
EuroGP-2018. M. Castelli, L. Sekanina, M. Zhang Eds., LNCS 10781, p220–236, Parma.
4-6 April 2018 Springer. doi:10.1007/978-3-319-77553-1 14 Preprint

Evolving Better RNAfold Structure Prediction

William B. Langdon and Justyna Petke and Ronny Lorenz

CREST, Computer Science, UCL, London, WC1E 6BT, UK
Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria

Abstract. Grow and graft genetic programming (GGGP) evolves more
than 50000 parameters in a state-of-the-art C program to make func-
tional source code changes which give more accurate predictions of how
RNA molecules fold up. Genetic improvement updates 29% of the dy-
namic programming free energy model parameters. In most cases (50.3%)
GI gives better results on 4655 known secondary structures from RNA
STRAND (29.0% are worse and 20.7% are unchanged). Indeed it also
does better than parameters recommended by Andronescu, M., et al.:
Bioinformatics 23(13) (2007) i19–i28.

Keywords genetic improvement, genetic algorithms, genetic program-
ming, software engineering, SBSE, software maintenance of empirical
constants, Bioinformatics, local search, genomic and phenotypic Tabu
restrictions, genetic repair

MCC = -0.008222 MCC = 0.856324
CU

C
U
C

G
G
U

A
g

C
C

A
A

G
g
G
AAG

G
CgC

A
A
G
G

P A a
A
U
G

A
G

U
c

G
G

G C
G
u

PC
G

a
C

U
C

G
C

C
C
C
C
G

G
G

A
G

A
C
C

A
C
U
C
U
C
G
GU

A
gCC

AA
G

g
G

A A
G G C

g
CA

A
G
G

P
A a A

U
G
A

G
U c

G G G C G
u

P C
G
a

CU
CGCCC

C
C
G
G
G
A
G

A
C

CA

C
U
C
U
C
G
GU

A

gCC
AA

G
g
G

A A
G G C

g
C

AA
G
G

P A
a
A

U
G
A G U

c
G G G C G

u
P C

G
a

CU
CGCCC

C
C
G
G
G
A
G

A
C

CA

1 Original 2 genetic programming 3 true RNA STRAND 4 three dimensional

Fig. 1. 1), 2) and 3) are secondary structures (i.e. folding patterns) for RNA
molecule PDB 01001. 1) Prediction made original RNAfold does not match well
true structure 3. For example the highlighted hairpin loop (red) is not in 3.
2) Prediction made with parameter changes given in Section 3.3. 3) True struc-
ture. 4) Three dimensional structure. Two (blue, orange) RNA molecules in a
Yeast protein complex [1, Fig 2. A]. (MCC explained on page 7.)

1

http://www.evostar.org/2018/cfp_eurogp.php
http://dx.doi.org/doi:10.1007/978-3-319-77553-1_14
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.tbi.univie.ac.at/
http://crest.cs.ucl.ac.uk/
http://www.tbi.univie.ac.at/
http://www.rnasoft.ca/sstrand/show_results.php?molecule_ID=PDB_01001

1 Background: RNA, Genetic Improvement, RNAfold

The central dogma of biology [2] is essentially about the flow of information in
all forms of life. In its simple form it says that this fundamental information
is transcribed from DNA into messenger RNA, which in turn is translated into
protein. Like DNA, RNA is a long chain biomolecule composed of 4 bases (A,
C, G and U). An RNA molecule’s sequence of bases is known as its primary
structure. Much of the interesting biology occurs when RNA is a single strand
(unlike the more stable double stranded DNA helix). Like DNA the four bases
can form relatively weak temporary bonds with their complementary base. (E.g.,
C pairs with G, and A with U.) How an RNA chain folds up on itself to form
these complementary pairing is known as its secondary structure (e.g. diagrams
1), 2) and 3) in Figure 1). The tertiary, three dimensional structure, in turn
relies on the secondary structure. (See solid colour in diagram 4) in Figure 1
for two examples.) In people about 3

4 of the DNA is transcribed into RNA but
less than 3% is translated into protein. Other than conveying information for
protein manufacture, there are some well known biological uses of RNA. E.g.,
enzymes which catalyse reactions between biomolecules. Also some transcribed
RNA regulates gene expression. Much of the chemistry of biomolecules is gov-
erned by their three dimensional shape. These areas are relatively new, and this,
and other uses of RNA, have sparked renewed interest in RNA and its structure.

While tertiary structure prediction for RNA is still in its infancy and is lim-
ited to very small molecules, the hierarchical nature of RNA folding allows one
to infer most of an RNA molecule’s function from its secondary structure. Com-
puter programs have had some success at predicting RNA secondary structure,
i.e., the folding patterns of real RNA molecules (see Figure 1). Mostly these
are based on estimating the free energy associated with each possible secondary
structure using dynamic programming and assuming the molecule will adapt
the structure with the lowest energy. In principle, considering all possible RNA
folding patterns is not feasible, but many patterns can be discarded as not be-
ing biologically plausible. For example, the structure of many RNA molecules is
known and very few known structures have knots. Indeed, in RNA molecules of
known structure, on average 95% of the structure is also free of pseudoknots [3,
Table 1]. It is common for structure prediction software to assume that RNA
contains no knots [4]. Such dynamic programming based approaches scale ap-
proximately as O(n3), where n is the number of bases in the RNA molecule.
(In [5] we showed great savings can be made by running such algorithms on
low cost parallel GPUs.) RNAfold [6] is the widely used de facto state-of-the-art
in RNA secondary structure prediction. It is a key component of the popular
internet based medical research game EteRNA [7]. However RNAfold is only as
good as its underlying model allows. For example it assumes only standard RNA
base-to-base binding are possible. (In panel 3 of Figure 1 the red line (g↔A)
indicates a non-standard RNA base-to-base binding.)

Grow and graft genetic programming (GGGP) [8,9,10,11,5,12,13] builds on
genetic improvement (GI) [14,15]. GI has been used to improve the performance
of existing software, e.g. by reducing runtime [16], energy [17] and memory foot-

2

print [18], but (excluding software transplanting [19] and automatic bug re-
pair [20]) typically it tries not to change programs’ outputs.

We applied GGGP to RNAfold’s C code [21]. Using traditional methods
to identify performance critical components, recoding them using Intel’s SSE
vector instructions and then using GP [22,23,24] to further improve the new
code. However, evolutionary search found only small increments on the human
written parallel code. Nevertheless, the manually written code has been included
into the standard ViennaRNA package since version 2.3.5 (14 April 2017)1. It is
also being used by the EteRNA development team internally [25].

After speeding up RNAfold by 30% [21], the next stage was to apply GGGP
to improve the accuracy of RNAfold’s predictions. In technical report [26] we
applied GP to the C source code and obtained a small improvement, whereas
here we apply it directly to the (internal) parameters of RNAfold’s dynamic
programming RNA energy model. Notice here and (in the tech report) we allow
(nay encourage, require) evolution to change the output of the program. I.e. to
make functional changes.

See the references for introductions to GP and GGGP in particular. The next
section describes our variable length linear GP system. We train it on a subset
of known RNA structures from RNA STRAND [3]. Whilst Section 3 describes
the results of applying GP to RNAfold and show the improvements generalise to
unseen RNA molecules. We conclude (Section 4) that evolution can improve pre-
diction of RNA secondary structure and potentially Genetic Improvement could
be widely applied to legacy chemical, physical and Bioinformatics [27] software
containing empirically generated constants since maintaining such constants of-
ten lags behind knowledge in the model’s target domain.

2 Genetic Improvement System

In earlier analysis [21,26] we had established that RNAfold uses dynamic pro-
gramming to both calculate the minimum free energy of each RNA molecule’s
secondary structure and the structure itself. To do this it uses numeric con-
stants which specify different aspects of the energy calculation. E.g. the binding
energy between C and G bases and how tightly RNA can fold up on itself to
form hairpin loops (an example hairpin loop is shown in red in the first RNA
structure in Figure 1). These parameters are held in C strings (4), float (1) and
int (51 521) variables. For simplicity we only allow evolution to change the int

values. (Our approach is summarised in Table 1.) The int values are stored in
31 named variables and arrays, see Table 2. Also profiling with GNU gcov [26]
we had showed that all 31 variables were read at some point when RNAfold is
run on the training data. Although these variables are derived from others, e.g.
to compensate for changes in temperature, they are the ones directly used by
dynamic programming to predict secondary structures.

1 The ViennaRNA package must first be configured with ./configure --enable-sse.
https://www.tbi.univie.ac.at/RNA/documentation.html

3

https://www.tbi.univie.ac.at/RNA/documentation.html

Table 1. GGGP to improve RNAfold’s secondary structure predictions by
mutating its 51 521 int dynamic programming parameters.

Representation: Variable length list of 3 types (>, <, +=) of mutations (Section 2.3)
Fitness: Apply mutations in order to the parameters (Table 2) before running

RNAfold on training data from RNA STRAND with less than 155
bases (681 molecules). Compare its answers with the real structure
and with the default parameters’ answers. Calculate the MCC be-
tween the mutated parameters’ predictions and the real answers. See
Section 2.4.

Population: Panmictic, non-elitist, generational. 2000 members.
Parameters: Initial population of random single mutants. 50% truncation selection.

50% two point crossover, 50% mutation. In generations 1–100 half
mutations simply append an additional >, < or += gene whilst the
others apply creep mutation (±1 to ±5, or ±10 to ±50) to on average
at least 20% of replacement values. No size limit.

Table 2. 31 (10 scalars + 21 arrays) RNAfold parameters which can be opti-
mised. Data structures markedE hold energy values which are always multiples
of 10. (Mutation ensures they remain multiples of ten.) The original values of
Tetraloop EE and Triloop EE are mostly zero† and so mutation of Tetraloop EE

is limited to the first 15 elements and in Triloop EE to just the first element.
NBPAIRS=7 and MAXLOOP=30.

noLP
uniq ML
dangles
min loop size
rtype [8]
gquad
special hp
pair [21][21]
noGUclosure
TerminalAUE

MLinternE [NBPAIRS+1]
MLclosingE

MLbase
hairpinE [31]
Tetraloop EE [200] (15)
Triloop EE [40] (1)

mismatchME [NBPAIRS+1][5][5]
mismatchExtE [NBPAIRS+1][5][5]
dangle5E [NBPAIRS+1][5]
dangle3E [NBPAIRS+1][5]
mismatchHE [NBPAIRS+1][5][5]
stackE [NBPAIRS+1][NBPAIRS+1]
bulgeE [MAXLOOP+1]
int11E [NBPAIRS+1][NBPAIRS+1][5][5]
int21E [NBPAIRS+1][NBPAIRS+1][5][5][5]
internal loopE [MAXLOOP+1]
ninio[2]E

mismatch1nIE [NBPAIRS+1][5][5]
int22E [NBPAIRS+1][NBPAIRS+1][5][5][5][5]
mismatch23IE [NBPAIRS+1][5][5]
mismatchIE [NBPAIRS+1][5][5]

total 51521 int

† The energy contributions for Tetraloop and Triloop are only used under special
circumstances. They represent tabulated exceptions of small hairpin loops that do
not follow the values provided in hairpin. They are only used when the sequences in
question match the corresponding patterns stored in the character arrays Tetraloop
and Triloop.

4

2.1 Representation

Each member of the population is a variable length list of mutations (Sec-
tion 2.3). These are applied one at a time in left to right order. Each muta-
tion applies to one of the 31 variables and arrays in Table 2 but can potentially
change many values in it. Once the whole individual has been processed, the
final parameter values are loaded into RNAfold, which is then run on a training
set of 681 RNA molecules (< 155 base pairs long) and its predictions of their
structure is compared with their known structure to give the individual’s fitness.

2.2 Initial Population

2000 individuals each containing one randomly chosen mutant were created. In
later generations, mutations can be changed, one more mutation can be added,
and individuals can be recombined using linear two point crossover. The muta-
tions are split approximately equally between the three primary mutation oper-
ators. Our new mutation operators are designed to respect the existing charac-
teristics of the energy model’s parameters (see following sections and Table 2).

Several of the arrays store parameters that are dependent on each other due
to symmetry [28, page 6170]. As far as the code is concerned this is behind the
scenes but it reduces the number of independent variables. In particular, inte-
rior loop contributions should be symmetric since evaluation should yield the
same result no matter from which side you are looking at it. Currently muta-
tion does not enforce this. Effectively we rely on the fitness function. In future
perhaps each mutation could enforce symmetry. Alternatively we can envision
additional mutation operators which do respect symmetry or indeed mutation
operators which remove asymmetry. E.g., by replacing asymmetric pairs by their
mean value. Adding more mutation operators, rather than more careful design
of the existing ones, might perhaps be beneficial [29]. Another alternative, which
would be more like traditional optimisation, would be to adjust the independent
variables directly outside of RNAfold.

2.3 Genetic Search Operators: Mutation and Crossover

To create a new mutation, one of the 31 data structures (Table 2) is chosen
uniformly at random. If one of the ten scalars is chosen, it is assigned a new
value. Scalars with value 0 or 1 are inverted, those with values of 2 or 3 are give
a new value chosen uniformly between 0 and 1 or between 0 and 2 and otherwise
it is incremented by a multiple of 10 between -50 and +50 (not zero).

If one of the 21 arrays is chosen, one of the three array mutations (>, <, +=)
is chosen uniformly at random.

Replace Values Mutation > The array name value1>value2 mutation oper-
ator is interpreted to mean every element of array name whose value is currently
value1 is overwritten by value2.

5

Notice we can build individuals composed of multiple mutations. These are
applied strictly in left-right order.

An array element is chosen uniformly at random and its default value is
noted. Then another element is similarly chosen. If the second value is small
(i.e. 0, 1, . . . , or 8) then the second value is used. If it is not small or it is
negative, then 50% of the time it is used and 50% of the time a random energy
value which is a multiple of 10 between -50 and +50 (not zero) is added to it
before it is used. In all cases the second value must be different from the first.

Overwrite Mutation < The array name index<value2 mutation operator
is interpreted to mean every element of array name which matches index is
overwritten by value2.

Having chosen an array, < next chooses one or more elements in the array.
When the array has multiple indexes (Table 2) each is processed independently.
Half the time every element in that particular index is selected (denoted by *)
and the other half one of the legal indexes is chosen uniformly at random. (It
appears some of the arrays are coded with index 0, i.e. the standard C convention,
but element 0 is never used. Our mutation operator does not take notice of this
and so mutating [0] may be a silent mutation.)

value2 is chosen as in > mutation (see previous section). However, if multiple
parts of the array are to be updated (i.e. there is one or more * in the array
index) then there is no check that value2 if different from the existing value.

Increment Mutation += The array name index+=value2 mutation operator is
interpreted to mean every element of array name which matches index is to be
replaced by its default value incremented by value2.

The array index is chosen in the same way as with < mutation. As before
value2 is given by the default of a uniformly random chosen element of the array.
If is small, a value between -5 and +5 (not zero) is chosen, otherwise a multiple
of ten between -50 and +50 (not zero) is chosen as value2.

Creep Mutation Creep mutation changes the value2 in existing mutations.
Therefore it is not used in the initial generation. In subsequent generations half
the children are created by mutation and half by crossover. Half the mutants are
created by appending an additional mutation of one of the three primary types
(>, <, or +=) to the parent whilst creep mutation is applied to the existing
genes in the parent in the other 50% of the time. Creep mutation is applied
uniformly at random to the existing mutations. As an anti-bloat mechanism, it
is applied at least once and then on average to 20% of existing genes. Note, as
individuals increase in size, they will tend to be modified to a greater extent.
(However, this proved to be insufficient to prevent bloat, see Figure 3 page 9.)

If the existing value2 is INF (i.e. 10000000) then no change is made. If creep
mutation is applied to a scalar with a current value2 which is small (i.e. ≤ 3)
then, if its value is 0 it is changed to 1. Otherwise the value is either increased
by 1 or by -1.

6

If value2 is not small or we are dealing with an array then the size of the
change to value2 is given by a tangent distribution [30], here ±

⌊
tan(π4 (1 + 3

4r)
⌋

(where r is chosen uniformly at random between 0.0 and 1.0.) This gives a non-
uniform chance of ±1 (54.6%), ±2 (24.1%), ±3 (13.0%) ±4 (8.1%) and very
little chance of ±5 (0.178%).

Tabu: Preventing Genotypic Convergence As we did in [11,31], we in-
sist that each chromosome in the whole run must be unique. I.e., we impose
a genotypic Tabu restriction that the same individual is never created twice.
In an effort to prevent bloated individuals side stepping this by adding genes
which simply redo previous changes, each individual is reduced to a canonical
form. For example, if a scalar is mutated more than once, the newest value2 is
used and the earlier genes are removed from the individual. However, (as noted
above) this failed to prevent bloat and it turns out that in our implementation,
as programs get bigger, reducing in particular crossover to canonical form, gets
increasingly time consuming.

2.4 Fitness Function

Each member of the population is interpreted as a series of mutations (previous
sections) to give the final values for the parameters to be modified. As mentioned
above it is impossible to use += to change INF and so such mutations are ignored.
If all mutations are ignored, then the individual is invalid and its fitness is
not evaluated and it cannot be a parent of the next generation. Value2 can be
increased only up to INF. During evolution, the INF restriction effected 0.2% of
individuals.

The released code RNAfold.c was tweaked so that before running the dy-
namic programming code the original parameters of the energy model are over-
written with the mutated values.

The tweaked exe is run on all the training data. I.e., one 1/3rd of RNA STRAND
which are less than 155 bases long. This means running the mutant’s exe up to
681 times. That is, once for each of the short training RNA molecules. These are
the same sequences as we used in [26]. In retrospect this is perhaps too many.
For example, in [16] we used just five but these were randomly changed every
generation.

RNAfold was run with option --noPS to suppress the production of nice
pictures of the predicted structure. (The defaults were used for all other options.)

RNAfold produces its prediction as a text string made of nested brackets (to
indicate pairs of bases which bind together) and “.” (for unbound bases). As we
did in [26] this is piped into the standard ViennaRNA (2.3.0) utility b2ct which
converts the bracket string into .ct file format. The output from b2ct is piped into
a comparison gawk script which calculates the Matthew’s correlation coefficient

MCC = (TP×TN−FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. Where:

7

– TP = true positives, number of predicted pairs which are in RNA STRAND’s
.ct file.

– TN = true negatives, total number of possible pairings not in TP , FP or
FN .
I.e. TN = n(n− 1)/2− TP − FP − FN (where n is the length of the RNA
molecule).

– FP = false positives, number of predicted pairs which are not in RNA
STRAND’s .ct file.

– FN = false negatives, number of pairs in RNA STRAND’s .ct file but not
in the mutant’s prediction.

Naturally, TN tends to be large, hence we follow Lorenz et al. [6] and use
Matthew’s correlation coefficient as it deals well with large class imbalances
[6]. The gawk script also counts the number of cases where the predicted base
pair binding is different between the mutated parameters and the default (unmu-
tated) parameters. A mutant must make at least one change to stand a chance
of being selected to be a parent.

The average MCC is computed. If it is more than 0.1 worse than the mean
MCC calculated for the unmutated parameters, the individual cannot be a par-
ent. The eligible individuals in the current generation are sorted by their average
MCC. And the top half are selected to be parents of the next generation.

Tabu: Preventing over searching the same fitness In order to try and
encourage diversity in the evolutionary search, we apply a phenotypic Tabu
limit: Each fitness value, i.e. average MCC value, can only be used as a parent
0.01×the population size (0.01×2000 = 20) in the whole run. Once this limit has
been reached, individuals of exactly this MCC are passed over and individuals
with a lower fitness are selected to be parents.

No Sandbox Protection Against Rogue Mutants Since evolution is not
permitted to change any of the code, no particular precautions were taken against
badly behaved mutants.

About 2.2% of mutants caused RNAfold to fail, 90% of them with a seg-
mentation error. For example, in the initial generation, all six mutations which
change rtype (excluding rtype[0]) to a value outside the range 0..10 cause a seg-
mentation error. Mutants which fail at runtime are not permitted to be parents
of the next generation.

3 Results

The variable length representation evolutionary computation GI system was run
with a population of 2000 for 100 generations (see Table 1). The training im-
provement in average MCC is shown in Figure 2 and together with the evolution
of size (bloat) in Figure 3. The best individual from the last generation had
an average MCC on the training set of 0.737044 (RNAfold release 2.3.0 scores
0.663946) and had bloated to size 2849.

8

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0 20 40 60 80 100

M
e
a
n
 M

C
C

 o
n

 6
8

1
 t

ra
in

in
g
 R

N
A

 S
T

R
A

N
D

 (
<

1
5

5
 b

a
s
e

s
)

Generations (population of 2000)

Unmodified RNAfold MCC=0.663946

Best of generation
Worse selected

Fig. 2. Evolution of fitness (mean MCC). 1000 children whose fitness lies be-
tween best and worst are chosen to be parents of the next generation. (See also
Figure 3.)

 0
 20

 40
 60

 80
 100 No fitness

 0
 0.2

 0.4
 0.6

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Size

Parent
Not selected

no fitness

Generations (population 2000)

Mean MCC on 681 training RNA molecules

Size

Fig. 3. Evolution of fitness and size (vertical). Children selected to be parents
of the next generation shown in red (1000 per gen). Purple 4566 children which
failed during fitness evaluation. Blue others also not selected.

3.1 Post Evolution Tidy

As bloat is common, there is often a post evolution phase where each part of the
best individual is tested one at a time to see if that component can be removed
without loosing the overall benefit [16]. Weimer et al. [32] use delta debugging
to trim their bug fixing patches but we use a simple hill climber. Starting at
the front of the best evolved individual, we progressively remove each mutation

9

and test the new individual on the whole training set. If it fails or it performs
worse than the evolved individual, the deleted mutation is restored, otherwise it
is deleted permanently. Then we test the next gene and so on, until we reach the
end of the evolved individual. By which point each part of it has been checked.
This reduced the evolved individual from 2849 mutations to 49 and the mean
MCC had increased very marginally (by 0.000533) to 0.737577.

Here we ran the hill climbing a second time which further reduced it from
49 mutations to 42, with a final fitness of 0.737752. Again a very slight increase
(0.000175) in performance on the training molecules. (No more changes were
made when a third pass was tried.)

3.2 Generalisation Performance

The cleaned up individual (i.e. with 42 mutations) retains its performance when
tried on similar length RNA molecules not used during training (average MCC
0.737752 training, 0.730137 on 682 holdout examples containing less than 155
bases). Indeed it extrapolates well to the whole of the holdout set (1553 RNA
molecules from RNA STRAND of any length). When including the larger RNA
molecules, RNAfold’s performance falls (release 2.3.0’s mean MCC is 0.541106)
but our mutant is still better, mean MCC = 0.568323. Figure 4 (page 12) com-
pares the performance of the new RNAfold against the released code across all
1553 RNA molecules of the holdout set.

RNAfold has the ability (via its -P option) of loading other parameter set-
tings. Andronescu et al. [33] optimised the setting and their “better optimized”
values have been included in the ViennaRNA package (v2.3.0) in the file misc/

rna andronescu2007.par. In Figure 4 we show our 42 mutant GGGP parame-
ters also do better than Andronescu et al. [33] (solid v. dotted line).

3.3 Changes to the Energy Model Parameters

The 42 changes cover 19 of the 31 data structures. All but 2 (ninio[2] and Termi-
nalAU) are arrays. Together they change 14 732 int parameters (29% of them
all). Table 3 summarises these by data structure. The data structures are sorted
by their individual impact in Table 3, but, of course, the changes are interlinked
and cannot readily be treated in isolation. Next, we describe a few of the changes
which seem to have most impact and try and explain how they work.

mismatchH Array mismatchH has three indexes (see Table 2). The first,
type, is calculated via a look up from the other two. The second, si1, is given
by the base after the current active i position along the RNA molecule, the
third, sj1, is similarly given by the base before the current active j position.
Thus mismatchH *,*,*+=-90 mismatchH *,*,3<-130 mismatchH *,1,2<-80 cor-
responds to mismatchH[*,A,C] set to -80, mismatchH[*,*,G] set to -130, and all
others being reduced by -90.

10

Table 3. Impact of the 42 components of the cleaned up evolved patches to
51 521 int paramters of RNAfold’s dynamic programming model of RNA sec-
ondary structure. First column: components grouped by data structure (order
in group is still significant). 2nd number of int changed. 3rd responsibility for
fitness change (mutations build on each other, so isolated changes only give an
indiaction of their importance). 4th again impact, this time on number of bonds
changes across the whole training set. Last column describes changes with impact
> 2%. See also Section 3.3.
internal loop *+=-40 29 -6.91% 667 Add 40 to internal loop[2..30] ([0] and [1]

are INF and so cannot be incremented).
MLintern *+=10
MLintern 3<-150

8 -3.25% 437 MLintern[0..7] were all -90, now -80 ex-
cept [3] is -150.

ninio[2] 80 -2.50% 501 Was 60 now 80.
mismatch23I 70>10000000 108 -1.40% 131
dangle5 *,*+=60 40 -1.27% 101
int22 260>80 int22 180>280 int22 *,*,2,*,*,*+=10 int22 280>200 int22 200>10000000

10454 0.05% 37
mismatchI *,*,0<100 mismatchI *,*,1+=-10 mismatchI 2,3,1+=-100 *,4,*+=-40

96 0.05% 617
int11 *,*,*,*<200
int11 6,*,*,2+=-70

1600 1.22% 1306

dangle3 5,*+=-80 5 1.28% 13
mismatch1nI 70>110 125 1.89% 173
TerminalAU 80 3.04% 759 Was 50 now 80.
rtype 6<6 rtype 2+=1 2 3.05% 1257 [2] 1←2 and [6] was 5 becomes 6, page 14
mismatchExt *,*,*+=80
mismatchExt *,*,1<-40

200 3.90% 320 +80 is added to all elements, except 1 in
5 is set to -40.

stack -100>60 stack -140>0 stack 2,2+=-20 stack *,4<-50
14 6.08% 2135 [0,4] 10000000←−50 [1,4] −140←−50

[1,7] −140←0 [2,2] −340←−360 [2,4] −150←−50
[3,5] −140←0 [4,1] −140←0 [4,4] 30←−50
[4,6] −100←60 [5,3] −140←0 [5,4] −60←−50
[6,4] −100←−50 [7,1] −140←0 [7,4] 30←−50

int21 230>260
int21 *,*,*,*,3+=-70
int21 220>10000000

1669 6.51% 287 283 values that were 230 replaced by 260.
161 values of 220 replaced by INF. And
1225 cases (of a possible 1600) where
int21[*,*,*,*,3] is reduced by 70.

bulge *+=40 30 7.53% 635 All bulge[1..30] increased by 40. ([0]is
INF and so cannot be incremented).

mismatchM -70>-130
mismatchM *,3,*+=20
mismatchM *,1,*+=-40
mismatchM -110>-130
mismatchM *,0,*+=-170
mismatchM -60>-40

142 10.70% 1227 15 cases where -70 is replaced by -130.
2 cases where -110 is replaced by -130.
20 cases where -60 is replaced by -40.
40 cases where [*,0,*] is reduced by -170,
35 [*,1,*] by -40, and 30 [*,3,*] by -40.

hairpin *<560 30 14.75% 1217 All hairpin[*] are set to 560 (Figure 5).
mismatchH *,*,*+=-90
mismatchH *,*,3<-130
mismatchH *,1,2<-80

180 16.30% 1610 39 cases where mismatchH [*,*,3] is set
to -130. 8 cases mismatchH [*,1,2] be-
comes -80 and 133 where other values in
mismatchH are reduced by -90.

Total: 14732

11

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1553

M
a

tt
h

e
w

s
 C

o
rr

e
la

ti
o
n

 C
o
e

ff
ic

ie
n

t
o

f
p

re
d

ic
ti
o
n

Number of Holdout RNA_STRAND sequences

GGGP
ViennaRNA 2.3.0

[Andronescu,2007]

Fig. 4. Performance of best GGGP run (after two hill climbing passes) on
1553 RNA STRAND molecules not used in training (all lengths). Dashed line
performance of unmodified RNAfold 2.3.0 on same molecules. GGGP gives better
predictions on 769 RNA molecules, worse 471 and same 313, p < 10−16. GGGP
also does better than parameters from the RNA STRAND team [33], RNAfold
-P ViennaRNA-2.3.0/misc/rna andronescu2007.par, dotted line, p < 10−15.

mismatchH[*,A,C]← −80 means: where the base after i is A and the base
before j is a C, the energy predicted for a hairpin loop is mutated to -80. In
both the cases which matter, [6,A,C] and [7,A,C], the hairpin energy was -30.
I.e., the hairpin energy has been reduced by -50. Thus GI has made pairs 6,A,C
and 7,A,C appear more beneficial by -50.

mismatchH[*,*,G]← −130: in the fifteen cases which matter,
mismatchH [(1 4 and 7),*,G], by default holds values from -240 to -10. All 15
are over written with -130.

mismatchH *,*,*+=-90 reduces by -90 elements of mismatchH which were
-250 to +20. That is, these 152 elements of mismatchH now have values of -340
to -70.

Since the dynamic programming calculation works on relative changes, it is
the differences in changes between all the components of the energy calculation
which determine which of the possible RNA folds are taken to be RNAfold’s
final prediction. In summary, GI changed 180 values in the mismatchH array,
which has changed the attractiveness of 169 types of i,j pairings (those adjacent
to 6,A,C (1), 7,A,C (1), (1 4 and 7),*,G (15) and 152 others, i.e. *,*,*).

12

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

INF

 0 20 40 60 80 100 120 140 160

H
a
ir
p

in
 e

n
e

rg
y

Hairpin size

RNAfold release 2.3.0
GGGP

Fig. 5. Reduced energy penalty in RNAfold (× original, + evolved) for forming
hairpin loops of varying sizes (x-axis). The tightest loop allowed in RNA limits
x to be more than 3. (Remember training data is < 155 bases long.)

hairpin hairpin (see Table 2) holds the penalty (i.e. a positive value) for forming
a loop of a given size. Loops longer than 30 lie outside hairpin’s valid index
range and are given by a log term. The GI change hairpin *<560 sets all values
of hairpin[0..30] to 560. Figure 5 shows, in all but 3 cases, the evolved version
has a lower penalty, thus encouraging the formation of hairpin folds.

To try and asses the importance of the hairpin mutations by themselves,
we tried restoring the 31 default values of hairpin. As expected this performs
less well on the 681 training RNA molecules (now average MCC is 0.730457
v. 0.737752 for 42 mutations). On the 1553 molecules of the holdout set it also
does less well: better 344, worse 455, same 754, p < 10−4. In summary, evolution
has found a way of simplifying the contents of the hairpin array (i.e. setting the
whole array to one value, 560) which is significantly better when included but
in only 7% of cases is the change in MCC more than 0.1.

mismatchM The C int array mismatchM has the same three index as mis-
matchH (above). It stores energy values associated with the stabilising effect of a
base pairing being adjacent to a free end or a multiloop (called a dangling end).
Like mismatchH it supplies an energy value according to the bases adjacent to
the two active positions i and j and their types. By default (like mismatchH) all
values are negative (actually between -160 and -30), except in mismatchH the
first 25 values (i.e. mismatchH[0,*,*]) are INF, whereas with mismatchM they
are zero. Again mismatchM does not use array elements with index 0 also type 7
also does not seem to be used, meaning the mutations (given in Table 3) affect

13

59 index positions. Five increase (i.e. penalise) bond pairs by +40 (all -80 to -40,
and G↔G or G↔A). Twelve increase (i.e. penalise) bond pairs by +20 (-140 to
-120, -120 to -100 and -60 to -40, C↔C, C↔U, G↔*, U↔U).

The other 22 cases reduce the penalty by -40. Changes to C↔C or U↔C
encourage bonds by reducing the energy by -70 to -130. Whilst changes for A↔*
dangling end bonds are also treated more favourably by -40 but cover a large
range of initial values (-160 to -30, including -70).

Manual Removal of rtype Array type does not hold energy values but (to-
gether with array pair) correspond to the internal coding of base pairs. For
example, a C-G pair encoding is 1, and its reverse type (rtype array at posi-
tion 1) is 2, which is the same encoding as that of a G-C pair. We were therefore
surprised that evolution had changed rtype.

Of the 42 mutations, two affect rtype: The first, rtype[2]←2, (value 2 refers
to G-C pairings) so rtype[G-C] now contains the code for itself (rather than for
C-G). The second, rtype[6]← 6, (value 6 refers to U-C pairings) so rtype[U-C]
now also contains the code for itself (rather than for C-U). Notice rtype is no
longer a permutation.

Table 3 shows the two rtype mutations by themselves gave a small improve-
ment (MCC 0.666190 v. 0.663946) averaged over the 681 training molecules
compared to no mutations. Suggesting during the run mutating rtype had an
evolutionary advantage. However, this does not sustain to the end of the GGGP
process.

As a post-hoc experiment, we manually removed both changes to rtype. On
the training set of 681 short molecules it has an average MCC of 0.724700,
(i.e. slightly worse than the end of the run best mutant, 0.737044, and worse
than the cleaned up 42 mutant). However, on the 1553 RNA molecules in the
holdout set the average MCC is now 0.569085 (remember the 42 mutant’s mean
MCC is slightly lower at 0.568323) but a non-parametric two sided sign test
does not show a significant difference. We should perhaps remove the 2 evolved
rtype changes, since removing them does not make the prediction worse and it
certainly makes the mutants simpler, however, the statistics do not allow us to
claim it is better.

4 Conclusions

Our previous work [26] suggested that the parameters of the dynamic program-
ming model of the energy changes used by folding RNA were a suitable route
for making non-function preserving changes to RNAfold. These parameters are
derived from detailed scientific measurement of RNA. However, they are not set
in stone and have been manually updated in the past to incorporate new scien-
tific knowledge of how RNA behaves. Andronescu et al. [33] fitted the RNAfold
free energy parameters by formulating a constraint optimization problem, which
is quite complicated, time consuming and tedious and our GI does better (see
Section 3.2 and Figure 4).

14

It is typical for RNA molecules with more challenging non-standard bindings
to be excluded when testing RNA prediction software [6]. However we have
attempted to evolve the state-of-the-art program to match all of the known RNA
structures. The new version does better overall, in some cases its predictions are
much better, but there are some (albeit a smaller number) where it does worse.

Genetic programming is routinely used to generate from scratch small models
of physical systems (e.g. Eureqa [34]) but here we have shown it can potentially
be widely used to automatically update constants within sizeable programs which
have taken years to develop and are in daily use but where the task of keeping
up with the latest empirical data is highly skilled, labour intensive and liable to
drag months behind current scientific knowledge.

Tuned RNAfold parameters

The complete changes to RNAfold’s default parameters are given in Table 3.
However, for ease of use we manually converted them into a free energy parameter
file rna gi.par compatible with all programs of the ViennaRNA Package. Thus,
they can be optionally loaded at runtime, e.g. RNAfold -P rna gi.par. This
required removing rtype (page 14) and ensuring matrices stack, int11 and int22,
are symmetric. In the case of stack, Table 3, it can be made symmetric by
adding another mutation: stack 4,*<-50. Similarly int11 is made symmetric by
adding int11 *,6,2,*+=-70 and int22 by adding int22 *,*,*,*,2,*+=10 immediately
after int22 *,*,2,*,*,*+=10. The parameters evolved will be shipped with the next
ViennaRNA package.

Acknowledgements

I am grateful for the assistance of Rhiju Das and Fernando Portela, and our
anonymous reviewers.

References

1. Tsunoda, M., et al.: Structural basis for recognition of cognate tRNA by tyrosyl-
tRNA synthetase from 3 kingdoms. Nucleic Acids Res. 35(13) (2007) 4289–4300

2. Crick, F.: Central dogma of molecular biology. Nature 227 (1970) 561–563
3. Andronescu, M., et al.: RNA STRAND: The RNA secondary structure and sta-

tistical analysis database. BMC Bioinformatics 9(1) (2008) 340
4. Reeder, J., et al.: pknotsRG: RNA pseudoknot folding including near-optimal

structures and sliding windows. Nucleic Acids Research 35(suppl 2) W320–W324
5. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA

pseudoknot free energy calculation. In: GI 2015 Workshop. 805–810
6. Lorenz, R., et al.: ViennaRNA package 2.0. Algorithms Mol Biol. 6(1) (2011)
7. Lee, J., et al.: RNA design rules from a massive open laboratory. PNAS 111(6)
8. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft

entirely new functionality into a real world system. In: SSBSE. (2014) 247–252.
9. Jia, Y., Harman, M., Langdon, W.B., Marginean, A.: Grow and serve: Growing

Django citation services using SBSE. In: SSBSE Challenge Track. (2015) 269–275.

15

http://www0.cs.ucl.ac.uk/staff/W.Langdon/gggp/rna_gi.par
http://dx.doi.org/10.1093/nar/gkm417
http://dx.doi.org/10.1038/227561a0
http://dx.doi.org/10.1186/1471-2105-9-340
http://dx.doi.org/10.1093/nar/gkm258
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1073/pnas.1313039111
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html

10. Kocsis, Z.A., Swan, J.: Genetic programming + proof search = automatic im-
provement. (Journal of Automated Reasoning) to appear.

11. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In: GECCO. (2015) 1063–1070

12. Langdon, W.B.: Genetic improvement of software for multiple objectives. In
SSBSE. LNCS 9275, Springer (2015) 12–28 Invited keynote.

13. Langdon, W.B., Lam, B.Y.H., Modat, M., Petke, J., Harman, M.: Genetic im-
provement of GPU software. GP & EM 18(1) (2017) 5–44

14. Langdon, W.B.: Genetically improved software. In Gandomi, A.H., et al., eds.:
Handbook of Genetic Programming Applications. Springer (2015) 181–220

15. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Wood-
ward, J.R.: Genetic improvement of software: a comprehensive survey. (IEEE
Transactions on Evolutionary Computation) In press.

16. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1) (2015) 118–135

17. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO, ACM (2015) 1327–1334

18. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-
tion. In Silva, S., et al., eds.: GECCO, Madrid, ACM (2015) 1375–1382

19. Marginean, A., Barr, E.T., Harman, M., Jia, Y.: Automated transplantation of
call graph and layout features into Kate. In SSBSE. LNCS 9275 (2015) 262–268

20. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1) (2012) 54–72

21. Langdon, W.B., Lorenz, R.: Improving SSE parallel code with grow and graft
genetic programming. In Petke, J., et al., eds.: GI-2017, ACM (2017) 1537–1538

22. Koza, J.R.: Genetic Programming. MIT press (1992)
23. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming –

An Introduction. Morgan Kaufmann (1998)
24. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.

freely available at http://www.gp-field-guide.org.uk (2008)
25. Das, R. Personal Communication (2017)
26. Langdon, W.B.: Evolving better RNAfold C source code. Technical Report

RN/17/08, University College, London, London, UK (2017)
27. MacKerell Jr., A.D., Banavali, N., Foloppe, N.: Development and current status

of the CHARMM force field for nucleic acids. Biopolymers 56(4) (2000) 257–265
28. Zuber, J., et al.: A sensitivity analysis of RNA folding nearest neighbor parameters

identifies a subset of free energy parameters with the greatest impact on RNA
secondary structure prediction. Nucleic Acids Research 45(10) (2017) 6168–6176

29. Angeline, P.J.: Multiple interacting programs: A representation for evolving com-
plex behaviors. Cybernetics and Systems 29(8) (1998) 779–803

30. Langdon, W.B.: Genetic Programming and Data Structures. Kluwer (1998)
31. Langdon, W.B., Lam, B.Y.H.: Genetically improved BarraCUDA. BioData Mining

20(28) (2017)
32. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches

using genetic programming. In: ICSE. (2009) 364–374
33. Andronescu, M., et al.: Efficient parameter estimation for RNA secondary structure

prediction. Bioinformatics 23(13) (2007) i19–i28
34. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.

Science 324(5923) (2009) 81–85

16

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/PolyfinicJAR.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2016_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_gisurvey.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_gisurvey.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bruce2015reducing.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tse_GouesNFW12.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2017_GI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/banzhaf_1997_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_RN1708.html
http://dx.doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
http://dx.doi.org/10.1093/nar/gkx170
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/angeline_1998_mips3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2017_BDM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://dx.doi.org/10.1093/bioinformatics/btm223
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Science09_Schmidt.html

	Evolving Better RNAfold Structure Prediction

