and Biological Sciences, University of Essex, UK

ABSTRACT
Low correlation between mRNA concentrations measured
at different locations for the same exon show many current
Ensembl exon definitions are incomplete. Automatically cre-
ated patterns (e.g. TCTTT) in genic DNA sequences identify
potential new alternative transcripts.

Strongly typed grammar based genetic programming (GP)
is used to evolve regular expressions (RE) to classify gene
exons with potential alternative mRNA expression from those
without. RNAnet gives us correlations between Affymetrix
HG-U133 Plus 2 GeneChip probe measurements for the same
exon across 2757 Homo Sapiens tissue samples from NCBI’s
GEO database. We identify many non-atomic Ensembl ex-
ons. I.e. exons with substructure. Biological patterns can
be data mined by a Backus-Naur form (BNF) context-free
grammar using a strongly typed GP written in gawk and us-
ing egrep. The automatically produced DNA motifs suggest
that alternative polyadenylation is not responsible. (Short
version in [19].)

The training data is available on the internet.

A

B

C
D

E

F G

Measurement

1

2
3

4 5
6

7

polyA tail
8

mRNA

polyA signal

DNA

Figure 1: DNA (dotted line) is transcribed into
mRNA. Initially all the gene’s DNA is copied, but
loops (A to G) in the RNA are excised. I.e. they are
introns. The remainder (1 to 8) are exons. Alter-
native splicing might remove exon 3, leading to an
mRNA molecule containing exons 1245678. In the
schematic, the polyA tail has been added after the
2nd polyA signal. If the 1st polyA site was active,
exon 8 would be shorter and the mRNA might be
translated into a different protein. Again for illus-
trative purposes, DNA GeneChip measurements are
scattered along exon 7. If exon 7 is “atomic” then
all measurements should be the same and be highly
correlated.

Figure 2: Correlation (×10) between different loca-
tions in an Ensembl exon across 2757 tissue samples.
The first four locations (lower left) clearly fall into
a different block than the others (top right).

1. INTRODUCTION
Following the Human Genome Project, a great deal is

known about gene DNA sequences. A number of sites on the
Internet provide free access to their databases. E.g. Ensembl
provides definitions of all Human genes in terms of their
locations, DNA sequences and current knowledge of intron
and exon locations in the known gene transcripts.

RNAnet (http://bioinformatics.essex.ac.uk/users/
wlangdon/rnanet/) contains measurements of genes activity
from thousands of people from a wide variety of tissues and
disease states. Typically there are about 11 measurements
for each gene/tissue sample. These are designed to target
the gene’s exons. Typically there are either multiple data
per exon or the exon is not targeted at all. Figure 1 shows
the relationship between DNA, mRNA and measurements.
In Figure 1 all the measurements are in exon 7.

The process whereby DNA is transcribed into mRNA is
fairly well known. In particular it is known that the com-
plete DNA sequence is transcribed into RNA but large loops
(known as introns and shown in Figure 1) are rapidly re-
moved. The remaining transcript between the introns are
known as exons. Recently it has become clear, particularly
in Man, that this is not the end of the story. Sometimes
there are different transcripts for the same gene which have
different sequences of the gene’s exons. Alternative splicing
may lead to the removal of exons or repeats of exons. Notice

1

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://crest.dcs.kcl.ac.uk/
http://www.ensembl.org
http://bioinformatics.essex.ac.uk/users/wlangdon/rnanet
http://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.essex.ac.uk/users/wlangdon/tr-09-02.tar.gz
http://www.ensembl.org
http://bioinformatics.essex.ac.uk/users/wlangdon/rnanet/
http://bioinformatics.essex.ac.uk/users/wlangdon/rnanet/

that exons are treated as atomic. I.e. indivisible.
If an exon is present in mRNA, then all of it should be

present. Therefore measurements from the same exon/tissue
sample should be the same (ignoring noise, calibration er-
ror, etc.). We use correlation between measurements for the
same exon to see if they really do tell the same story about
their exon. Correlations have the advantage that they pro-
vide a robust statistic. By calculating the correlations across
thousands of tissue samples, we alleviate the effects of noise.
In most cases, using Ensembl’s definitions of exons, we do
indeed find high correlation between data for the same exon.
We also find many cases where measurements across an exon
are not well correlated. Instead sometimes, like that shown
in Figure 2, we find blocks of neighbouring measurements
which are well correlated but poorly correlated with other
measurements. We suggest that perhaps such Ensembl ex-
ons have been mislabelled.

Having identified these DNA sequences, we try to find ex-
planations looking initially only at the mRNA sequences.
Since we hope to find biological meaningful reasons we look
for regular expressions of the type biologists commonly use
when describing sequence motifs. Our genetic programming
system is designed to automatically generate DNA sequence
motifs. To evaluate their fitness, we test the evolved motifs
on the DNA sequence for the gap between highly correlated
blocks within an exon. A motif gets high fitness if it matches
many blocky exons (i.e. positive examples) but fails to match
many exons with high correlations but without blocks (neg-
ative examples).

We evolve a new biological motif and show the existing
polyA motif [28, Fig. 3] could only explain at most a fraction
of the observations.

The next section summarises the use of GP and grammars,
particularly for evolving bioinformatics solutions. Section 3
outlines the grammar based GP. Section 4 describes how the
training data was prepared for the GP (which is described
in detail in Section 5). The evolved motif and its perfor-
mance on out of sample data is given in Section 6. This is
followed by a discussion (Section 7) and our conclusion (Sec-
tion 8) that the correlations in vast public data sets can give
valuable hints of novel biology and that evolutionary com-
putation, if couched in biologist friendly terms, may help
them interpret it.

2. EVOLVING GRAMMARS AND PROTEIN
MOTIFS

Existing research on using grammars to constrain the evo-
lution of programs can be broadly divided in two: Grammat-
ical Evolution [30, 24], a linear GP, and work by Whigham,
Wong and McKay using typed tree representations. See, for
example, [35, 36, 37] and [21].

Hoai et al. used Tree Adjunct Grammars (TAGs) [8]. TAGs
have the advantage that every subtree of a TAG tree is both
syntactically and semantically meaningful. This should en-
sure that there is much more flexibility for crossover and
mutation to transform TAG trees.

In the spirit of PBIL [31] a number of people have allowed
progress so far to update the grammar as evolution proceeds
[27, 33, 2].

There is quite a body of work on using evolution to induce
formal grammars. E.g. Nikolaev tackled the Tomita regular
expression benchmarks [23]. GP has also evolved context

free grammars [11]. Cetinkaya used grammatical evolution
to create regular expressions for processing HTML [5].

Ross induced stochastic regular expressions from a num-
ber of grammars to classify proteins from their amino acid
sequences [29]. Regular expressions have been evolved to
search for similarities between proteins, again based on their
amino acid sequences [6]. Whilst Brameier used amino acids
sequences to predict the location of proteins by applying a
multi-classifier [15] linear GP based approach [3] (although
this can be done without a grammar [13]). A similar tech-
nique has also been applied to study microRNAs [4].

Non-stochastic machine learning techniques have also been
applied to DNA motifs. E.g. [10] presents a method based on
decision trees, specifically C4.5. However the Tomita et al.
motif uses amino acid properties, not regular expressions of
DNA sequences [34].

Both GPRM [9] and the more recent GeRNAMo [22] are
designed to predict RNA secondary structure, i.e. hairpin
folds. To do this GeRNAMo must be given some prior in-
formation. In particular it needs to be told how many double
helixes (stems) the folded RNA contains. (This is also re-
quired by GPRM, however Yuh-Jyh Hu advocates running
GPRM multiple times with different numbers of stems until
the required number can be inferred from GPRM’s answers
[9, p3447].) GeRNAMo creates folding predictions directly
using a strongly typed GP with a function set which de-
scribes RNA folds and does not use a grammar or evolve
regular expressions. While folding of mRNA might be re-
sponsible for the sub-exon blocks this is not known. Con-
sequently the number of stems in unknown. Therefore we
need a less restricted system.

3. EVOLVING DNA MOTIFS WITH
STRONGLY TYPED GP

As with [25] we distinguish between genotype (a strongly
typed tree) and the phenotype. The phenotype is a regular
expression suitable for use with egrep. The GP performs
genetic operations (i.e. crossover and mutation) upon the
genotype which is then treated as a grammar and expanded.
The leafs of the grammar expansion form the phenotype.
(Grammar GPs are described in [18].) We use the BNF
grammar shown in Figure 6, and so we are guaranteed that
all the evolved phenotypes will be legal regular expressions
which can be executed by egrep. Creation of the initial
population, genetic operations and fitness selection are all
performed under Linux by shell scripts using gawk.

In [16] we applied the system to model Affymetrix GeneChip
technology. This has the advantage that the target sequences
all have the same length (25 bases). (And thus also two
ends). Here we are dealing variable amounts of mRNA, from
a few bases to more than a few thousand bases. It is also
not obvious where the ends of affected transcript should be
placed.

4. PREPARATION OF TRAINING DATA
RNAnet contains 7 Gbytes of data derived from forty

thousand public Affymetrix microarrays [1, 20, 7]. In partic-
ular it holds data on 2757 HG-U133 Plus 2 Human GeneChips.
We calculated the correlation heatmaps [20, 12] for every En-
sembl exon for which there was HG-U133 Plus 2 data (ex-
cluding those which might refer to more than one Ensembl
exon [32]).

2

Since previously we had found Mismatch MM control
probes to be particularly susceptible to poor correlation with
the rest of their probeset [12], they were ignored. Similarly
we have previously [16] found Affymetrix PM probes match-
ing GGGG|CGCC|G(G|C){4}|CCC also to be susceptible to er-
ror. Such probes may be producing valid signals, but to
reduce ambiguity, they were also excluded. The correlations
(http://bioinformatics.essex.ac.uk/users/wlangdon) were used
to select suitable exons.

If an exon had at least six1 non-overlapping pairs of probes
whose correlations greater than 0.8, then the exon was passed
to the next stage. This yielded 3373 exons with on average
12 probes per exon.

In the hope of finding more examples of blocky exons
the correlations between probes in each exon were recal-
culated for eight subsets of the data each with 625 tissue
samples. (625 is more than sufficient to ensure differences
between correlations cannot be due to chance fluctuations).
For the first four subsets the tissue samples were divided
into four non-overlapping subsets using the existing exper-
imental ordering. In the second group of four, the tissue
samples were randomly split into four non-overlapping sub-
sets of 625. Correlations for every pair of probes in every
exon were calculated for each of the eight subsets.

For each subset, each exon was checked to see if it con-
tained two groups of highly correlated probes (i.e.median
value > 0.7) which are not correlated with each other (i.e.
median correlation less than 0.4). In both cases, for the me-
dian to be considered, there must be at least three pairs of
non-overlapping probes contributing to it.

The mRNA transcript between two such blocks is treated
as a positive training example. Several exons give rise to
more than one training example. Often these overlap. How-
ever we only use one case where positive examples from one
or more of the eight data subsets are identical. Only if there
are no positive examples from any of the eight data subsets
is the exon considered as a negative example. This gave 375
exons with blocks (1184 positive examples) and the 2292
exons without. See Figure 3.

The closest block of correlated probes are only four bases
apart but the most widely separated are eight thousand
bases apart. It may be that these are really two different
exons and Ensembl should not have classified them as being
part of the same exon. Also it was felt that such a wide
range of DNA base sequence lengths would make looking
for simple motifs difficult. Obviously the longer a random
base sequence is, the more chance it has of matching a given
motif. Therefore we limited the blocks used in training to
being closer than 100 bases. This reduces the number of
potential positive examples to 274 from 140 exons, of these
100 were selected for training the GP. This leaves 40 exons
with poorly correlated blocks close together for verification.
Similarly 1536 exons without blocks were selected for train-
ing, leaving 756 for verification. This gives 195 positive se-
quences, cf. Figure 4. These are unique but in many cases
overlap.

Many biological sequence signals do not appear exactly at
the same point as the action takes place. For example, the
polyA motif occurs up to 38 bases from where the mRNA is
cut [28, Fig. 3]. Therefore we start positive training exam-
ples 50 bases before the last probe in the first well correlated

1Six pairs means there may be enough data for at least two
blocks of three probes.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10 100 1000 10000

F
ra

ct
io

n

DNA bases

Size of 373 blocky exons
Size of 2292 exons without blocks
bases between 1184 exon blocks

Figure 3: Well expressed Ensembl exons (decibel
bins). Notice exons with blocks (solid line) tend to
be longer than those without (dashed) and the wide
range of separation between blocks (dotted).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 120 140 160 180 200 220 240 260
DNA bases

195 positive training seq
79 verification seq

Figure 4: Length of DNA sequences used for train-
ing. (Positive and negative examples are paired,
thus negative examples are the same length as pos-
itive examples.)

block. Similarly each positive sequence is extended 50 bases
after the end of the first probe in the next well correlated
block. See Figure 5.)

The 195 positive training examples are placed in a ran-
dom order in a ring. Each generation the next 100 positive
examples are drawn from the ring and 100 matching nega-
tive examples are constructed. If a positive example starts
near the beginning of its exon (i.e. ≤ 300 DNA bases from
its start) then the negative example is simply cut from one
of the suitable exons without blocks starting the same dis-
tance from the start and containing the same number of
DNA bases as the positive example. For each positive ex-
ample a randomised ring of suitable (i.e. having the same
length within a factor of 1

2
or 2) negative exons is used.

However there are a few very long positive sequences for
which there are few suitable exons without blocks to pair
against. Therefore if the positive example starts more than
300 bases from the start of its exon, the negative example is

3

http://bioinformatics.essex.ac.uk/users/wlangdon/

Probe 4

Probe 5 Probe 6

Probe 7

<100nt

Probe 11 Probe 12 Probe 14

25nt50nt 25nt 50nt

Figure 5: Example positive training mRNA sequence (black). On average probes 4–7 (dashed) are well
correlated (i.e. > 0.7) as are probes 11-14 (red). However the median correlation between left (dashed) and
right (red) probes is less than 0.4. To reduce the chance of random matches the distance between blue and
red probes must be less than 100 bases. Since the signal causing an exon to be cut may be some distance
from the cut point, “Collars” of 50 nucleotide bases are added both upstream (left) and down stream (right)
of the gap.

Table 1: Strongly Typed Grammar GP for Exon
Splitting Prediction

Primitives: The function and terminal sets are defined
by the BNF grammar (cf. Figure 6). BNF
rules with two options correspond to binary
GP functions. The rest of the BNF grammar
correspond to GP terminals.

Fitness: true positives+true negatives. (I.e. propor-
tional to the area under the ROC curve or
Wilcox statistic. [14].) Less large penalty if
egrep fails or it matches all probes or none.

Selection: best 2000 become breeding population for
next generation. Population size = 10000

Initial pop: Ramped half-and-half 3:7 [26, Sect. 2.2]
Parameters: 90% subtree crossover. 10% mutation sub-

tree 5% shrink 5%). Max tree depth 17 (no
tree size limit)

Termination: 50 generations

still the same length as the positive example but is copied
from a random starting point in the negative exon. Thus
the 195 positive examples are reused about 26 times during
the 50 generations of the GP run but the GP meets each
negative example only once.

For validating the evolved regular expressions the remain-
ing 40 exons with blocks were held back. Together they
contain 79 unique sequences. For each a negative sequence
starting the same distance from the start of the exon and of
the same length was extracted from one of the exons without
blocks. Except for one very long exon with two close block
near its end, 78 unique negative exons were used. There are
no negative examples long enough to cope with the special
case, so a sequence of the right length was cut from a ran-
dom position from a negative exon on similar size. All the
validation examples are unique.

5. EVOLVING MOTIFS

5.1 Setting up Genetic Programming
The genetic programming system is a strongly typed tree

GP system. The left hand side of the BNF grammar rules
specify the nodes in the tree. The type of the node is the
name on the left hand side. Thus, as we can see from Fig-
ure 6, we have many more types than is common in GP.

The right hand side (the grammar productions) say what
must be attached to nodes of tree. The number of produc-
tions can be thought of as the node’s arity. For simplicity,
the right hand side will either have exactly two alternatives

(indicated by a vertical bar, e.g. the right hand side of <RE>)
or none. For example, the three items ([, <set-items>

and]) must always be attached to node <positive-set>

in the geneotype tree. [and] are leafs of the genotype tree
and nothing further is attached to them but <set-items> is
another rule which must be expanded.

Notice the grammar is recursive and so can be expanded
to become arbitrarily big. In common with Koza’s Lisp GP,
we impose a depth limit both during the creation of the
initial random population and during subsequent evolution.
Unlike [24] genetic operations must respect the strong typing
rules. E.g. when crossover cuts a subtree from one parent it
first chooses a node in the genotype tree. The node’s type is
the name of the corresponding grammar rule in the BNF. It
then finds all nodes of the same type in the other parent and
with equal probability randomly uses one. It then replaces
the node and all subtree in the first parent with the subtree
from the second parent. This ensures the new genotype
formed by crossover still obeys the BNF rules. Mutation and
the random construction of the initial population operate
similarly.

To calculate an individual’s fitness its phenotype must
be constructed. We start with an empty regular expres-
sion. The geneotype tree is processed in a single pass in
depth first order starting at its root. (I.e. processing the
genotype tree starts at node <start>.) Each time a termi-
nal is encountered it is appended to the regular expression.
Even though the grammar is fully recursive, depth (or size)
limits ensure the genotype is finite and therefore so is the
phenotype. When the whole genotype has been processed,
the phenotype is complete and its fitness can be calculated.
Note the genotype, not the phenotype, is inherited. For effi-
ciency, the phenotype of every individual in the population
is created and then the fitness of the whole population is
calculated.

Tournament selection is used to choose parents for the
next generation. 90% of children are created by subtree
crossover, 5% by subtree mutation and 5% by shrink muta-
tion [26, 11]. See also Table 1.

The grammar (Figure 6) is devised to ensure that GP
evolves regular expressions which can be executed by egrep.
Unlike the short GeneChip probes used in [16], these DNA
sequences come from the middle of live organisms (Man)
and do not have natural starts or end. Therefore the regular
expression end symbols (^ and $) have been removed from
the grammar.

Notice that the extended Kleene closure (i.e. {n} and
{n,m}) allow up to seven repeats. Unfortunately unlimited
values of n or m cause egrep to hang the computer. In addi-

4

tional experiments n and m were allowed to be up to 31 but
no improvement was seen and evolved solutions continued
to favour n= 7.

<start> ::= <RE>

<RE> ::= <union> | <simple-RE>

<union> ::= <RE> "|" <simple-RE>

<simple-RE> ::= <concatenation> | <basic-RE>

<concatenation> ::= <simple-RE> <basic-RE>

<basic-RE> ::= <RE-kleen> | <elementary-RE>

<RE-kleen>::= <minmaxquantifier> | <kleen>

<kleen>::= <star> | <plus>

<star> ::= <elementary-RE2> "*"

<plus> ::= <elementary-RE2> "+"

<minmaxquantifier> ::=

<elementary-RE4> "{" <int> <optREint> "}"

<elementary-RE> ::= <group> | <elementary-RE3>

<elementary-RE2> ::= <any> | <elementary-RE3>

<elementary-RE3>::= <set> | <char>

<elementary-RE4> ::= <group> | <elementary-RE2>

<group> ::= "(" <RE> ")"

<set> ::= <positive-set> | <negative-set>

<positive-set> ::= "[" <set-items> "]"

<negative-set> ::= "[^" <set-items> "]"

<set-items> ::= <set-item> | <set-items2>

<set-items2> ::= <set-item> <set-items>

<set-item> ::= <char>

<char> ::= <c00> | <c01>

<any> ::= "."

<c00> ::= T | C

<c01> ::= A | G

<optREint> ::= <2ndint> | $

<2ndint> ::= "," <int>

<int> ::= <d0>

#4 Bit Gray Code Encoder

<d0> ::= <d00> | <d01>

<d00> ::= <d000> | <d001>

<d01> ::= <d010> | <d011>

<d000> ::= 1

<d001> ::= 3 | 2

<d010> ::= 7 | 6

<d011> ::= 4 | 5

Figure 6: Backus-Naur form grammar used to spec-
ify legal DNA sequence regular expressions, such as:
A(CT){3}, which matches ACTCTCT.

5.2 Evaluating Fitness of RE Motifs
In each generation, a command file is generated which

contains an egrep -c ’RE’ command for each individual in
the population. (RE is the individual’s regular expression.)
The command is run on a file holding the 100 sequences
lying between two blocks. (Collars of 50 additional bases
mean the last 50 bases of the first well correlated block and
the first 50 bases of the trailing well correlated block are also
included. See Figure 5.)
egrep -c counts the number of probes which match the

evolved motif (RE). The same command is also run on
a file holding the 100 sequences of exactly the same length
taken from exons which do not contain well separated blocks.
The fitness score of the regular expression is the difference

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50F
ra

ct
io

n
of

 p
os

iti
ve

 -
 fr

ac
tio

n
ne

ga
tiv

e
tr

ai
ni

ng
 c

as
es

Generations

Best Fitness
Best on all training

Figure 7: Evolution of fitness for GP run predict-
ing close sub-blocks in Human exons. Y-axis is the
difference between fraction of positive and negative
training cases matched by evolved regular expres-
sions. While best performance on training data for
the current generation (line) is subject to fluctua-
tion, performance on the whole of the training data
(×) improves from 0.15 to 0.3 by the end of the run.

between the number of lines in the two files which match RE.
Since, for a given generation, there are equal numbers of
positive and negative training examples, the difference turns
out to be proportional to the area under the ROC curve (see
Table 1). Expressions which either match all probes or fail
to match any are penalised by subtracting 100 from their
score.

6. RESULTS
The best of generation 36 in the first run, with a

population of 10 000 (cf. Table 1 and Figure 7),
scored ≈0.3. This is almost as good as the best of later
programs. Because of this and because its phenotype
TC(T){3}|TCGT|GG+(TCAA)|TTT(GCCA) is shorter, it was cho-
sen to represent the whole GP run. The evolved regular ex-
pression obtains approximately the same performance on all
the training data as it did on the two hundred it was ac-
tually tested on in generation 36. However its performance
falls on the 138 sequences used for validation, see Table 2.
It is clear that most of the power of the evolved expression
comes from its first term (TCTTT) and that it does well on
the training data (first two columns of each group of four in
Table 2). Table 3 suggests matches do not favour particular
locations in the mRNA.

The middle of the last row of Table 2 shows the polyA
regular expression does not differentiate between mRNA se-
quences between blocks and those in exons without sub-
blocks. This suggests that alternative polyadenylation is
not responsible for the observed blocks of correlations.

5

Table 2: Number of DNA sequences matched
by regular expression TCTTT|TCGT|GG+TCAA|TTTGCCA

evolved in generation 36. The number of blocks
identified by GP (5th line) falls from 78% to 52%
on the holdout data but it still does significantly
better than chance (second table). In the last line
(PolyA) we recast Retelska et al.’s twin PAS DSE
probabilistic motif ’s [28] as the deterministic regular
expression AATAAA.*T6A(T|C)6AT(G|T)6A. (6A means any
base except A.)

Percent
Training Holdout Training Holdout

pos neg pos neg pos neg pos neg
TCTTT 115 1982 32 18 59% 39% 41% 23%
TCGT 35 627 14 7 18% 12% 18% 9%
GG+TCAA 7 99 0 1 4% 2% 0% 1%
TTTGCCA 13 107 3 1 7% 2% 4% 1%
GP 152 2480 41 26 78% 49% 52% 33%

PolyA 26 406 5 7 13% 8% 6% 9%

Expected (i.e. random)
Training Holdout

pos neg pos neg
TCTTT 31 794 13 13
TCGT 97 2525 38 38
GG+TCAA 8 209 3 3
TTTGCCA 2 53 1 1
GP 116 3025 46 46

PolyA 3 71 1 1

Table 3: Location and type of matches of evolved
regular expression on 79 positive holdout cases. (To
save space one dot represents two nucleotides.) 37%
of matches occur in the first 50 base collar and 22%
in the trailing 50 base collar. 41% lie wholly within
the gap between poorly correlated probes.
..TCGT...........................

..............................TCTTT..............................TCTTT...

..TCGT................

...TCGT.........

..................................TCGT.......TCTTT..................................

.....TCTTT..

....TCTTT..

.................................TCTTT..

...TCTTT...

...TCTTT...

...TCGT............................

................................TCTTT..

............TCTTT..TCTTT.

...................TCGT...

..TCTTT..............

...TCTTT.....

..TCGT..TCGT..................................

..TCGT.TCTTT......................

...TCTTT.......................................

...............TCGT...TCTTT.......

..............................TCTTT...........TCTTT..

.............................TCTTT...

..........TCGT................TTTGCCA.....................................TCTTT................................

.............................TCTTT.......................................

........TCGT.........TCGT................TTTGCCA................................

.....TCTTT..

...TCTTT...

..TCTTT............................

..TCTTT....................

..........TCTTT..

...TCGT......

............TCTTT...

..........TCTTT...

.................................TCTTT.......TCTTT..

....TCTTT..

..TCGT.......................

.......TCGT.........TCTTT..

...TCTTT.......

......TCTTT..

..............TCTTT...

..TCTTT............................

6

7. DISCUSSION
It is known that the quality of GeneChip data tends to

degrade further from the 3’ end because one of the critical
enzymes used in the preparation of complementary RNA
strands works from the 3’ end forward but may fall off lead-
ing to unexpectedly shorten molecules. However by insisting
that both blocks either side of the poor correlation region
be strong2 we hoped to mitigate against this. One potential
cause of the enzyme malfunction could be the RNA bind-
ing to itself and forming hairpin secondary structures. The
evolved regular expression does not support this, nor did
initial experiments using a grammar designed to support
the evolution of motifs containing complementary patterns
found in hairpins.

Support for the assumption that the blocky big Ensembl
exons are in fact two exons, comes from the fact that there
should then be an intron between the two exons. One signa-
ture of introns is a“polypyrimidine tract”which is a sequence
rich in Cs and Ts. In earlier work we trained the GP using all
the exons, i.e. including very long gaps between blocks. The
evolved motifs contained runs of Cs and runs of Ts. This is
reasonable if the gap is indeed due to a polypyrimidine tract
associated with an undetected intron.

8. CONCLUSIONS
Hundreds of thousands of correlation coefficients for thou-

sands of exons across thousands of people supports many
of the current definitions of exons. However in about a
thousand cases the calculation of large scale correlations of
GeneChip data suggests something unexpected: sub-structure
within what were previously thought of as “atomic” exons.

We have used a grammar based strongly typed GP to au-
tomatically design a motif of the type biologists are familiar
with. If biologists are to try an interpret our results it is
important to present them in a “biologist friendly” form,
rather than as a decision tree or a set of support vectors.
The evolved motif uses only DNA sequence data and yet
it has some ability to predict sub block structures within
existing exons.

While both grammar based and strongly typed GP have
been available for some time, the combination has been little
used in biology and certainly not for similar applications3.

As described in Section 5.1, the BNF grammar is the stan-
dard one used for generic regular expression and has only be
modified slightly to deal with the limited alphabet of four
DNA bases. While a detailed mathematical analysis of the
combinatorics of the actual Backus-Naur grammar we have
used is beyond the present discussion, the number of pos-
sible grammar productions can be upper bounded by the
number of ways of labeling each of the possible grammar
expansions. Fortunately the maximum expansion is limited
by the limit on the depth of active choices (17). This limits
the maximum number of expansions to 217 and therefore the

search space to 2217
or about 4 1039 456.

None of the four components of the evolved regular expres-

2By a “strong” block we mean a length of the gene’s tran-
script where all the applicable measurements are highly cor-
related with each other. This can occur even if the measure-
ments are low on average.
3Untyped non-grammar linear GP, applied to other bioin-
formatics sequences (which was described in Section 2) is
perhaps the closest to our application.

sion TCTTT|TCGT|GG+TCAA|TTTGCCA (and hence none of the
strings it matches) themselves match either the initial indi-
cator of polyadenylation (known as PAS) nor the “U rich” or
“GU rich” signal after the cleavage site (known as DSE) [28].
If either PAS or DSE were responsible for the block structure
we are seeing in Ensembl exons, we would expect both GP
and our hand created regular expression should detect them.
Table 2 shows our sequences contain more polyA sequences
than would be expected by chance but the polyA regular
expression does not differentiate between the sequences be-
tween correlated blocks and the negative examples. I.e. the
PAS/DES motifs do not explain the observed correlations.

The fact that sometimes strong blocks of mRNA mea-
surements for the same Ensembl exon are both not well cor-
related and are separated by thousands of bases along the
transcript suggests that they are indeed separate exons and
so Ensembl should not have grouped them together as one.

Alternative splicing and alternative polyadenylation are
relatively new discoveries. The regulation of both is not
well understood. It is reasonable to suggest that current
bioinformatic databases may not be complete and that dis-
coveries remain to be made. As increasingly large quantities
of data from multiple disparate sources are available algo-
rithmic tools like correlation will be more widely used. Evo-
lutionary computation is increasingly being used in bioinfor-
matics to aid our understanding of new aspects of biology.

Training data is available via http://bioinformatics.

essex.ac.uk/users/wlangdon/tr-09-02.tar.gz

9. REFERENCES
[1] T. Barrett et al. NCBI GEO: mining tens of

millions of expression profiles–database and tools
update. Nucleic Acids Research 35, Database issue
(January 2007), D760–D765.

[2] Bosman, P. A. N., and de Jong, E. D. Grammar
transformations in an EDA for genetic programming.
In GECCO 2004 Workshop Proceedings (Seattle,
26-30 June 2004), R. Poli et al., Eds.

[3] Brameier, M., Krings, A., and MacCallum,
R. M. NucPred predicting nuclear localization of
proteins. Bioinformatics 23, 9 (2007), 1159–1160.

[4] Brameier, M., and Wiuf, C. Ab initio identification
of human microRNAs based on structure motifs. BMC
Bioinformatics 8 (18 Dec. 2007), 478.

[5] Cetinkaya, A. Regular expression generation
through grammatical evolution. In GECCO2007
workshop program (London, 7-11 July 2007), T. Yu,
Ed., ACM Press, pp. 2643–2646.

[6] Handstad, T., Hestnes, A. J. H., and Saetrom,
P. Motif kernel generated by genetic programming
improves remote homology and fold detection. BMC
Bioinformatics 8, 23 (Jan. 25 2007).

[7] Harrison, A. P., Rowsell, J., da Silva Camargo,
R., Langdon, W. B., Stalteri, M., Upton, G. J.,
and Arteaga-Salas, J. M. The use of Affymetrix
GeneChips as a tool for studying alternative forms of
RNA. Biochemical Society Transactions 36 (2008),
511–513.

[8] Hoai, Nguyen Xuan, McKay, R. I. B., and
Essam, D. Representation and structural difficulty in
genetic programming. IEEE Transactions on
Evolutionary Computation 10, 2 (Apr. 2006), 157–166.

7

http://bioinformatics.essex.ac.uk/users/wlangdon/tr-09-02.tar.gz
http://bioinformatics.essex.ac.uk/users/wlangdon/tr-09-02.tar.gz
http://bioinformatics.essex.ac.uk/users/wlangdon/tr-09-02.tar.gz
http://dx.doi.org/10.1093/nar/gkl887
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/WOBU001.pdf
http://dx.doi.org/10.1093/bioinformatics/btm066
http://dx.doi.org/10.1093/bioinformatics/btm066
http://dx.doi.org/10.1186/1471-2105-8-478
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p2643.pdf
http://dx.doi.org/10.1186/1471-2105-8-23
http://dx.doi.org/10.1186/1471-2105-8-23
http://dx.doi.org/10.1042/BST0360511
http://dx.doi.org/10.1042/BST0360511
http://dx.doi.org/10.1042/BST0360511
http://dx.doi.org/10.1109/TEVC.2006.871252
http://dx.doi.org/10.1109/TEVC.2006.871252

[9] Hu, Y.-J. GPRM: a genetic programming approach to
finding common RNA secondary structure elements.
Nucleic Acids Research 31, 13 (1 July 2003),
3446–3449.

[10] Hu, Y.-J., Sandmeyer, S., McLaughlin, C., and
Kibler, D. Combinatorial motif analysis and
hypothesis generation on a genomic scale.
Bioinformatics 16, 3 (2000), 222–232.

[11] Langdon, W. B. Genetic Programming and Data
Structures. Kluwer, 1998.

[12] Langdon, W. B. Evolving GeneChip correlation
predictors on parallel graphics hardware. In 2008
IEEE World Congress on Computational Intelligence
(Hong Kong, 1-6 June 2008), J. Wang, Ed., IEEE
Computational Intelligence Society, IEEE Press,
pp. 4152–4157.

[13] Langdon, W. B., and Banzhaf, W. Repeated
sequences in linear genetic programming genomes.
Complex Systems 15, 4 (2005), 285–306.

[14] Langdon, W. B., and Barrett, S. J. Genetic
programming in data mining for drug discovery. In
Evolutionary Computing in Data Mining, A. Ghosh
and L. C. Jain, Eds., vol. 163 of Studies in Fuzziness
and Soft Computing. Springer, 2004, ch. 10,
pp. 211–235.

[15] Langdon, W. B., and Buxton, B. F. Evolving
receiver operating characteristics for data fusion. In
Genetic Programming, Proceedings of EuroGP’2001
(Lake Como, Italy, 18-20 Apr. 2001), J. F. Miller,
M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B.
Tettamanzi, and W. B. Langdon, Eds., vol. 2038 of
LNCS, Springer-Verlag, pp. 87–96.

[16] Langdon, W. B., and Harrison, A. P. Evolving
DNA motifs to predict GeneChip probe performance.
Algorithms in Molecular Biology . In press.

[17] Langdon, W. B., and Harrison, A. P. Evolving
regular expressions for GeneChip probe performance
prediction. Tech. Rep. CES-483, Computing and
Electronic Systems, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, UK, 27 Apr. 2008.

[18] Langdon, W. B., McKay, R. I., and Spector, L.
Genetic programming. In Handbook of Metaheuristics.
Springer.

[19] Langdon, W. B., Rowsell, J., and Harrison,
A. P. Creating regular expressions as mRNA motifs
with GP to predict human exon splitting. In GECCO
’09: Proceedings of the 11th annual conference on
Genetic and evolutionary computation (Montreal, 8-12
July 2009), F. Rothlauf et al., Eds., ACM.
Forthcoming.

[20] Langdon, W. B., Upton, G. J. G., da Silva
Camargo, R., and Harrison, A. P. A survey of
spatial defects in Homo Sapiens Affymetrix
GeneChips. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (2009). In
press.

[21] McKay, R. I., Hoang, Tuan Hao, Essam, D. L.,
and Nguyen, Xuan Hoai Developmental evaluation
in genetic programming: the preliminary results. In
Proceedings of the 9th European Conference on
Genetic Programming (Budapest, Hungary, 10 - 12
Apr. 2006), P. Collet et al. Eds., vol. 3905 of Lecture

Notes in Computer Science, Springer, pp. 280–289.

[22] Michal, S., Ivry, T., Schalit-Cohen, O., Sipper,
M., and Barash, D. Finding a common motif of
RNA sequences using genetic programming: The
geRNAMo system. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 4, 4
(Oct.-Dec. 2007), 596–610.

[23] Nikolaev, N. I., and Slavov, V. Concepts of
inductive genetic programming. In Proceedings of the
First European Workshop on Genetic Programming
(Paris, 14-15 Apr. 1998), W. Banzhaf et al, Eds.,
vol. 1391 of LNCS, Springer-Verlag, pp. 49–60.

[24] O’Neill, M., and Ryan, C. Grammatical evolution.
IEEE Transactions on Evolutionary Computation 5, 4
(Aug. 2001), 349–358.

[25] Paterson, N. R., and Livesey, M. Distinguishing
genotype and phenotype in genetic programming. In
Late Breaking Papers at the Genetic Programming
1996 Conference Stanford University July 28-31, 1996
(28–31 July 1996), J. R. Koza, Ed., Stanford
Bookstore, pp. 141–150.

[26] Poli, R., Langdon, W. B., and McPhee, N. F. A
field guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[27] Ratle, A., and Sebag, M. Avoiding the bloat with
probabilistic grammar-guided genetic programming. In
Artificial Evolution 5th International Conference,
Evolution Artificielle, EA 2001 (Creusot, France, Oct.
29-31 2001), P. Collet, et al., Eds., vol. 2310 of LNCS,
Springer Verlag, pp. 255–266.

[28] Retelska, D., et al. Similarities and differences of
polyadenylation signals in human and fly. BMC
Genomics 7, 1 (2006), 176.

[29] Ross, B. J. The evaluation of a stochastic regular
motif language for protein sequences. In GECCO-2001
(San Francisco, 7-11 July 2001), L. Spector et al.,
Eds., Morgan Kaufmann, pp. 120–128.

[30] Ryan, C., Collins, J. J., and O’Neill, M.
Grammatical evolution: Evolving programs for an
arbitrary language. In Proceedings of the First
European Workshop on Genetic Programming (Paris,
14-15 Apr. 1998), W. Banzhaf, et al., Eds., vol. 1391
of LNCS, Springer-Verlag, pp. 83–95.

[31] Salustowicz, R. P., and Schmidhuber, J.
Probabilistic incremental program evolution:
Stochastic search through program space. In Machine
Learning: ECML-97 (1997), M. van Someren and
G. Widmer, Eds., vol. 1224 of Lecture Notes in
Artificial Intelligence, Springer-Verlag, pp. 213–220.

[32] Sanchez-Graillet, O., Rowsell, J., Langdon,
W. B., Stalteri, M. A., Arteaga Salas, J. M.,
Upton, G. J., and Harrison, A. P. Widespread
existence of uncorrelated probe intensities from within
the same probeset on Affymetrix GeneChips. Journal
of Integrative Bioinformatics 5, 2 (2008), 98.

[33] Shan, Yin et al. Grammar model-based program
evolution. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (Portland, Oregon,
20-23 June 2004), IEEE Press, pp. 478–485.

8

http://dx.doi.org/10.1093/nar/gkg521
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/16/3/222
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/16/3/222
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2008_CIGPU2.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_bioavail.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_egp2001.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_amb.pdf
http://www.essex.ac.uk/dces/research/publications/technicalreports/2008/CES-483.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_tcbb.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_tcbb.pdf
http://link.springer.de/link/service/series/0558/papers/3905/39050280.pdf
http://link.springer.de/link/service/series/0558/papers/3905/39050280.pdf
http://dx.doi.org/10.1109/tcbb.2007.1045
http://dx.doi.org/10.1109/tcbb.2007.1045
http://citeseer.ist.psu.edu/cache/papers/cs/26570/http:zSzzSzwww.niss.gov.uazSzCenterzSzarticleszSzpaperszSzeurogp98.pdf/nikolaev98concepts.pdf
http://dx.doi.org/10.1109/4235.942529
ftp://ftp.dcs.st-and.ac.uk/pub/norman/GADS.ps.gz
http://www.gp-field-guide.org.uk
http://arxiv.org/PS_cache/cs/pdf/0602/0602022v1.pdf
http://dx.doi.org/10.1186/1471-2164-7-176
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf
http://www.lania.mx/~ccoello/eurogp98.ps.gz
ftp://ftp.idsia.ch/pub/rafal/ECML_PIPE.ps.gz
http://dx.doi.org/10.2390/biecoll-jib-2008-98
http://dx.doi.org/10.2390/biecoll-jib-2008-98
http://dx.doi.org/10.2390/biecoll-jib-2008-98
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/shan/scfgcec04.pdf

[34] Tomita, Y. et al. A motif detection and classification
method for peptide sequences using genetic
programming. Journal of Bioscience and
Bioengineering 106, 2 (2008), 154–161.

[35] Whigham, P. A. Search bias, language bias, and
genetic programming. In Genetic Programming 1996:
Proceedings of the First Annual Conference (Stanford
University, 28–31 July 1996), J. R. Koza et al. Eds.,
MIT Press, pp. 230–237.

[36] Whigham, P. A., and Crapper, P. F. Time series
modelling using genetic programming: An application
to rainfall-runoff models. In Advances in Genetic
Programming 3, L. Spector et al., Eds. MIT Press,
June 1999, ch. 5, pp. 89–104.

[37] Man Leung Wong and Kwong Sak Leung
Evolving recursive functions for the even-parity
problem using genetic programming. In Advances in
Genetic Programming 2, P. J. Angeline and K. E.
Kinnear, Jr., Eds. MIT Press, 1996, ch. 11,
pp. 221–240.

9

http://dx.doi.org/10.1263/jbb.106.154
ftp://www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz
http://www.cs.bham.ac.uk/~wbl/aigp3/ch05.pdf

	Introduction
	Evolving Grammars and Protein Motifs
	Evolving DNA Motifs with Strongly Typed GP
	Preparation of Training data
	Evolving Motifs
	Setting up Genetic Programming
	Evaluating Fitness of RE Motifs

	Results
	Discussion
	Conclusions
	References

