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ABSTRACT

N grams o�er fast language independent multi-class text categorization. Text is reduced in a single pass to

ngram vectors. These are assigned to one of several classes by a) nearest neighbour (KNN) and b) genetic

algorithm operating on weights in a nearest neighbour classi�er. 91% accuracy is found on binary classi�cation

on short multi-author technical English documents. This falls if more categories are used but 69% is obtained

with 8 classes.

Zipf law is found not to apply to trigrams.

2000 Mathematics Subject Classi�cation: 68T05, 68T20

1998 ACM Computing Classi�cation System: G.1.6, G.2.1, I.2.6, I.2.8

Keywords and Phrases: genetic algorithms, ngrams, trigrams, natural language processing, NLP

Note: Work carried out under theme SEN4 \Evolutionary Computation". To appear in Late breaking papers of

GECCO'2000: Proceedings of the Genetic and Evolutionary Computation Conference. This research was part

of the \Autonomous Systems of Trade Agents in E-Commerce" project, funded by the Telematics Institute.

1. INTRODUCTION

It is increasingly important that organisations are able to direct electronic documents rapidly to the
right person. Therefore automatic and particularly adaptive mechanisms which match documents
to the interest pro�le of individuals are particularly interesting. Ngrams o�er a means of storing
and updating user interest pro�les and rapid language independent means of comparing pro�les and
documents.
We show that trigrams (3-grams) in conjunction with a nearest neighbours (KNN, K = 1) classi�er

is a fast and reasonably accurate way of classifying natural language documents of modest length.
N grams have the advantage of being language independent, but naturally new classi�ers are needed
for each new language. The introduction of a weight per trigram, i.e. a weight vector, which is trained
using a genetic algorithm, improves accuracy further at modest additional computational e�ort but
with potential risk of over training.
This work follows up that by Daniel Tauritz [Tauritz and Sprinkhuizen-Kuyper, 1999a, Tauritz and

Sprinkhuizen-Kuyper, 1999b] and uses a modi�ed version of his n gram C++ library revision 0.30 and
the Reuters 21578 collection of newswire stories.
Section 2 describes n grams. In Section 3 we describe two experiments using n grams to classify

documents. Section 3.1 describes the Reuters 21578 collection and our use of it. The �rst experiment
(Section 3.2) uses nearest neighbours techniques, while the second (Sections 3.3 and 3.4) combines
nearest neighbours with genetic algorithms. Section 4 discusses trigram distributions with respect to
Zipf's Law. Section 5 discusses these techniques and our results. While Section 6 brie
y considers
the applicability of improving accuracy by removing su�xes from words. Our conclusions are given
in Section 7.
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2. N GRAMS

An n gram is a sequence of n consecutive symbols. In text processing the symbols are letters of the
alphabet etc. and there is a �xed number of them (say 27). Therefore the number of possible n gram
is also �xed (actually being � 27n). A text is converted to an n gram vector by counting the number
of times each of the possible n grams actually occurs in the text and putting this count in the element
of the vector corresponding to the n gram.
One way to count the number of n gram in a document is to consider a movable window n characters

wide which is slid across the whole text one character at a time. Each time it stops, the n characters
it covers correspond to one n gram and so the count for this n gram is incremented. In European
languages it is su�cient to consider only the alphabetic characters in the text regardless of whether
they are capitals or lowercase letters. All layout and non-letter characters are treated as separation
characters. Two or more separation characters are treated as a single space. Figure 1 shows an
example.
In practice most of the possible n grams do not occur and considerable savings in memory and time

can be obtained by using sparse data structures. Here we have used map data structures but hash
tables are commonly used (particularly if n > 6). (Commonly exact counts are not needed and so it
may be possible to avoid special processing associated with \hash clashes". Instead distinct n grams
which happen to overlap in the hash table can be combined in a single count. With suitable hash
parameters this will happen infrequently. This avoids time and space complications of rehashing or
handling over
ow chains.)

3. EXPERIMENTS

3.1 THE REUTERS 21578 COLLECTION

The Reuters 21578 text categorization test collection consists of two parts 1) documents that appeared
on the Reuters newswire in 1987 and 2) classi�cations of the topic of each documents. The collection is
distributed for research purposes only by David D. Lewis of AT&T Labs via http://www.research.

att.com/~lewis/reuters21578.html reuters21578.tar.gz.
The 8 subject areas we use are Co�ee, Crude Oil, Interest Rates, Money/Foreign Exchange, Money

Supply, Shipping, Sugar, and Trade. These are also the same as [Tauritz and Sprinkhuizen-Kuyper,
1999a, Table 1].
The documents are of modest length. In the subset we used each newswire story is on average 114

words long but vary greatly in length.
The number of documents about each topic also varies greatly, from a minimum money-supplywith

97 to crude with 355. From each directory we random selected (without replacement) 30 documents
for \training" and from the remaining 67{325 we randomly selected (without replacement) 50 more
as a \veri�cation" set, i.e. to use to test generalisation. This was done ten times, to create ten such
pairs for each subject area.

3.2 NEAREST NEIGHBOURS

The nearest neighbours algorithm is deterministic and fast. The trigram vector for each document in
the training set is calculated and normalised (by dividing the number of times each trigram appears
in a document by the total number of trigrams in the document).
Each document from the veri�cation set is classi�ed by assigning it the class of the document in

the training set to which its normalised trigram vector is the closest. The Euclidean distance between
between normalised trigram vectors is used. (There are between 50� 2 and 50� 8 documents to be
classi�ed).
The percentage of documents correctly classi�ed is given in Table 1. Table 1 also gives the average

run time (columns headed \Secs") and the number of reference ngram vectors \Neighbours" each
document that is classi�ed is compared with.
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Figure 1: Converting a fragment of text to a trigram vector. Numbers to right are numeric value of
each trigram. 0

a
0 = 1, 0

b
0 = 2 etc.

Table 1: Validation performance of Nearest Neighbours Trigrams on Reuters 21578 collection. Means
and (standard deviations) of 10 independent runs.

Topics Neighbours % Correct Secs
Co�ee, trade 60 91 (4) 3 (0.4)
+ crude 90 79 (7) 6 (0.3)
+ money-fx 120 77 (7) 10 (0.6)
+ sugar 150 76 (5) 14 (0.3)
+ money-supply 180 76 (4) 18 (0.7)
+ ship 210 72 (4) 25 (0.7)
+ interest 240 69 (3) 33 (2.4)
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3.3 GA NEAREST NEIGHBOURS HYBRID

In the previous section the trigram vectors are unweighted and the distance measure is directly cal-
culated using all (non-zero) trigram frequencies. Naturally this means frequently occurring n grams
dominate this distance calculation and so classi�cation but (as Section 4 will show) many n grams
occur infrequently and consequently are all but ignored. Here each n gram is allocated a weight.
When the distance between two n gram frequency vectors is calculated each corresponding element is
multiplied by its weight before the distance is calculated. (Note this is slightly di�erent from [Tau-
ritz and Sprinkhuizen-Kuyper, 1999a, page 5] where frequency vectors are \normalised" again after
multiplying by the weights (so the sum of vector elements is unity). Both ours and [Tauritz and
Sprinkhuizen-Kuyper, 1999a]'s approaches are slightly di�erent from standard KNN approach where
the angle between (weighted) vectors is used as the distance metric. The cosine of this angle is the
same as the Euclidean distance between the vectors if both are normalised to have unit length. I.e. the
sum of the squares of their components comes to unity. We suspect these di�erences do not produce
large di�erences in performance.)
We follow Tauritz and use a genetic algorithm to determine the actual value of each weight. For our

GA we use the object orientated C++ library QGAME [Dekker, 1995]. This is a standard GA which
we just use to determine the weights. We have previously been used QGAME with a combinatorial
scheduling problem for the electricity transmission grid in the UK [Langdon, 1995, Langdon, 1997,
Langdon, 1998].
In the GA each weight is represented on the chromosome by a float (we use single rather than

double precision for speed). Like Tauritz, weights are constrained to be between zero and 1 and are
initialised uniformly at random between these ranges.
The population of twenty weight vectors undergoes non-overlapping generations and elitism is not

used. However QGAME does keep track of the highest �tness individual found in the whole GA
run and this is used after the GA has �nished by the nearest neighbours algorithm to classify the
documents in the test set.
On average 60% of each new generation is created by uniform crossover (50% per locus), the others

are copies of the previous generation. However all children are randomly subjected to Gaussian
mutation (sigma 1.0) at a rate of 3% per gene. Should a mutation attempt to modify a weight to
make it negative, the weight is set to zero. If it should try to increase it above one, it is set to one. We
use Stochastic Universal Sampling (SUS) [Mitchell, 1996, pages 166{167] with �tness linearly rescaled
so the worst member of the population has �tness 1.0 and the best 2.0. The GA continues until either
it �nds an individual for which nearest neighbours correctly classi�es the whole training set or until
100 generations. Each new individual in the GA population is assigned a �tness by using it to classify
the whole training set. Its �tness is the correlation coe�cient between the category calculated using
with nearest neighbours and the correct category. Parameters are summarised in Table 2.
Due to the length of the chromosome it was felt necessary to use highly disruptive genetic operators

(i.e. uniform crossover and a high mutation rate and step size). This appears to be the correct choice as
the GA does learn at a reasonable rate. The large mutation step size probably means many mutation
will be truncated to the legal range of the genes (zero and one). Thus the exact form of the mutation
operator (Gaussian in our case) is probably not important.

3.4 GA KNN RESULTS

Figure 2 plots the mean performance on the best of run individual on the test set across ten runs, at
the end of the initial random population, generation 20 and generation 100. For comparison it also
contains the results given in Table 1 and \system" performance given in [Tauritz and Sprinkhuizen-
Kuyper, 1999a, Table 2]. Performance is on average 3% worse than Tauritz reports but this may not
be statistically signi�cant. It appears while performance with the best of twenty randomly chosen
weights is better than the unweighted system, performance does not improve during the GA run.
The GA does tune the weights and performance on the training documents steadily increases.

However performance on the veri�cation set does not improve indicating over training. Figure 3 shows
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Table 2: QGAME Parameters for Classifying Natural Language Text

Objective: Find a set of weights that nearest neighbour classi�er can use to predict class of
documents given its trigram vector.

Representation: 
oating point value between 0 and 1
Fitness cases: 30 randomly chosen documents of each category
Fitness: Correlation between predicted and actual classi�cation on training set
Selection: SUS with linear rescaling between 1 and 2, non-elitist, generational
Wrapper: Weights used by nearest neighbour classi�er
Pop Size: 20
Individual length: Number non-zero trigrams in whole of training set
Initial pop: Each weight randomly set between 0..1
Parameters: 60% Uniform crossover (each weight equally likely to come from either parent).

Gaussian mutation N(0,1.0) (weights kept in 0..1)
Termination: An individual scores 100% on training set or maximum number of generations

100

Table 3: Percentage correct classi�cation. QGAME KNN Trigram Hybrid on Reuters 21578 collection.
Means and (standard deviations) of 10 independent runs.

Topics Neighbours Chrome Gen 0 End of Run
length Training Test Secs Training Test Secs

Co�ee, trade 60 3200 100 (0) 99 (1.3) 2 100 (0) 99 (1.3) 2
+ crude 90 3600 99 (0.8) 94 (2.1) 4 100 (0.4) 93 (3.1) 41
+ money-fx 120 3800 98 (1.2) 92 (2.8) 6 100 (0) 91 (2.4) 89
+ sugar 150 3900 98 (1.1) 90 (2.9) 8 100 (0.4) 91 (1.9) 210
+ money-supply 180 4000 92 (2.0) 87 (1.6) 10 96 (2.1) 89 (1.9) 745
+ ship 210 4200 91 (2.1) 85 (2.1) 13 95 (1.5) 87 (2.5) 1034
+ interest 240 4200 88 (2.3) 81 (2.3) 17 93 (2.0) 82 (3.0) 1337

the best of generation performance on the training set for one GA run together with the performance
on the veri�cation set of the same individuals.
The failure of the GA to usefully abstract from the training documents leads to investigations of

the expected behaviour of the distribution of trigrams within natural language text. We hope a model
may be found and then the GA could learn parameters of this model and then these could be used to
classify the texts.

4. ZIPF'S LAW

It has been shown that Zipf's law �ts the distribution of many human activities such as the distribution
of human populations in towns and cities [Zipf, 1949]. In particular it has been found to �t the
distribution of words used in human generate texts in many languages. The next section shows it
holds in the Reuters 21578 collection. It has been suggested that it would also describe the distribution
of n grams. The following section (Section 4.2) shows that trigrams don't �t Zipf's law but there is
regularity in the distribution which might be used.

4.1 ZIPF'S LAW AND KEYWORDS

Zipf showed in a variety of languages authors have a strong pattern in the way they use words. A few
words are frequently used while many others are infrequently used. Suppose the number of times each
word is used is counted and then the words are ordered so the most frequently used is given rank 1,
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Figure 2: Performance of Trigram classi�ers on Test set. Mean and standard deviations of 10 runs

the second rank 2 and so up to the least frequently used work rank n. Zipf showed frequency is related
to rank harmonically, i.e. the frequency of a word is approximately proportional to the inverse of its
rank. Therefore if they are plotted against each other on a log-log scale a straight line with gradient
-1 results (excepting both rank and frequency must be integers resulting in discrete steps in the line).
Figure 4 shows Zipf's law essentially applies.

4.2 ZIPF'S LAW AND TRIGRAMS

We had expected that the distribution of n grams would also obey Zipf's law. But as Figure 5 shows
their is systematic disagreement between the actual distribution and Zipf's law. (Such disagreement
may not be present with larger n values). The middle ranking trigrams are much more frequent than
Zipf's law would suggest.
Zipf's law predicts that frequency � rank will be a horizontal line. Figure 6 shows this is true

(baring the discrete nature of frequency) for keywords but not for trigrams.
As Figures 5 and 6 show there is clearly some structure in the distribution of trigrams. We observed

both the disagreement and also this structure in the Reuters 21578 collection and various unrelated
LATEX documents. In future it may be possible to use this structure as a \base line" from which
to learn. I.e. the classi�er would start not with the n gram distribution but its di�erence from the
standard distribution. This might also be used to suppress noise.

5. WHY DO KNN AND TRIGRAMS WORK?

Analysis of a limited number of nearest neighbours results shows that distance between the document
to be classi�ed and the reference documents is surprisingly variable and documents from di�erent
classes overlap in their distances. (It is surprising how often the closest neighbour is of the required
class). Also the distance measure is dominated by one trigram and only a few make any discernible
contribution. It appears random adjustment of the importance (by using the weight vector) of a
few trigrams is su�cient to boost the performance of the nearest neighbours algorithm. While more
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systematic variation by the genetic algorithm simply leads to better results of the training data but
no gain in performance on unseen data. It has been suggested that using the closest three or four
neighbours, rather than just the single closest neighbour, might further improve performance by giving
some noise suppression. (The class is then the majority of the three of four votes of these k neighbours,
k = 3 or 4).
Note that most trigrams make no real contribution to the distance. With care, it might be possible

to still further increase the speed of these techniques by omitting low frequency trigrams.

6. STEMMING

Stemming techniques [Porter, 1980] reduce multiple endings of keywords to a single keyword. E.g.
steming removes the -e and -ing endings of come and coming so come and coming are treated as
the same keyword rather than separate two words. These can be fast but are not 100% accurate
and di�erent algorithms are needed for di�erent languages thus nullifying one of the advantages of
trigrams. However they might improve classi�cation accuracy.

7. CONCLUSIONS

It is clear that trigrams combined with simple classi�ers, such as (weighted or unweighted) near-
est neighbours algorithms o�er automatic fast multi-category classi�cation of natural language text
documents. However accuracy falls as the number of categories is increased.
Since there are typically thousands of weights it is not surprising that more sophisticated learning

techniques such as GAs adjusting trigram weights are liable to over �t the training data. Results
obtained from 20 random weight vectors are not signi�cantly worse than Tauritz' approach but our
technique is simpler and much faster.
It may be possible to reduce the dangers in over �tting by using knowledge of a \standard" distribu-

tion instead of using the normalised trigram frequency. Then only statistically signi�cant di�erences
between the measured distribution and the \standard" distribution would be used in the classi�er.
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This should greatly reduce the number of variables. This should both reduce the chance of over �tting
and speed the process.
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