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Abstract
The problem of programming an artificial ant

to follow the Santa Fe trail is used as an example
program search space. Previously reported ge-
netic programming, simulated annealing and hill
climbing performance is shown not to be much
better than random search on the Ant problem.

Enumeration of a small fraction of the total
search space and random sampling characterise
it as rugged with multiple plateaus split by deep
valleys and many local and global optima. This
suggests it is difficult for hill climbing algorithms.

Analysis of the program search space in terms of
fixed length schema suggests it is highly deceptive
and that for the simplest solutions large building
blocks must be assembled before they have above
average fitness. In some cases we show solutions
cannot be assembled using a fixed representation
from small building blocks of above average fit-
ness. This suggest the Ant problem is difficult for
Genetic Algorithms.

Random sampling of the program search space
suggests on average the density of global optima
changes only slowly with program size but the
density of neutral networks linking points of the
same fitness grows approximately linearly with
program length. This is part of the cause of bloat.

1 Introduction

There have often been claims that automatic program-
ming is hampered by the nature of program spaces.
These are undoubtedly large [Koza, 1992, page 2] and,
it often claimed, badly behaved with little performance
relationship between similar programs [O’Reilly, 1995,
page 8]. In this paper we present a systematic explo-
ration of the program space of a commonly used bench-
mark problem (Sections 2 and 3).

In Section 4 we calculate the number of fitness evalua-
tions required by two types of random search to reliably
solve the problem and then compare this with results for
genetic programming (GP) and other search techniques.
This shows most of these techniques have broadly similar
performance, both to each other and to the best perfor-
mance of totally random search.

This prompts us to consider the fitness landscape (Sec-
tion 5) and schema fitness and building blocks (Section 6)

Table 1: Ant Problem

Terminal set: Left, Right, Move
Functions set: IfFoodAhead, Prog2, Prog3
Fitness cases: The Santa Fe trail
Fitness: Food eaten
Wrapper: Program repeatedly executed for 600

time steps.

with a view to explaining why these techniques perform
badly and to find improvements to them. In Section 7 we
describe the simpler solutions. Their various symmetries
and redundancies mean essentially the same solution can
be represented in an unexpectedly large number of dif-
ferent programs. Finally in Section 8 we consider why
the problem is important and how we can exploit what
we have learnt and in Section 9 we give our conclusions.

2 The Artificial Ant Problem

The artificial ant problem [Koza, 1992, pages 147–155] is
a well studied problem often used as a GP benchmark.
Briefly the problem is to devise a program which can suc-
cessfully navigate an artificial ant along a twisting trail
on a 32 × 32 toroidal grid. The program can use three
operations, Move, Right and Left, to move the ant for-
ward one square, turn to the right or turn to the left.
Each of these operations takes one time unit. The sens-
ing function IfFoodAhead looks into the square the ant
is currently facing and then executes one of its two ar-
guments depending upon whether that square contains
food or is empty. Two other functions, Prog2 and Prog3,
are provided. These take two and three arguments re-
spectively which are executed in sequence.

The artificial ant must follow the “Santa Fe trail”,
which consists of 144 squares with 21 turns. There are 89
food units distributed non-uniformly along it. Each time
the ant enters a square containing food the ant eats it.
The amount of food eaten is used as the fitness measure
of the control program. The fitness function, function
and terminal sets etc. we use are identical to [Langdon
and Poli, 1997] see Table 1.
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3 Size of Program and Solution Space

The number of different programs in the ant problem is
plotted against their lengths in Figure 1 (and is tabu-
lated in the “Total” row at the bottom of Table 2). As
expected the number of programs grows approximately
exponentially with the length of the programs. (The
C++ code used to calculate the number of programs is
available via anonymous ftp from ftp.cs.bham.ac.uk in
pub/authors/W.B.Langdon/gp-code/ntrees.cc. File
antsol.tar.gz contains 3916 solutions to this problem).

For the shorter programs it is feasible to explore the
program space exhaustively. Table 2 summarises the pro-
grams space up to programs of length 14. Table 2 shows
the program space is highly asymmetric with almost all
programs having very low scores and the proportion with
higher scores falling rapidly (but not monotonically) to
a low point near 72. Above 72 it rises slightly. There is
some dependence upon program length and, as expected,
programs must be above a minimum size to reach mod-
est scores. However above the minimum size the num-
ber of programs with a given score rises rapidly, being
a roughly constant proportion of the total number of
programs. There are an unexpectedly high number of
solutions (albeit a tiny fraction of the total) and their
number similarly grows with program size.

For longer programs exhaustive search is not feasible
and instead we sampled the program space randomly
in a series of Monte Carlo trials for a number of pro-
gram sizes. For each such size 10,000,000 programs were
generated and tested. In the Ant problem there are usu-
ally multiple combinations of 2 and 3 argument functions
which give a tree of a given size. Each corresponds to
a different number of programs. One combination was
chosen at random in proportion to this number and then
a tree with this combination of branching factors was cre-
ated using the bijective random tree creation algorithm
described in [Alonso and Schott, 1995, Chapter 4]. Each
tree was converted to a program by labelling its nodes
with a function or terminal of the correct arity chosen
uniformly at random. This ensures every program of the
specified length has the same chance of being chosen.

Figure 2 shows that the proportion of programs with
a given score is approximately constant for a wide range
of program lengths. Since the total number of programs
rises rapidly, this means the number of programs with a
given score also rises rapidly with length. This confirms
assumptions in [Langdon and Poli, 1997].

With any Monte Carlo technique there will be some
stochastic error in the estimates. In the case of rare
events (such as finding a solution to the ant problem) this
could be large. The stochastic error was kept reasonable
by using a large number of trials so a modest number of
solutions were found at each length (between 9 and 101
and on average 39). An estimate of the stochastic error
is plotted in Figure 3 using error bars.
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Figure 1: Number of programs of a specific length (note
log log scale)
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Figure 2: Proportion of programs of a given length by
their fitness. Values for lengths 15 and above are based
on Monte Carlo sampling.

4 Solution of the Ant Problem

Using the probability P of finding a solution we can cal-
culate the number of program evaluations needed to en-
sure we find a solution (with probability ≥ 1 − ε). This
is known as “Effort” required [Koza, 1992, page 194]:

E =
log ε

log(1− P )

E ≈ − log ε

P

Taking ε as 1% we can calculate the number of fitness
evaluations E required to find at least one solution (with
probability ≥ 99%).

4.1 Uniform Random Search

Using uniform random search and taking the maximum
value for P gives us a minimum figure of 450,000 for pro-
grams of length 18. However if we allow longer programs,
P falls producing a corresponding rise in E to 1,200,000
with programs of size 25 and 2,700,000 with programs of
size 50 and 4,900,000 for sizes of 500. (Longer random
programs also require more CPU time to evaluate).
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Table 2: Number of Trees and Distribution of Fitness
Length

Score 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 2 0 12 16 136 423 2262 10452 49088 252803 1227679 6443754 32595908 171997308
1 0 0 2 4 18 150 449 3058 13806 77269 380979 2070276 10954364 58002558
2 0 0 0 1 3 25 112 909 3429 21902 123174 646831 3587432 19987018
3 1 0 2 6 31 96 530 2779 11736 63996 318817 1656409 8501211 45339974
4 0 0 0 0 3 14 72 527 2526 16250 86999 501521 2820383 15927690
5 0 0 0 0 2 10 58 417 1844 13047 67895 390963 2213475 12466189
6 0 0 0 0 1 8 25 177 1155 6826 33174 216479 1248818 6766377
7 0 0 0 0 2 13 35 266 1601 8076 39428 240187 1324912 6872615
8 0 0 0 0 3 10 68 412 1818 10785 56857 303276 1580134 8846059
9 0 0 0 0 0 0 2 28 183 1392 8218 57485 348331 2053040

10 0 0 0 0 1 2 18 76 461 2758 12465 75079 406998 2276683
11 0 0 2 0 16 51 297 907 5876 27403 120960 659392 3245735 16642082
12 0 0 0 0 0 0 3 52 190 1326 8296 45293 258390 1525769
13 0 0 0 0 0 0 4 40 154 1203 8011 44681 266859 1548594
14 0 0 0 0 0 0 3 24 105 770 5437 27113 169161 1041738
15 0 0 0 0 0 0 9 75 150 1313 11513 41711 226363 1528861
16 0 0 0 0 0 0 0 8 34 350 2584 15053 104018 654943
17 0 0 0 0 0 2 4 35 167 1108 4962 33175 197400 1078896
18 0 0 0 0 0 0 0 2 13 190 1764 11192 83119 570147
19 0 0 0 0 0 0 0 10 66 593 3028 18180 101133 660977
20 0 0 0 0 0 2 4 20 105 763 3985 25601 179522 938185
21 0 0 0 0 0 0 1 13 56 448 2501 16089 107227 581413
22 0 0 0 0 0 0 0 16 71 639 2825 21205 129354 692285
23 0 0 0 0 0 0 0 20 47 489 2372 15321 83764 509240
24 0 0 0 0 0 4 12 47 293 1723 6688 39676 194484 1048249
25 0 0 0 0 0 0 0 1 36 315 1586 10698 65746 359170
26 0 0 0 0 0 0 0 2 23 240 1785 11356 76602 379975
27 0 0 0 0 0 0 0 7 16 222 1262 8820 54491 306671
28 0 0 0 0 0 0 0 2 18 153 1049 7208 51024 258757
29 0 0 0 0 0 0 0 0 11 118 605 4705 30333 184386
30 0 0 0 0 0 0 0 3 23 203 922 6483 40544 215169

60 0 0 0 0 0 0 0 0 0 0 8 46 229 1790
61 0 0 0 0 0 0 0 0 0 0 4 30 223 1435
62 0 0 0 0 0 0 0 0 0 0 0 2 29 1113
63 0 0 0 0 0 0 0 0 0 0 5 85 285 4538
64 0 0 0 0 0 0 0 0 0 0 0 1 23 337
65 0 0 0 0 0 0 0 0 0 0 0 0 53 1610
66 0 0 0 0 0 0 0 0 0 0 0 0 3 66
67 0 0 0 0 0 0 0 0 0 0 0 15 31 435
68 0 0 0 0 0 0 0 0 0 0 0 0 3 90
69 0 0 0 0 0 0 0 0 0 0 0 0 17 2394
70 0 0 0 0 0 0 0 0 0 0 0 0 0 1063
71 0 0 0 0 0 0 0 0 0 0 0 0 3 2344
72 0 0 0 0 0 0 0 0 0 0 0 0 1 18
73 0 0 0 0 0 0 0 0 0 0 0 0 7 525
74 0 0 0 0 0 0 0 0 0 0 6 42 119 868
75 0 0 0 0 0 0 0 0 0 0 0 0 0 146
76 0 0 0 0 0 0 0 0 0 0 0 0 14 174
77 0 0 0 0 0 0 0 0 0 0 4 26 113 733
78 0 0 0 0 0 0 0 0 0 0 6 34 158 991
79 0 0 0 0 0 0 0 0 0 0 4 16 137 755
80 0 0 0 0 0 0 0 0 0 0 12 104 499 3530
81 0 0 0 0 0 0 0 0 0 0 3 64 157 2126
82 0 0 0 0 0 0 0 0 0 0 2 10 60 363
83 0 0 0 0 0 0 0 0 0 0 0 60 76 1367
84 0 0 0 0 0 0 0 0 0 0 21 188 747 5559
85 0 0 0 0 0 0 0 0 0 0 3 223 459 5734
86 0 0 0 0 0 0 0 0 0 0 0 110 173 3103
87 0 0 0 0 0 0 0 0 0 0 27 194 563 3420
88 0 0 0 0 0 0 0 0 0 0 57 399 1188 6951
89 0 0 0 0 0 0 0 0 0 0 12 48 470 2676

Total 3 0 18 27 216 810 3969 20412 95256 516132 2554416 13712490 71521461 382794984
Mean 1 0 1.7 0.9 1.7 1.9 2.0 2.06903 2.24659 2.42444 2.44969 2.59006 2.70357 2.76907

SD 3.7 0 4.4 3.8 4.4 4.4 4.4 4.45867 4.57353 4.79021 4.76974 4.94338 4.98586 5.04057
Max 3 0 11 3 11 24 37 47 51 55 89 89 89 89
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Figure 3: Proportion of programs of a given length which
are solutions. Error bars indicate standard error on
Monte Carlo estimates.

4.2 Ramped-Half-and-Half Random Search

Using the ramped-half-and-half method with a depth
limit of 6, we created 20,000,000 random programs of
between 3 and 242 nodes in length. Six solutions to the
Ant problem were found. This gives us an estimated E
figure of 15,000,000. This is higher than the correspond-
ing figures for uniform random search, indicating in the
Ant problem the bias in ramped-half-and-half leads it to
search less favoured regions of the program space. For
example 51% of the programs it generated contained ten
or fewer nodes and thus could not be solutions to the Ant
problem. Another disadvantage of the ramped-half-and-
half method is it will sample some program repeatedly.
E.g. only five of the six solutions found are distinct from
each other.

4.3 Comparison with Other Methods

Table 3 gives E values for various methods of solving
the Ant problem. It is clear that there are many tech-
niques capable of finding solutions to the Ant problem
and although these have different performance the best
typically only do marginally better than the best perfor-
mance that could be obtained with random search.

In the following sections we investigate the Ant prob-
lem fitness landscape to explain the disapointing poor
performance of these search techniques.

5 Fitness Landscape

We consider two programs in the program space to be
neighbours if they have the same shape and one can
be obtained from the other just by changing one node.
I.e. they are neighbours if making a point mutation to
one program produces the other. This is the simplest
neighbour relationship which means we can avoid the
complications inherent in crossover operator such as GP
crossover.

Table 3: Effort to Solve Santa Fe Trail
Method E/1000
Random (len=18) 450
Random (len=25) 1,200
Random (len=50) 2,700
Random (len=500) 4,900
Ramped-half-and-half 15,000
Koza GP [Koza, 1992, page 202] 450
Size limited, EP [Chellapilla, 1997] 136
GP [Langdon and Poli, 1997] 450
Subtree Mutation [Langdon and Poli, 1998] 426
Simulated Annealing 50%–150% 748

Subtree-sized 435
Hill Climbing 50%–150% 955

Subtree-sized 1,671
Strict Hill Climbing 50%–150% 186

Subtree-sized 738
Population (data for best) 50%–150% 266

Subtree-sized [Langdon, 1998c] 390
PDGP 336

In the case of small programs (i.e. length 11, 12
and 13) we investigated the neighbourhoods of all the
fitter programs, i.e. those with scores above 24 (in [Lang-
don, 1998c] in almost all runs the best individual found
had a score better than 24). As expected this showed
many neighbours are worse or much worse (i.e. score less
than 24). It also showed that many individuals with fit-
ness between 24 and 88 are local optima, in that none of
their neighbours are fitter than them. With short pro-
grams only a few neigbours have identical fitness.

The neighbourhoods of solutions are composed of low
fitness programs. For programs of length 11 or 12, apart
from programs which score 24–27 or 36, all neighbours
of the solutions score < 24. I.e. if a hill climber search-
ing programs of length 11 or 12 finds a program scoring
more than 36 we know it will never find a solution, with-
out restarting. (Figure 6 shows 50 runs of a variable
length representation hill climber [Langdon, 1998c] most
of which became trapped at suboptimal peaks. Similar
behaviour is also seen with other search techniques such
as GP). There are many more solutions of length 13 and
they are structurally and operationally more diverse. So
their neighbourhoods are also much bigger and more di-
verse and include programs with scores of 24–46, 52, 54,
63, 85, 87 and 88. However five times as many have
scores below 24.

For longer programs exhaustive enumeration of the
landscape is not feasible and we used Monte Carlo sam-
pling. As before programs of a chosen length were sam-
pled uniformly at random. Due to the rarity of high
scoring programs only a small number (up to 19) with
scores 24–89 were chosen and all their neighbours were
created and tested. (In the Ant problem a program of
length l has approximately 3l/2 neighbours).
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Figure 4: Proportion of programs without fitter neigh-
bours for various program lengths. (High noise Monte
Carlo estimates ignored).
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Figure 5: Mean number of neighbours with same score
for various program lengths.

Figure 4 shows for most program sizes and most fitness
values there are a large number of programs which do not
have any fitter neighbours. In contrast Figure 5 shows
the average number of neighbours with the same fitness
grows with program size. These same fitness neighbours
displace those that are worse, and for the longest sizes
almost all programs of intermediate fitness have a large
number of neighbours with the same score.

6 Fixed Length Schema Analysis

In this section we consider the fitness of fixed length
schema [Poli and Langdon, 1997] within the program
space. Unlike conventional schema analysis we define
a schema’s fitness as the mean score for all programs
matching the schema. Our analysis shows that typi-
cally there is a large variation of program scores within
a schema, with the standard deviation of scores being
about the same as or larger than the schema’s fitness.
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Figure 6: Evolution of best fitness in 50 hill climbing
runs using 50%–150% tree mutation

Thus a finite sample (such as a GA population) can only
reliably be used to estimate the fitness of a schema if it
contains multiple independent samples from the schema.
If the GA is to reliably choose between schema based
on its estimate of their fitness, the number of samples
(i.e. programs) must be even bigger where the schema
have similar fitness. (Of course the assumption that pro-
grams are independent is not justified after selection etc.)

The competition between schema can be viewed as a
heirarchy of competitions. The outermost competition
being between schema of different lengths. The next is
between schema with different shapes but of the same
length (hyperspaces). The final competition is between
different schema of the same size and shape. Figure 7
shows the Ant problem is difficult at the outermost level.
The region containing the highest concentration of solu-
tions (length=18) has a fitness of 2.9 but longer programs
are on average fitter than this. While the standard de-
viation is large compared to the mean, a typical initial
GP population is likely to be large enough to be able
to reliably prefer solutions longer than 18 over those of
length 18.

Figure 8 shows the distribution of schema fitness for
one of the hyperspaces containing solutions of length 11.
(The other two hyperspaces are similar). Looking at the
order zero schema, i.e. the hyperspace, we see it has a fit-
ness above the average for programs of the same length,
however there are other hyperspaces which are fitter.

Comparing schema of the same order we see, apart
from order 9 (i.e. programs) there are always schema out-
side the hyperspace with higher fitness. However within
the hyperspace, for a given order, the fittest schema is
always one containing a solution. (Prog3 is the only func-
tion which takes three arguments. If a program’s shape
is given and it contains three way branches, then there
must be a Prog3 at these points. I.e. the location of
Prog3 are fixed. Therefore we exclude Prog3 from the
schema order). It was feasible to consider all schema
of order 2 or less. As Figure 8 shows there are many
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Figure 8: Distribution of Schema fitness within a Hyper-
space of length 11 containing a solution

schema which do not contain a solution which are fit-
ter than many of the same order that do. Also there are
small components of solutions with below average fitness.
It is not until more than five components have been as-
sembled that all schema containing solutions have above
average fitness. I.e. using a fixed representation solutions
of length 11 cannot be assembled from small building
blocks (low order schema) of above average fitness.

Turning to programs of length 12 (see Figure 9). Look-
ing at order zero we see a similar picture to length 11:
hyperspaces containing solutions have fitness above the
average for programs of the same length, however there
are other hyperspaces which are fitter.

Comparing schema of the same order we see, apart
from order 11 (i.e. programs) there are always schema
outside the hyperspace with higher fitness. Also (unlike
length 11) within the hyperspace the fittest schema of
each order for orders 4–8 does not contain a solution.
As with length 11, there are many schema which do not
contain a solution which are fitter than many of the same
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Figure 9: Distribution of Schema fitness within a Hyper-
space of length 12 containing a solution

order that do. Also there are small components of solu-
tions with below average fitness. It is not until more than
six components have been assembled that all schema con-
taining solutions have above average fitness.

Turning to programs of length 13 the situation is com-
plicated by the much larger number of solutions and
their diverse nature. We have selected three hyperspaces
which contain solutions of different types, see Figures 10,
11 and 12. (Only data for schema of order, 0, 1 and 2 is
available).

Looking at order zero we see a similar picture to
length 12: the three selected hyperspaces have fitness
above the average for programs of the same length, how-
ever (apart from the hyperspace chosen because it has
the highest fitness) there are other hyperspaces which
are fitter.

Comparing schema of the same order we see there are
always schema outside the hyperspace with higher fit-
ness (although the difference is small for the fittest hy-
perspace). As with lengths of 11 and 12, in two hyper-
spaces the fittest schema of order 0, 1, and 2 contain a
solution (see Figures 10 and 12). However in the fittest
hyperspace (Figure 11) the fittest schema of order 1 and
2 do not contain solutions. As with lengths 11 and 12,
there are many schema which do not contain a solution
which are fitter than many of the same order that do.
Also there are small components of solutions with below
average fitness.

7 The Solutions

We have analysed the shorter solutions (see Figures 13
to 16). As we shall see all the solutions of length 11 and
12 and most of those of length 13 are variations of each
other.

Figure 13 shows all the solutions of length 11. There
are twelve solutions of length 11. Not only are they ge-
netically distinct but they cause different behaviour by
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Figure 10: Distribution of Schema fitness within a Hy-
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Figure 11: Distribution of Schema fitness within a high-
est fitness Hyperspace of length 13 containing a solution

the ant. However we can recognise certain symmetries.
For example they contain pairs of ant rotate operations
and it is no surprise that these can be either pairs of
Left or pairs of Right terminals. Another symmetry is
that the program consists of three parts which have to
be performed in order but the ant can start with any one
of the three and still traverse the trail. Since the solu-
tion codes each of these as an argument of the root, the
root’s arguments can be rotated. Each rotation gives rise
to a genetically different program, with slightly different
behaviour. Each gives rise to a different tree shape and
so the 12 solutions lie in three distinct hyperspaces.

The solutions of length 12 are the same as those of
length 11. They are made one node longer by replacing
a single Prog3 function with two Prog2 (see Figure 14).
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Figure 12: Distribution of Schema fitness within a Hy-
perspace of length 13 containing a (intron) solution

There are a total of four ways of doing this for each so-
lution of length 11 giving rise to 48 solutions of length.
While these are genetically distinct from each other and
the solutions of length 11 they represent identical be-
haviour. There are 12 tree shapes (hyperspaces) each
containing 4 solutions.

Extending this we can see that there must also be 48
solutions of length 13 created by replacing both Prog3
with Prog2 (there are four ways of arranging the Prog2).
However there are other ways to make use of the available
space to represent the same solutions. This is done by
adding introns. Each of the non-Prog3 nodes can be
replaced by an IfFoodAhead one of whose arguments is
the previous node (and its arguments) and the other is
either a terminal which is identical to the other argument
or is never executed (see Figure 15). Most solutions of
length 13 are of this type.

Thirteen nodes allow solutions of a different type
which consecutively performs two moves before looking
for food (see Figure 16). Again there is symmetry in that
the ant can be rotated either to the right or to the left
but whichever is done first the opposite must be done in
the later part of the program. This give rise to programs
of the same shape with the same score. The program
now consists of five parts which have to be executed in
the correct order but, as with solutions of length 11, it
does not matter which is first. Each of these five order-
ings gives rise to a different behaviour but each traverse
the trail. (However they take slightly different amounts
of energy to do so. Including energy as part of the fitness
measure would give a means of breaking the symmetry
of these solutions). Additionally there are three ways to
arrange the arguments of the two Prog3 which are func-
tionally identical. Each of these rearrangements yields
solutions of different shapes.

Most of the other solutions of length 13 also perform
two consecutive Move operations. These and the remain-
ing solution of length 13 have less symmetry and are
fewer in number.

8 Discussion

The No Free Lunch theorems [Wolpert and Macready,
1997] prove that averaged over all problems all search al-
gorithms have the same performance. In particular this
means, averaged across all possible problems, the per-
formance of genetic programming is the same as ran-
dom search. In adaptive search circles this has been
frequently countered by arguing that we are not inter-
ested in all possible problems but in some ill-defined set
of interesting ones (which by implication our favourite
search technique is good at solving). This in turn im-
plies there is a class of “badly behaved problems” (for
our favourite technique) which we are not interested in
solving, where our technique performs worse than ran-
dom search. If the number of solutions is small random
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Figure 13: Solutions of length 11. x and y can be either
Left or Right and the three arguments of the root can be
rotated, giving 12 solutions.
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Figure 14: Solutions of length 12. Like solutions of
length 11 (x and y can be either Left or Right, the three
arguments of the root can be rotated) additionally one
Prog3 is replaced by two Prog2 giving 48 solutions.
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Figure 15: Intron solution of length 13. Like solutions of
length 11 (x and y can be either Left or Right, the three
arguments of the root can be rotated) and the = can be
any terminal as it is never executed.
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Figure 16: Solutions of length 13 performing two Moves.
x can be either Left or Right but then x′ must rotate in
the opposite direction, again the arguments of the root
can be rotated and there are equivelent ways to order
the arguments of the two Prog3.

search will not solve our problem, so it can be argued that
as our technique does, this implies our problem is “well
behaved”. This paper shows an example of a frequently
studied interesting problem where GP performance is not
dramatically better than random search. This suggests
we in GP circles may be interested in “badly behaved
problems” where GP performance lies close to random
search. If such problems have unique solutions then ran-
dom search will not in practice find them. However there
are an exponentially large number of solutions to the Ant
problem. If this is true of other problems it may be the
principal reason for the success of GP and other stochas-
tic search techniques on them.

To explain the performance of adaptive search tech-
niques we need to consider the fitness landscape they see.
The Ant problem has the features often suggested of real
program spaces. The program space is large and, using
the simplest neighbour relationship, forms a Karst land-
scape containing many false peaks and many plateaus
riven with deep valleys. There are multiple distinct and
conflicting solutions to the problem, some arising from
symmetries in the primitive set and some from the prob-
lem itself. The landspace is riddled with neutral net-
works linking programs of the same fitness in a dense
and suffocating labyrinth.

A limited analysis of the schema indicates the prob-
lem is deceptive at all levels. Longer programs are on
average slightly fitter but contain a slightly lower den-
sity of solutions. There are hyperspaces which do not
contain solutions which are fitter than those of the same
length which do. There are low and middle order schema
which are required to build solutions but which are be-
low average fitness. Schema typically have a high fitness
variance. This means practical sized samples give noisy
estimates of their fitness, leading GAs to choose between
them randomly. However the fitness of low order schema
may be estimated more reliably (as GA populations can
contain many instances of them). Where they are decep-
tive, this may lead a GA to discard them. (Extinction of
complete primitives was seen in the list and stack prob-
lems [Langdon, 1998b, Chapter 6 and 8]).

We have not been able to find any building blocks
(i.e. small components of a solution with above average
fitness). We have only considered the simplest solutions
using a fixed representation but they cannot be assem-
bled from building blocks. Indeed many constructs which
a human programmer might use have below average fit-
ness. However it is possible longer solutions might be
constructed from fixed representation building blocks or
solutions might be constructed in a variable length rep-
resentation (as used by GP) from building blocks. But
as GP performance is similar to hill climbing this sug-
gests either there are no building blocks for GP in this
problem or they give no benefit.

If real program spaces have the above characteristics
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(we expect them to do so but be still worse) then it is
important to be able to demonstrate scalable techniques
on such problem spaces. The Santa Fe trail provides a
tractable problem for such demonstrations. From Ta-
ble 3 it is obvious that current techniques are not doing
well on it.

Current techniques do not exploit the symmetries of
the problem. These symmetries lead to essentially the
same solutions appearing to be the opposite of each
other. E.g. either a pair of Right or pair of Left ter-
minals at a particular location may be important. If the
search technique does not recognise them as the same
thing it may spend a lot of effort trying to decide between
them, when perhaps either would do (cf. “competing con-
ventions” in artificial neural networks). A possibly use-
ful approach is to break this symmetry (e.g. by putting
more of one primitive in the initial population) to bias
the technique so that it chooses one option quickly. Al-
ternatively new genetic operators [Maxwell, 1996] might
better exploit the semantics of the programs. We might
address the tangled network of programs with the same
fitness, which consumes much machine resources by pro-
moting bloat, by introducing a small bias. In the Ant
problem we would expect a slight bias in favour of shorter
programs to be beneficial as solutions are more frequent
when programs are short.

The Ant problem appears to be difficult because of the
large number of sub-optimal peaks in the fitness land-
scape. These are created by the combination of the
representation, the neighbour operator and the fitness
function. While there may be improvements to the rep-
resentation or better search techniques we should also
consider the fitness function, particularly how we reward
partial solutions [Langdon, 1998a].

9 Conclusions

We have started an examination of the program space of
a GP benchmark problem. We have shown that there are
many distinct solutions to the problem and the density
of solutions in the program space is unexpectedly high.
Indeed genetic programming and other search techniques
do not perform enormously better than random search.
Using the program landscape and schema analysis we
have shown why the artificial ant following the Santa Fe
trail problem is difficult for these search techniques and
these suggest reasons why the Ant problem may be in-
dicative of real problem spaces and so be worthy of fur-
ther study.
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