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Abstract. Theoretical models of Turing complete linear genetic pro-
gramming (GP) programs suggest the fraction of halting programs is
vanishingly small. Convergence results proved for an idealised machine,
are tested on a small T7 computer with (finite) memory, conditional
branches and jumps. Simulations confirm Turing complete fitness land-
scapes of this type hold at most a vanishingly small fraction of usable
solutions.

1 Introduction

Recent work on strengthening the theoretical underpinnings of genetic program-
ming (GP) has considered how GP searches its fitness landscape [1,2,3,4,5,6].
Results gained on the space of all possible programs are applicable to both GP
and other search based automatic programming techniques. We have proved con-
vergence results for the two most important forms of GP, i.e. trees (without side
effects) and linear GP [1,7,8,9,10]. As remarked more than ten years ago [11], it
is still true that few researchers allow their GP’s to include iteration or recursion.
Indeed there are only about 50 papers (out of 4631) where loops or recursion
have been included in GP. Without some form of looping and memory there are
algorithms which cannot be represented and so GP stands no chance of evolving
them.

We extend our results to Turing complete linear GP machine code programs.
We analyse the formation of the first loop in the programs and whether programs
ever leave that loop. Mathematical analysis is followed up by simulations on a
demonstration computer. In particular we study how the frequency of different
types of loops varies with program size. In the process we have executed programs
of up to 16 777 215 instructions. These are perhaps the largest programs ever
(deliberately) executed as part of a GP experiment. (beating the previous largest
of 1 000 000 [12]). Results confirm theory and show that, the fraction of programs
that produce usable results, i.e. that halt, is vanishingly small, confirming the
popular view that machine code programming is hard.

The next two sections describe the T7 computer and simulations run on
it, whilst Sections 4 and 5 present theoretical models and compare them with
measurement of halting and non-halting programs. The implications of these
results are discussed in Section 6 before we conclude (Section 7).
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Table 1. T7 Turing Complete Instruction Set

Instruction #operands operation v set
ADD 3 A + B→C v
BVS 1 #addr→pc if v=1
COPY 2 A→B
LDi 2 @A→B
STi 2 A→@B
COPY PC 1 pc→A
JUMP 1 addr→pc

Every ADD operation either sets or
clears the overflow bit v.
LDi and STi, treat one of their argu-
ments as the address of the data. They
allow array manipulation without the
need for self modifying code. (LDi and
STi data addresses are 8 bits.)
To ensure JUMP addresses are legal,
they are reduced modulo the program
length.

2 T7 an Example Turing Complete Computer

To test our theoretical results we need a simple Turing complete system. Our
seven instruction CPU (see Table 1) is based on the Kowalczy F-4 minimal
instruction set computer http://www.dakeng.com/misc.html, cf. appendix of
[13]. T7 consists of: directly accessed bit addressable memory (there are no spe-
cial registers), a single arithmetic operator (ADD), an unconditional JUMP, a
conditional Branch if oVerflow flag is Set (BVS) jump and four copy instructions.
COPY PC allows a programmer to save the current program address for use as
the return address in subroutine calls, whilst the direct and indirect addressing
modes allow access to stacks and arrays.

Eight bit data words are used. The number of bits in address words is just
big enough to be able to address every instruction in the program. E.g., if the
program is 300 instructions, then BVS, JUMP and COPY PC instructions use
9 bits. These experiments use 12 bytes (96 bits) of memory (plus the overflow
flag).

3 Experimental Method

There are simply too many programs to test all of them. Instead we gather
representative statistics about those of a particular length by randomly sampling
programs of that length. Then we sample those of another length and so on, until
we can build up a picture of the whole search space.

To be more specific, one thousand programs of each of various lengths
(30. . . 16 777 215 instructions) are each run from a random starting point, with
random inputs, until either they reach their last instruction and stop, an infinite
loop is detected or an individual instruction has been executed more than 100
times. (In practise we can detect almost all infinite loops by keeping track of
the machine’s contents, i.e. memory and overflow bit. We can be sure the loop
is infinite, if the contents is identical to what it was when the instruction was
last executed.) The programs’ execution paths are then analysed. Statistics are
gathered on the number of instructions executed, normal program terminations,
type of loops, length of loops, start of first loop, etc.
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4 Terminating Programs

The introduction of Turing completeness into GP raises the halting problem, in
particular how to assign fitness to a program which may loop indefinitely [14].
We shall give a lower bound on the number of programs which, given arbitrary
input, stop, and show how this varies with their size.

The T7 instruction set has been designed to have as little bias as possible.
In particular, given a random starting point a random sequence of ADD and
copy instructions will create another random pattern in memory. The contents
of the memory is essentially uniformly random. I.e. the overflow v bit is equally
likely to be set as to be clear, and each address in memory is equally likely.
(Where programs are not exactly a fraction of a power of two long, JUMP
and COPY PC addresses cannot completely fill the number of bits allocated
to them. This introduces a slight bias in favour of lower addresses.) So, until
correlations are introduced by re-executing the same instructions, we can treat
JUMP instructions as being to random locations in the program. Similarly we
can treat half BVS as jumping to a random address. The other half do nothing.
We will start by analysing the simplest case of a loop formed by random jumps.
First we present an accurate Markov chain model, then Section 4.2 gives a less
precise but more intuitive mathematical model. Section 4.3 considers the run
time of terminating programs.

4.1 Markov Chain Model of Non-Looping Programs

The Markov chain model predicts how many programs will not loop and so halt.
This means it, and the following segments model, do not take into account those
programs which are able to escape loops and do reach the end of the program
and stop. As a program runs, the model keeps track of: the number of new
instructions it executes, if it has repeated any, and if it has stopped. The last two
states are attractors from which the Markov process cannot escape. State i means
the program has run i instructions without repeating any. The next instruction
will take the program from state i either to state i + 1, to SINK or to HALT. In
our model the probabilities of each of these transitions depends only on i and
the program length L, see Figure 1. We construct a (L + 2) × (L + 2) Markov
transition matrix T containing the probabilities in Figure 1. The probabilities
of reaching the end of the program (HALT) or the looping (SINK) are given by
two entries in TL. Figure 2 shows our Markov chain describes the fraction of
programs which never repeat any instructions very well.

4.2 Segment Model of Non-Looping Programs

As before, we assume half BVS instructions cause a jump. So the chance of pro-
gram flow not being disrupted is 11/14. Thus the average length of uninterrupted
random sequential instructions is

∑L/2
i=1 i (11/14)i−1 3/14. We can reasonably re-

place the upper limit on the summation by infinity to give the geometric distri-
bution (mean of 14/3 = 4.67 and standard deviation

√
142/32 × 11/3 = 8.94).
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Fig. 1. Probability tree used to create Markov model of the execution of random
Turing complete programs. HALT indicates a terminating program, while SINK
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For simplicity we will assume the program’s L instructions are divided into
L/4.67 segments. Two thirds end with a JUMP and the remainder with an active
BVS (i.e. with the overflow bits set). The idea behind this simplification is that
if we jump to any of the instructions in a segment, the normal sequencing of
(i.e. non-branching) instructions will carry us to its end, thus guaranteeing the
last instruction will be executed. The chance of jumping to a segment that has
already been executed is the ratio of already executed segments to the total.
(This ignores the possibility that the last instruction is a jump. We compensate
for this later.)

Let i be the number of instructions run so far divided by 4.67 and N = L/4.67.
At the end of each segment, there are three possible outcomes: either we jump
to the end of the program (probability 1/N) and so stop its execution; we jump
to a segment that has already been run (probability i/N) so forming a loop; or
we branch elsewhere. The chance the program repeats an instruction at the end
of the ith segment is

=
i

N
(1− 2

N
)(1− 3

N
) . . . (1− i

N
)

I.e. it is the chance of jumping back to code that has already been executed
(i/N) times the probability we have not already looped or exited the program
at each of the previous steps. Similarly the chance the program stops at the end
of the ith segment is

1
N

(1− 2
N

)(1− 3
N

) . . . (1− i

N
) =

1
N i

(N − 2)!
(N − i− 1)!

=
(N − 2)!
NN−1

NN−1−i

(N − i− 1)!

= (N − 2)!N1−NeNPsn(N − i− 1, N)

Where Psn(k, λ) = e−λλk/k! is the Poisson distribution with mean λ.
The chance the program stops at all (ignoring both the possibility of leaving

the first loop and of other loops for the time being) is simply the sum of all the
ways it could stop

N−1∑
i=1

(N − 2)!N1−NeNPsn(N − i− 1, N) = (N − 2)!N1−NeN
N−2∑
j=0

Psn(j, N)

For large mean (N � 1)
∑N−2

j=0 Psn(j,N) approaches 1/2 (see Figure 3). Therefore
the chance of long programs not looping is (using Gosper’s approximation
n! ≈

√
(2n + 1/3)π nne−n and that for large x (1− 1/x)x ≈ e−1):

≈ 1/2(N − 2)!N1−NeN ≈ 1/2
√

2π/N

(
1 +

37
12N

)
That is (ignoring both the possibility of leaving the first loop and of other loops
for the time being) the probability of a long random T7 program of length L
stopping is about 1/2

√
2π14/3L

(
1 + 37×14

36L

)
=

√
7π/3L (1+259/18L). As men-

tioned above, we have to consider explicitly the 3/14 of programs where the last
instruction is itself an active jump. Including this correction gives the chance of a
long program not repeating any instructions as ≈ 11/14

√
7π/3L (1+259/18L).

Figure 2 shows this
√

length scaling fits the data reasonably well.
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4.3 Average Number of Instructions run before Stopping

The average number of instructions run before stopping can easily be computed
from the Markov chain. This gives an excellent fit with the data (Figure 4).
However, to get a scaling law, we again apply our segments model.

The mean number of segments evaluated by programs that do halt is:∑N−1

i=1
i/N

∏i

j=2
(1−j/N)∑N−1

i=1
1/N

∏i

j=2
(1−j/N)

.Consider the top term for the time being

= 1/N
N−1∑
i=1

i exp

 i∑
j=2

log(1− j/N)

 < 1/N
N−1∑
i=1

i exp

 i∑
j=2

−j/N


= 1/N

N−1∑
i=1

i exp
(
− i(i + 1)− 2

2N

)
< 1/Ne

1
N e−

1
2N

N−1∑
i=1

i exp
(
− i2

2N

)

≈ e
1

2N 1/N

∫ N−1/2

1/2

xe−x2/2Ndx = e
1

2N

[
e−x2/2N

]1/2

N−1/2
≈ e

3
8N

Dividing e
3

8N by the lower part (the probability of a long program
not looping) gives an upper bound on the expected number of segments
executed by a program which does not enter a loop ≈ e3/8N

1/2
√

2π/N(1+ 37
12N )

≈ (1 + 3
8N )(1− 37

12N )
√

2N/π ≈ (1− 65
24N )

√
2N/π. Replacing the number of seg-

ments N (N = 3L/14) by the the number of instructions L gives, to first order,
14/3 ×

√
2× (3L/14)/π =

√
28L/3π = 1.72

√
L. Figure 4 shows, particularly

for large random programs, this gives a good bound for the T7 segments model.
However, as Figure 2 confirms, the segments model itself is an over estimate.

Neither the segments model, nor the Markov model, take into account de-
randomisation of memory as more instructions are run. This is particularly acute
since we have a small memory. JUMP and COPY PC instructions introduce cor-
relations between the contents of memory and the path of the program counter.
These make it easier for loops to form.
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Models ok for short programs. However as random programs run for longer,
COPY PC and JUMP derandomise the 96 bit memory, so easing looping.

5 Loops

5.1 Code Fragments which Form Loops

If a BVS or an unconditional JUMP instruction jumps to an instruction that
has been previously obeyed, a loop is formed. Unless something is different the
second time the instruction is reached (e.g. the setting of the overflow flag) the
program will obey exactly the same instruction sequence as before, including
calculating the same answers, and so return to start of the loop again. Again,
if nothing important has changed, the same sequence of instructions will be run
again and an infinite loop will be performed. Automated analysis can, in most
cases, detect if changes are important and so the course of program execution
might change, so enabling the program to leave the loop.

We distinguish loops using the instruction which formed the loop. I.e. the last
BVS or JUMP. There are two common ways JUMP can lead to a loop: either
the program goes to an address which was previously saved by a LOAD PC
instruction or it jumps to an address which it has already jumped to before.
E.g. because the two JUMP instructions take their target instruction from the
same memory register. A loop can be formed even when one JUMP address
is slightly different from the other. Therefore we subdivide the two types of
JUMP loops into three sub-classes: those where we know the address register
has not been modified, those where the least significant three bits might have
been changed, and the rest. See Figure 5.
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5.2 Number of Instructions Before the First Loop

Since we are stopping on the first loop there is competition between the different
types of loop and only the fastest to form are observed. So the observed mean
number of instructions before a loop is formed is pretty much independent of loop
type (cf. Figure 5). With bigger programs, BVS loops get longer and so might be
expected to appear later in a program’s execution. This apparent contradiction
is resolved by noting BVS loops become a smaller fraction of first loops.

5.3 COPY PC and JUMP Loops

As Figure 5 shows, almost all long programs get trapped in either a COPY PC
or a JUMP loop. We can approximately model the lengths of both types of loops.
In both cases very short loops are predicted. We would expect, since there is less
chance to disrupt memory, tight loops to be more difficult to escape.

Let M = #bits = 96, A = size of program address, D = data size = 8.
Assume the chance of a loop containing i instructions = chance appropriate
JUMP × (chance loop not already formed and memory not disturbed)i−1. It
is very difficult to calculate the probability of another loop forming before the
one of interest. Instead we will just model the random disruption of the address
stored in memory by a COPY PC instruction. There are seven instructions,
four of which write D bits and COPY PC which writes A bits. The effect of a
random update not changing overwritten data, is as if the target was shrunk to
≈ A− 2 bits. Thus the chance of a random instruction modifying the address is
(4(A+D− 3)+2A− 3))/7M . Therefore the chance of a COPY PC-JUMP loop
being exactly i instructions long is ≈ 1

7M (1− (6A + 4D − 15)/7M)i−1. This is a
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geometric distribution, with mean 7M/(6A+4D−15). For the longest programs
A = 24, suggesting the mean length will be 161/672=4.17. In fact, we measure
4.74 ± 0.16, cf. Figure 9. The mean length for JUMP-JUMP loops will be one
less (lower curve in Figure 9). The simple model is quite good but does not
fully capture the competition between different loops. Note the vast majority of
programs in the whole search space (which is dominated by long programs) fall
into loops with fewer than 20 instructions.

6 Discussion

Of course the undecidability of the Halting problem has long been known. More
recently work by Chaitin [15] started to consider a probabilistic information
theoretic approach. However this is based on self-delimiting Turing machines
(particularly the “Chaitin machines”) and has lead to a non-zero value for Ω
[16] and postmodern metamathematics. Our approach is firmly based on the
von Neumann architecture, which for practical purposes is Turing complete.
Indeed the T7 computer is similar to the linear GP area of existing Turing
complete GP research.

While the numerical values we have calculated are specific to the T7, the
scaling laws are general. These results are also very general in the sense that
they apply to the space of all possible programs and so are applicable to both
GP and any other search based automatic programming techniques.
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Section 4 has accurately modelled the formation of the first loops in program
execution. Section 5 shows in long programs most loops are quite short but
we have not yet been able to quantitatively model the programs which enter a
loop and then leave it. However we can argue recursively that once the program
has left a loop it is back almost where it started. That is, it has executed only
a tiny fraction of the whole program, and the remainder is still random with
respect to its current state. Now there may be something in the memory which
makes it to easier to exit loops, or harder to form them in the first place. For
example, the overflow flag not being set. However, it may also contain previous
values of the program counter (PC), which would tend to make it easier to
form a new loop. Also initial studies indicate the memory and flag will become
nearly random almost immediately. That is having left one loop, we expect the
chance of entering another to be much the same as when the program started,
i.e. almost one. Thus the program will stumble from one loop to another until it
gets trapped by a loop it cannot escape. As explained in Section 5, we expect,
in long programs, it will not take long to find a short loop from which it is
impossible to escape.

Real computer systems lose information (converting into heat) [9]. We expect
this to lead to further convergence properties in programming languages with
recursion and memory.
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7 Conclusions
Our models and simulations of a Turing complete linear GP system based on
practical von Neumann computer architectures, show that the proportion of halt-
ing programs falls towards zero with increasing program length. However there
are exponentially more long programs than short ones. In absolute terms the
number of halting programs increases (cf. Figure 8) but, in probabilistic terms,
the Halting problem is decidable: von Neumann programs do not terminate with
probability one.

In detail: the proportion of halting programs is ≈ 1/
√

length, while the av-
erage and standard deviation of the run time of terminating programs grows as√

length. This suggests a limit on run time of, say, 20 times
√

length instruction
cycles, will differentiate between almost all halting and non-halting T7 programs.
E.g. for a real GHz machine, if a random program has been running for a single
millisecond that is enough to be confident that it will never stop.
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