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Large Scale Bioinformatics Data Mining with
Parallel Genetic Programming on
Graphics Processing Units

W. B. Langdon

Abstract A suitable single instruction multiple data GP interpreter can achieve high
(Giga GPop/second) performance on a SIMD GPU graphics card by simultaneously
running multiple diverse members of the genetic programming population. SPMD
dataflow parallelisation is achieved because the single interpreter treats the differ-
ent GP programs as data. On a single 128 node parallel nVidia GeForce 8800 GTX
GPU, the interpreter can out run a compiled approach, where data parallelisation
comes only by running a single program at a time across multiple inputs.
The RapidMind GPGPU Linux C++ system has been demonstrated by predicting
ten year+ outcome of breast cancer from a dataset containing a million inputs.
NCBI GEO GSE3494 contains hundreds of Affymetrix HG-U133A and HG-U133B
GeneChip biopsies. Multiple GP runs each with a population of five million pro-
grams winnow useful variables from the chaff at more than 500 million GPops per
second. Sources available via FTP.

1 Introduction

Due to their speed, price and availability, there is increasing interest in using mass
market graphics hardware (GPUs) for scientific applications. Since our initial exper-
iments GPU development has continued apace. For example, AMD has launched its
800 × 750MHz processor ATI Radeon HD 4870. Whilst almost simultaneously
nVidia launched its 240 × 1296MHz GTX 280 GPU. Both claim to deliver about
one Tetraflop at a cost of a few hundred dollars.

The next section will describe scientific and engineering computing on GPUs.
(Known as GPGPU). So far there are a few reported successful applications of
GPUs to Bioinformatics. These will be described in Section 3. In Section 4 we will
describe one where genetic programming [24] is used to datamine a small number
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of indicative mRNA gene transcript signals from breast cancer tissue samples taken
during surgery. Section 5 describes how we run GP [18, 2, 27, 45] in parallel on a
GPU. Whilst the rest of Section 5 (i.e. 5.1 and 5.2) and Section 6 describe the medi-
cal problem and the way a powerful GPU [29, 26] simultaneously picks three of the
million mRNA measurements available and finds a simple non-linear combination
of them which predicts long term outcomes at least as well as DLDA, SVM and
KNN using seven hundred measurements [37].

2 Using Games Hardware GPUs for Science

Owens et al. have recently surveyed scientific and engineering applications running
on mass market graphics cards (known as general purpose computing on GPUs,
i.e. GPGPU) [42, 43]. Whilst there is increasing interest, so far both Bioinformat-
ics and computational intelligence are under represented. As with other GPGPU
applications, the drivers are: locality, convenience, cost and concentration of com-
puter power. Indeed the principle manufactures (nVidia and ATI) claim faster than
Moore’s Law increase in performance (e.g. [11, p4]). They suggest that GPU float-
ing point performance will continue to double every twelve months, rather than the
18-24 months observed for electronic circuits in general [38] and personal computer
CPUs in particular. Indeed the apparent failure of PC CPUs to keep up with Moore’s
law in the last few years [42, p890]. makes GPU computing even more attractive.
Even today’s top of the range GPU greatly exceed the floating point performance of
their host CPU. This speed comes at a price.

GPUs provide a restricted type of parallel processing, often referred to a single
instruction multiple data (SIMD) or more precisely single program multiple data
(SPMD). Each of the many processors simultaneously runs the same program on
different data items. See Figure 1. Being tailored for fast real time production of
interactive graphics, principally for the computer gaming market, GPUs are tailored
to deal with rendering of pixels and processing of fragments of three dimensional
scenes very quickly. Each is allocated a processor and the GPU program is expected
to transform it into another data item. The data items need not be of the same type.
For example the input might be a triangle in three dimensions, including its orien-
tation, and the output could be a colour expressed as four floating point numbers
(RGB and alpha). Indeed vectors of four floats can be thought of as the native data
type of current GPUs. RapidMind’s software translates other data types to floats
when it transfers it from the CPU’s memory to the GPU and back again when re-
sults are read back. Note integer precision may only be 24 bits, however GPUs will
soon support 64 bits.

Typical GPUs are optimised so that programs can read data from multiple data
sources (e.g. background scenes, placement of lights, reflectivity of surfaces) but
generate exactly one output. This parallel writing of data greatly simplifies and
speeds the operation of the GPU. Even so both reading and writing from mem-
ory are still bottlenecks. This is true even though GPUs usually come with their
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Fig. 1 An example of SIMD parallel processing. The stream processors (SP) simultaneously run
the same program on different data and produce different answers. In this example each programs
has two inputs. One describes a triangle (position, colour, nature of its surface: matt, how shiny).
The second input refers to a common light source and so all SP use the same value. Each SP
calculates the apparent colour of its triangle. Each calculation is complex. The stream processors
use the colour of the light, angles between the light and its triangle, direction of its triangle, colour
of its triangle, etc.
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own memory and memory caches. (The nVidia 8800 comes with 768Mbytes). Ad-
ditionally data must be transfered to and from the GPU. Even when connected to the
CPU’s RAM via PCI, this represents an even narrower bottle neck. Faster hardware
(e.g. PCI Express x16) is available for some PC/GPU combinations. However this
does not remove the bottle neck. CPU–GPU communication can also be delayed by
the operating system check pointing and rescheduling the task.

The manufactures’ publish figures claiming enormous peak floating point perfor-
mance. In practise such figures are not obtainable. A more useful statistic is often
how much faster an application runs after it has been converted to run on a GPU.
However the number of GP operations per second (GPops) should allow easier com-
parison of different GP implementations.

Many scientific applications and in particular Bioinformatics applications are in-
herently suitable for parallel computing. In many cases data can be divided into
almost independent chunks which can be acted upon almost independently. There
are many different types of parallel computation which might be suitable for Bioin-
formatics. Applications where a GPU might be suitable are characterised by:

• Maximum dataset size ≈ 108

• Maximum dataset data rate ≈ 108 bytes/second
• Up to 1011 floating point operations per second (FLOPs)
• Applications which are dominated by small computationally heavy cores. I.e. a

large number of computations per data item.
• Core has simple data flow. Large fan-in (but less than sixteen) and simple data

stream output (no fan-out).

Naturally as GPUs become more powerful these figures will change.
In some cases, it might be possible to successfully apply GPUs to bigger prob-

lems. For example, a large dataset might be broken into smaller chunks, and then
each chunk is loaded one at a time onto the GPU. When the GPU has processed it,
the next chunk is loaded and so on, until the whole dataset has been processed. The
time spent loading data into (and results out of) each GPU may be important. If the
application needs a data rate of 100Mbyte/second we must consider how the data is
to be loaded into a personal computer at this rate in the first place. Alternatively it
may be possible to load data from a scientific instrument directly connected to the
GPU.

nVidia say their GeForce 8800 (Fig. 2) has a theoretical upper limit of 520 GFLOPS
[39, p36], however we obtained about 30 GFLOPS in practice. Depending on data
usage (cf. Section 7), it appears that 100 GFLOPS might be reached in practise.
While tools to support general purpose computation on GPUs have been greatly im-
proved, getting the best from a GPU is still an art. Indeed some publications claim
a speed up of only 20% (or even less than one) rather than 7+, which we report.

http://www.nvidia.com/page/8800_tech_specs.html
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Fig. 2 nVidia 8800 Block diagram. The 128 1360 MHz Stream Processors are arranged in sixteen
blocks of eight. Blocks share 16 KB memory (not shown), an 8/1 KB L1 cache, four Texture
Address units and eight Texture Filters. The 6×64 bit bus (brown) links off chip RAM at 900
(1800) MHz [39, 40]. There are 6 Raster Operation Partitions (ROP).

3 GPUs in Bioinformatics and Computational Intelligence

As might be expected GPUs have been suggested for medical image processing
applications for a few years now. However we concentrate here on molecular bioin-
formatics. We anticipate that after a few key algorithms are successfully ported to
GPUs, within a few years Bioinformatics will adopt GPUs for many of its routine
applications. As might be expected, early results were mixed.

Charalambous et al. successfully used a relatively low powered GPU to demon-
strate inference of evolutionary inheritance trees (by porting RAxML onto an
nVidia) [4]. However a more conventional MPI cluster was subsequently used [50].
Sequence comparison is the life blood of Bioinformatics. Liu et al. ran the key
Smith-Waterman algorithm on a high end GPU [31]. They demonstrated a reduc-
tion by a factor of up to sixteen in the look up times for most proteins. Smith-
Waterman has also been ported to the Sony PlayStation 3 [54] and the GeForce 8800
(CUDA) [35]. Schatz et al. also used CUDA to port another sequence searching tool
(MUMmer) to another G80 GPU and obtained speed ups of 3–10 when matching
short DNA strands against much longer sequences [49]. By breaking queries into
GPU sized fragments, they were able to run short sequences (e.g. 50 bases) against
a complete human chromosome. Gobron et al. used OpenGL on a high end GPU to
drive a cellular automata simulation of the human eye and achieved real-time pro-
cessing of webcam input [13]. GPUs have also been used in medical engineering.
E.g. a GeForce 8800 provided a 15-20 fold speedup, improving the haptic response
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of a real time interactive surgery simulation tool [32]. Dowsey et al. wrote 2D gel
electrophoresis image registration code in Cg (“C for graphics”) so that it could be
off loaded onto an nVidia GPU [7].

The better GPU applications may claim speed ups of a factor of ten or so, how-
ever the distributed protein folding system folding@home obtains sixty times as
much free computation per donated GPU as it does per donated CPU [42, p983].
The same authors also claim almost a 3600 fold speed up on a biomolecule dynam-
ics simulation, albeit at the cost of using four FX 5600 GPUs [42, p995].

Computational intelligence applications of GPUs have included artificial neural
networks (e.g. multi layer perceptrons and self organising networks [34]), genetic
algorithms [12] and a few genetic programming experiments [30, 33, 36, 8, 47, 16,
14, 17, 15, 5, 21, 26, 48, 52, 1].

Most GPGPU applications have only required a single graphics card, however
Fan et al. have shown large GPU clusters are also feasible [9]. In 2008 the first
computational intelligence on GPU special session (CIGPU-2008) was held in Hong
Kong [53]. It is anticipated that this will become an annual event. As Owens [43]
makes clear games hardware is now breaking out of the bedroom into scientific and
engineering computing.

4 Gene Expression in Breast Cancer

Miller et al. describes the collection and analysis of cancerous tissue from most of
the women with breast tumours from whom samples were taken in the three years
1987–1989 in Uppsala in Sweden [37]. Miller’s primary goal was to investigate
p53, a gene known to be involved in the regulation of other genes and implicated
in cancers. In particular they studied the implications of mutations of p53 in breast
cancer. The p53 genes of 251 women were sequenced so that it was known if they
were mutant or not. Affymetrix GeneChips (HG-U133A and HG-U133B) were used
to measure mRNA concentrations in each biopsy. Various other data were recorded,
in particular if the cancer was fatal or not.

Affymetrix GeneChips estimate the concentration of strands of messenger RNA
by binding them to complementary DNA itself tied to specially treated glass slides.
GeneChips are truly amazing. When working well they can measure the activity, in
terms of mRNA concentration, of almost all known human genes in one operation.
Each of the two types of GeneChips used contained more than half a million DNA
probes arranged in a 712× 712 square (12.8mm)2 array. (Current designs now ex-
ceed five million DNA probes on the same half inch square array.) Obviously such
tiny measuring devices are very subject to noise and so between eleven and twenty
readings are taken per gene. In fact each reading is duplicated with a control which
differs only by its central DNA base. These controls are known as mismatch MM
probes.

There has been considerable debate about the best way of converting each of the
eleven or more pairs of readings into a single value to represent the activity of a gene.
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Also in more recent designs (e.g. exon arrays), Affymetrix have replaced the MM
probes of each pair with general area control probes. Miller et al. used Affymetrix’
MAS5 program. MAS5 uses outlier detection etc. to take a robust average of the
twenty two or more data. The academic community has also developed its own
tools. These have tended to replace the manufacturer’s own analysis software. Such
tools also use outlier detection and robust averaging. Some, such as GCRMA [55],
ignore the control member of each pair.

Miller et al. separately normalised the natural log of the HG-U133A and HG-
U133B values and then used MAS5 to calculate 44 928 gene expression values for
each pair patient [37]. (Normalisation is needed to avoid the need to carefully con-
trol the amount of mRNA used and since Biologists are usually more interested in
the relative strengths of gene activity, rather than absolute values.) Between 125 and
5 000 of the most variable were selected for further analysis. They used diagonal
linear discriminant analysis to fit the whole data set. They say DLDA gave bet-
ter results than k nearest neighbours and support vector machines. The DLDA p53
classifier used 32 genes.

Recently we have surveyed defects in more than ten thousand Affymetrix Gene
Chips using a new technique [25, 28]. While [37] claims GeneChips with “visible
artefacts” were re-run, we found spatial flaws in all their data. GeneChips should
have an almost random speckled pattern due to the pseudo random placement of
gene probes. The large light gray areas in Figure 3 indicate spatial flaws. Spatial
flaws occur most often towards the edges of GeneChips. Figures 4 and 5 shows
the location and density of known errors in some data used for training GP and
subsequent testing.

5 GeneChip Data Mining using Genetic Programming on a GPU

Section 3 has listed the previous experiments evolving programs with a GPU. These
have either represented the programs as trees or as networks (Cartesian GP) [16] and
used the GPU for fitness evaluation. Harding compiled his networks into GPU pro-
grams before transferring the compiled code onto the GPU. We retain the traditional
tree based GP and use an interpreter running on the GPU. Next we shall briefly re-
cap how to interpret multiple programs simultaneously on a SIMD computer [20]
and then detail tricks needed to address 512MBytes on a GPU.

Essentially the interpreter trick is to recognise that in the SIMD model the “single
instruction” belongs to the interpreter and the “multiple data” are the multiple GP
trees. The single interpreter is used by millions of programs. It is quite small and
needs to be compiled only once. It is loaded onto every stream processor within the
GPU. Thus every clock tick, the GPU can interpret a part of 128 different GP trees.
The guts of a standard interpreter is traditionally a n-way switch where each case
statement executes a different GP opcode. A SIMD machine cannot (in principle)
execute multiple different operations at the same time. However they do provide a
cond statement.
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Fig. 3 First HG-U133B Breast Cancer GeneChip. Data have been quantile normalised. (This is
like converting to a standard score and effectively replaces data by its logged value). Large spatial
flaws can be seen at the top and lower right hand corners.

Fig. 4 Density of spatial flaws in 98 HG-U133A Breast Cancer GeneChips. Red more than twenty
of 98 GeneChips are flawed (Black at least one).
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Fig. 5 Density of spatial flaws in 98 HG-U133B Breast Cancer GeneChips showing HG-U133B
have more spatial errors than HG-U133A, c.f. Fig. 4.

A cond statement has three arguments. The first is the control. It decides which
of the other two arguments is actually used. cond behaves as if the calculations
needed by its second and third arguments are both performed, but only one is used.
Which one depends upon the cond’s first argument.

We use conditional statements like x=cond(opcode==’+’, a+b, x) to
perform an operation only if required. If the current instruction is + cond sets x to
a+b. Otherwise it does nothing (by setting x to itself). (See Figures 6, 7 and 8.) Note
the SIMD interpreter executes every cond for every instruction in the program. (In
a normal interpreter a switch statement would direct the interpreter to execute just
the code needed for the current instruction.) If there are five opcodes, this means
for every leaf and every function in the program, the opcode at that point in the tree
will be obeyed once but so too will four cond no-ops. As we showed in [26] the
no-ops and indeed the functions cost almost nothing. It is reading the inputs from
the training data which is expensive.

GPUs, at present, cannot imagine anyone having a screen bigger than 2048×
2048 and therefore do not support arrays with more than 222 elements. Each training
example has data from both HG-U133A and HG-U133B, i.e. 2×7122 = 1013888
floats. Therefore we pack four training examples per array. Since we split the avail-
able data into more or less equal training and holdout sets, the GPU fitness evalua-
tion code need process at most only half the 251 patients’ data at a time. The code
allows 32 arrays (i.e. upto 128 patients). This occupies 512MB. All data transfers
and data conversions are performed automatically by RapidMind’s package. Rapid-
Mind keeps track of when data are used and modified. Since the training data are not
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No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 6 The SIMD interpreter loops continuously through the whole genetic programming terminal
and function sets for everyone in the population. GP individuals select which operations they want
as they go past and apply them to their own data and their own stacks.

#define OPCODE(PC) ::PROG[PC+(prog0*LEN)]
PC=0;
FOR(PC,PC<(LEN-1),PC++) {
//if leaf push data onto stack
top = cond(OPCODE(PC)==’+’, stack(1)+stack(0), top);
top = cond(OPCODE(PC)==’-’, stack(1)-stack(0), top);
top = cond(OPCODE(PC)==’*’, stack(1)*stack(0), top);
top = cond(OPCODE(PC)==’/’, stack(1)/stack(0), top);
//remaining stack operation not shown

} ENDFOR

Fig. 7 GPU Reverse Polish Notation SIMD interpreter. prog0 indicates which RPN program is
being evaluated on which stream processor. The central loop cycles through all operations on all
stream processors. Each individual program uses cond statements to execute only those operations
it needs.

modified, they are stored in the GPU at the start of the run. Each generation, only
the data which has changed, i.e. the GP individuals and their fitness’s, are trans-
fered between the host computer and the GPU. The architecture is shown shown in
Figure 9.

The interpreter has to be structured to work within another GPU restriction. Like
most other GPUs, the nVidia 8800 allows each GPU program at most sixteen inputs.
I.e. the interpreter cannot access all 32 training data arrays simultaneously. Since it
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Value<8,float> stack;

#define PUSH(V) \
join(join(V,stack(0,1,2)),stack(3,4,5,6))

//conditionally POP stack (fake by using rotation)
#define OP3(XCODE,OP) \
stack = cond(XCODE==OPCODE, \

join(OP,stack(2,3,4),stack(5,6,7,1)), \
stack);

Fig. 8 Partial implementation for GPU stack operations. Since RapidMind does not support index
operations on writing to arrays the whole stack is updated. On PUSH the eight element stack is
shuffled to the left using nested join() and the value is placed in stack(0). The upper most
element is lost. GP genetic operations ensure tree depth does not exceed eight and so there can be
no stack overflow. (However GP can evolve solutions which happily cause stack over run. Nature
will find a way.) OP3 uses cond so that the operation OP on the two elements on top of the stack
only takes place if the current instruction OPCODE is the right one. Then the stack is shifted down
one place and the result of the operation is put in stack(0).

+

GP population from host

GP

Training
Data

Fit

TP

TN
Fitness to host Computer

TN
TP

Fig. 9 GPU software architecture needed to overcome 222 and no more than sixteen arrays GPU
limits in order to access 512MB of training data and a population of five million GP programs.
The population is split into twenty 256k parts by the host CPU. Twenty times per generation
256 thousand GP programs are passed to GPU (red) and interpreted by it. On average, the GPU
takes slightly less than a second to interpret them and return their fitness values. There are four
parameterised instances of the SIMD interpreter (pink). Each deals with upto 32 training cases.
Each uses 1+8+2 arrays (plus others for control and debug, not shown, total 12 or more). Each
instance is limited to sixteen arrays. We pack four sets of patient data (4× 1013888) per array.
Four groups of eight arrays allows 512M of training data. After running each group of 1

4 million
programs, 1

4 million fitness values are returned to the host PC.
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must access other data arrays (programs, fitness, debugging, etc.) as well as the
training arrays, the interpreter was split into four equal parts, each of which deals
with eight arrays (i.e. upto 32 patients). A parameterised C++ macro is used to define
the interpreter code for one array. To access the 32 arrays of training data, the macro
is used eight times in each of the four programs.

The four sets of outputs are summed and combined into a single fitness value
per GP individual. For convenience the summation and fitness calculation are done
by three auxiliary GPU programs. Only the final result is transfered to the host
computer. RapidMind’s optimising compiler deals with all seven GPU programs as
one unit and therefore can, in principle, optimise across their boundaries. C++ code
to invoke the GPU via RapidMind is shown in Figure 10.

As described in [29] the interpreter represents the GP trees as linearised reverse
polish expressions. By using a stack these can be evaluated in a single pass. For
simplicity, the expressions are all the same length. Smaller trees are simply padded
with no-ops. Because of the enormous number of inputs, it is no longer possible
to code each opcode into a byte [29] instead at least 20 bits are needed. In fact
we use a full word per opcode. This means a population of five million fifteen node
programs can be stored in 320Mbyte on the PC. Here we again run into the 222 GPU
addressing limit. Since each program occupies sixteen words (fifteen, plus one for a
stop code), the population is broken into twenty 256k units.

It takes slightly less than a second to evaluate all 262 144 programs. This fits
tolerably well with our earlier finding [29] that, to get the best from the GPU, its
work should be fed into the GPU in units of between 1 and 10 seconds.

5.1 GP for large scale data mining

We have previously described using genetic programming to data mine GeneChip
data [24]. Our intention is to automatically evolve a simple (possibly non-linear)
classifier which uses few simple inputs to predict the future about ten years ahead.
To ensure the solutions are simple (and for speed) the GP trees are limited to fifteen
nodes. (Whilst this is obviously small, it is not unreasonable. For example, Yu et al.
successfully evolved classifiers limited to only eight nodes [56].)

In our earlier work we had only one GeneChip for each of the 60 patients (and
that was an older design). Also the data set did not include the probe values but only
7129 gene expression values [24]. We now have the raw probe values (and compute
power to use them). Therefore we will ask GP to evolve combinations of the probe
values rather than use Affymetrix or other human designed combinations of them.
This gives us more than a million inputs. The first step is to use GP as its own feature
selector.

Essentially the idea is to use Price’s theorem [46]. Price showed the number of fit
genes in the population will increase each generation and the number of unfit genes
will decrease. We run GP several times. We ignore the performance of the best of
run individual and instead look at the genes it contains. The intention was the first
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#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace std;
using namespace rapidmind;

const int NP = 2560*2048; //NP is Number of programs in Population
const int LEN =15+1; //Max GP individual length, allow stop code

//Number gp individual Programs loaded onto GPU
const int GPU_NP = 4*1024*1024/LEN; //22bit limit

//virtual array prog0 is used to simulate indexOf
Array<1,Value1i> prog0 = grid(GPU_NP);

for(int n=0;n<(NP/GPU_NP);n++) {
// Access the internal arrays where the data is stored
unsigned int* in_PROG = PROG.write_data();
memcpy(in_PROG,&Pop[n*GPU_NP*LEN],LEN*GPU_NP*opsize);

Array<1,Value1i> TP0;
Array<1,Value1i> TN0;
Array<1,Value1i> TP1;
Array<1,Value1i> TN1;
Array<1,Value1i> TP2;
Array<1,Value1i> TN2;
Array<1,Value1i> TP3;
Array<1,Value1i> TN3;
Array<1,Value1i> TP;
Array<1,Value1i> TN;

Array<1,Value1f> F;

bundle(TP0,TN0) = gpu->m_update0(prog0);
bundle(TP1,TN1) = gpu->m_update1(prog0);
bundle(TP2,TN2) = gpu->m_update2(prog0);
bundle(TP3,TN3) = gpu->m_update3(prog0);
TP = gpu->sum(TP0,TP1,TP2,TP3);
TN = gpu->sum(TN0,TN1,TN2,TN3);
F = gpu->fitness(TP,TN);

const float* fit = F.read_data();
memcpy(&output[n*GPU_NP],fit,GPU_NP*sizeof(float));

}//endfor each GPU sized element of Pop

Fig. 10 Part of C++ code to run GP interpreter on the GPU twenty times (NP/GPU NP) per gen-
eration. At the start of the loop the next fragment of Pop is copied into RapidMind variable PROG.
PROG’s address is given by write data(). RapidMind variables TP0 to TN are used to calcu-
late fitness, cf. Figure 9. They are not used by the host CPU and are never transfered from the GPU
to the CPU. The four m update?(prog0) programs each run the GP interpreter on 256k pro-
grams on 32 patients’ data. They are identical, except they are parameterised to run on different
quarters of 128 training cases. The RapidMind bundle() provides a way that is compatible with
C++ syntax for a GPU program to return two or more values. All evaluation is run on the GPU
until read data() is called. read data() not only transfers the fitness values, in F, but also
resynchronises the GPU and CPU.
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pass would start with a million inputs and we would select in the region of 10 000 for
the second pass. Then we would select about 100 from it for the third pass. Finally
a GP run would be started with a much enriched terminal set containing only inputs
which had showed themselves to be highly fit in GP runs. However we found only
two selection passes were needed, cf. Section 6.

The question of how big to make the GP population can be solved by consider-
ing the coupon collector problem [10, p284]. On average n(log(n)+ 0.37) random
trials are needed to collect all of n coupons. Since we are using GP to filter inputs,
we insist that the initial random population contains at least one copy of each in-
put. That is we treat each input as a coupon (so n = 1013888) and ask how many
randomly chosen inputs must we have in the initial random population to be reason-
ably confident that we have them all. The answer is 14 million. If we overshoot by
a few thousands, we are sure to get all the leafs into the initial population. Since a
program of fifteen nodes has eight leafs and half of these are constants we need at
least 1

4 (14 million) = 3.6 million random trees. An initial population of five million
ensures this.

In [29] we used a fairly gentle selection pressure. Here we need our programs
to compete, so the tournament size was increased to four. However we have to be
cautious. At the end of the first pass, we want of the order of 100 000 inputs to
chose from. This means we need about 25 000 good programs (each with about
four inputs). We do not want to run our GP 25 000 times. The compromise was to
use overlapping fine grained demes [19] to delay convergence of the population,
cf. Figure 11. The GP population is laid out on a rectangular 2560× 2048 grid
(cf. Figure 12). This was divided into eighty 256× 256 squares. At the end of the
run, the genetic composition of the best individual in each square was recorded.
Note to prevent the best of one square invading the next, parents were selected to
be within 10 grid points of their offspring. Thus genes can travel at most 100 grid
points in ten generations. The GP parameters are summarised in Table 1.

Table 1 GP Parameters for Uppsala Breast Tumour Biopsy

Function set: ADD SUB MUL DIV operating on floats
Terminal set: 7122 Affymetrix HG-U133A and 7122 HG-U133B probe mRNA concentrations.

1001 Constants -5, -4.99, -4.98, ... 4.98, 4.99, 5
Fitness: AUROC

(
1
2

TP
No. pos + 1

2
TN

No. neg

)
less 1.0 if number of true positive cases (TP=0) or number of true negative cases
(TN=0) [23].

Selection: tournament size 4 in overlapping fine grained 21×21 demes [19], non elitist, Popu-
lation size 2560×2048

Initial pop: ramped half-and-half 1:3 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, subtree 5%).

Max tree size 15, no tree depth limit.
Termination: 10 generations
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Fig. 11 Screen shot of a 512× 400 GP population, i.e. 204 800 programs (from run approxi-
mating π [29]) evolving under selection, crossover and subtree mutation after 100 generations.
Colour indicates fitness (left) and syntax (right). Below are two histograms (log scale) show-
ing distribution of population by fitness and genotypic distance from the first optimal solution.
(Colour scales below each histograms.) Local convergence and the production of species is visible
(esp. right). See http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos for
animation and more explanation.

2560

2048

256

21
21 256

256

Each parent is best of
four chosen from 441

Fig. 12 Left: The GP population of five million programs is arranged on a 2560×2048 grid, which
does not wrap around at the edges. At the end of the run the best in each 256×256 tile is recorded.
Right: (note different scale) parents are drawn by 4-tournament selection from within a 21× 21
region centred on their offspring.

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html
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5.2 Data Sets

As part of our large survey of GeneChip flaws [28] we had already down loaded all
the HG-U133A and HG-U133B data sets in GEO [3] (6685 and 1815 respectively)
and calculated a robust average for each probe. These averages across all these hu-
man tissues were used to normalise the 251 pairs of HG-U133A and HG-U133B
GeneChips and flag locations of spatial flaws. (Cf. Figures 3–5. R code to quan-
tile normalise and detect spatial flaws is available via http://bioinformatics. es-
sex.ac.uk/users/wlangdon.) The value presented to GP is the probe’s normalised
value minus its average value from GEO. This gives an approximately normal dis-
tribution centred at zero. Cf. Figure 13.
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Fig. 13 Uppsala breast cancer distribution of log deviation from average value.

The GeneChip data created by [37] were obtained from NCBI’s GEO (data set
GSE3494). Other data, e.g. patients’ age, survival time, if breast cancer caused death
and tumour size, were also down loaded. Whilst [37] used the whole dataset: with
more than a million inputs we were keen to avoid over fitting, therefore the data
were split into independent training and verification data sets.

Initially 120 GeneChip pairs were randomly chosen for training but results on
the verification set were disappointing. Accordingly we redesigned our experiment
to chose training data in a more controlled fashion. To reduced scope for ambiguity
we excluded patients who: a) survived for more than 6 years before dying of breast
cancer, b) survived for less than 9.8 years before dying of some other cause, c) pa-
tients where the outcome was not known. We split the remaining data as evenly as
possible into training (91) and verification (90) sets.

It is known that age plays a prominent role in disease outcomes but the patients
were from 28 to 83 years old. So we ordered the data to ensure both datasets had

http://bioinformatics.essex.ac.uk/users/wlangdon/
http://bioinformatics.essex.ac.uk/users/wlangdon/
http://bioinformatics.essex.ac.uk/users/wlangdon/
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the same age profile. We also balanced as evenly as possible outcome (140 v. 41),
tumour size, estrogen receptor (ER) status and progesterone receptor (PgR) status.

6 Results

GP was run one hundred times with all inputs taken from the 91 training examples
using the parameters given in Table 1. After ten generations the best program in
each of the eighty 256×256 squares was recorded. The distribution of inputs used
by these 100× 80 programs is given in Figure 14. Most probes were not used by
any of the 8000 programs. 24 810 were used by only one. 2091 by two, and so on.

The 3422 probes which appeared in more than one of the 8000 best of generation
ten programs were used in a second pass. In the second pass GP was also run 100
times.

Eight probes appeared in more than 240 of the best 8000 programs of the second
pass. These were the inputs to a final GP run. (The GP parameters were again kept
the same).
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Fig. 14 Distribution of usage of Affymetrix probe in 8000 best of generation 10 GP programs.
Both distributions are almost a straight lines (note log scales). Cf. Zipf’s law [57].

The GP found several good matches to the 91 training examples. Ever mindful
of overfitting [6], as a solution we chose one with the fewest inputs (three). GP
found a non-linear combination of two PM probes and one MM probe from near the
middle of HG-U133A, cf. Figure 15 and Table 2. The evolved predictor is the sum of
two non-linear combination of two genes (decorin/C17orf81 and C17orf81(2.94 +
1/S-adenosylhomocysteine hydrolase), cf. Figure 16). Both sub-expressions have
some predictive ability. The three probes chosen by GP are each highly correlated
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Table 2 Top twenty Affymetrix probes used most in 8000 best of generation 10 second pass GP
programs. Cf. Figure 14. The top eight were used in the final GP run.

Used X,Y chiptype Affy id NetAffx Gene Title
1 579 350,514 A 200903 s at 8.mm S-adenosylhomocysteine hydrolase
2 493 325,511 A 219260 s at 7.pm C17orf81. chromosome 17 open reading frame 81
3 363 254,667 A 201893 x at 2.pm decorin
4 291 392,213 A 219778 at 4.pm zinc finger protein, multitype 2
5 286 366,310 B 230984 s at 10.mm 230984 s at was annotated using the Accession mapped

clusters based pipeline to a UniGene identifier using 17
transcript(s). This assignment is strictly based on map-
ping accession IDs from the original UniGene design
cluster to the latest UniGene design cluster.

6 265 324,484 A 216593 s at 9.mm phosphatidylinositol glycan anchor biosynthesis, class C
7 263 542,192 B 233989 at 4.mm EST from clone 35214, full insert. UniGene ID Build

201 (01 Mar 2007) Hs.594768 NCBI
8 245 269,553 B 223818 s at 2.pm remodeling and spacing factor 1
9 209 416,107 B 226884 at 10.pm leucine rich repeat neuronal 1

10 194 613,230 B 235262 at 6.mm Zinc finger protein 585B. 235262 at was annotated using
the Accession mapped clusters based pipeline to a Uni-
Gene identifier using 7 transcript(s). This assignment is
strictly based on mapping accession IDs from the origi-
nal UniGene design cluster to the latest UniGene design
cluster.

11 185 61,573 A 221773 at 4.pm ELK3, ETS-domain protein (SRF accessory protein 2)
12 177 619,316 B 235891 at 6.mm 235891 at was annotated using the Genome Target Over-

lap based pipeline to a UCSC Genes,ENSEMBL ncRNA
identifier using 2 transcript(s).

13 159 531,613 A NA
14 157 426,349 A 213706 at 11.pm glycerol-3-phosphate dehydrogenase 1 (soluble)
15 144 57,434 B 242689 at 10.mm Ral GEF with PH domain and SH3 binding motif 1.

242689 at was annotated using the Accession mapped
clusters based pipeline to a UniGene identifier using 5
transcript(s). This assignment is strictly based on map-
ping accession IDs from the original UniGene design
cluster to the latest UniGene design cluster.

16 140 15,353 A 213071 at 4.pm dermatopontin
17 137 65,606 B 229198 at 6.mm ubiquitin specific peptidase 35
18 136 107,597 A 202995 s at 4.pm fibulin 1
19 136 108,393 A 209615 s at 5.pm p21/Cdc42/Rac1-activated kinase 1 (STE20 homolog,

yeast)
20 136 135,279 A 202995 s at 2.pm fibulin 1

with all PM probes in their probeset and so can be taken as a true indication of the
corresponding gene’s activity. The gene names where given by the manufacturer’s
netaffx www pages. Possibly terms like decorin/C17orf81 are simply using division
as a convenient way to compare two probe values. Indeed the sign indicates if two
values are both above or both below average.

The evolved classifier gets 70% of the verification set correct. If we use the three
input predictor on the whole Uppsala dataset (excluding the fifteen cases where the
outcome is not known), it gets right 184 out of 236 (78%). Figure 17 shows this non-
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Fig. 15 GP evolved three input classifier. (Using Affymetrix probe names) survival is predicted if
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Fig. 16 The GP classifier (Figure 15) is the weighted addition of two two input classifiers (left and
right).

linear classifier gives a bigger separation between the two outcomes than a 32-gene
model requiring non-linear calculation of more than seven hundred probe values
[37, Fig. 3 B].

We tried applying our evolved classifier to a different Breast tumour dataset
[44]. Unfortunately we have less background data and no details of follow up treat-
ment for the second group of patients. Also they were treated in another hospital
a decade later. Undoubtedly cancer treatment has changed since our data was col-
lected. These, and other differences between the cohorts, may have contributed to
the fact that our classifier did less well on the second patient cohort. For example,
the Kaplan survival plot to eight years [25, Figure 6] is less well separated than in
Figure 17 for twelve years.
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Fig. 17 Kaplan-Meier survival plots, such as the one above, are often used to measure the fraction
of patients surviving a certain time after treatment (in this case breast cancer surgery). The three
input GP classifier (given in Figure 15) predicts 167 survivors and 69 breast cancer fatalities. The
right end of the top line shows that 148 of the 167 predicted to survive lived for more than 12 years.
In contrast the lower curve refers to the 67 patients whose gene expression values suggested they
would not survive ten years (However 33 of the 67 lived at least 12 1

2 more years).

7 Discussion/Practicalities

In [26] we present detailed timing arguments which show the GP RapidMind inter-
preter is limited not by the calculations need to interpret the millions of programs
but the time taken to fetch their inputs from the GPU’s own memory, cf. Figure 18.
So replacing interpreted code by compiled code, without addressing the memory
bottle neck, would give negligible speed up. Indeed the interpreter is already faster
than some compiled GPU approaches.

To a first approximation, any artificial intelligence supervised learning technique,
which used this training data in the same way will take about a second or more to test
1
4 million random classifiers; be they rules, artificial neural networks or programs.

7.1 Speed Up

For this application, the GP interpreter’s runs 535 million GP operations per second.
535 MGPop/S is only slightly less than we measured previously [29] with training
sets containing ten times as many examples but only about 5kB of training data in
total.

To determine speed up, the RapidMind C++ GPU interpreter was converted into
a normal C++ GP interpreter and run on the same CPU as was used to host the GPU.
I.e. an Intel CPU 6600 2.40GHz. Within the differences of floating point rounding,
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180Mbyte/S 

128 Processors

3.6 Gbyte/S 

768 MByte

86.4 Gbyte/S GPU Chip

6 x (2 x 64MByte)

4Gbyte/S

Fig. 18 nVidia 8800 Block diagram. The 128 Stream Processors are connected to the host PC
via its PCI express bus. Measurements show RapidMind data both into the GPU and back to
the host are efficient (600 and 180 Megabytes per second, i.e. about three quarters of the max-
imum possible with this PCI). 4 Gigabytes per second is likely to be available soon. The 8800
has twelve 64 megabyte RAM chips. These are paired to give six 16 million × 64 bit words of
storage. Each is connected to the GPU main silicon die by its own 64 bit wide bus. In principle
this gives 86.4 GBytes per second of on board memory I/O, however in practise with RapidMind
it is impossible to use more than one the six buses simultaneously. Nevertheless it appears that
multi-threading of 32-bit access enables the 128 stream processors to obtain about 3.6 GBytes per
second.

the GPU program and the new program produced the same answers but in terms of
the fitness evaluation the GPU ran 7.59 times faster.

On a different example with more training examples but each containing much
less data we obtained a GPU speed up of 12.6 [29]. The GPU interpreter’s perfor-
mance on a number of problems has been in the region 1

2 to 1 giga GPops, cf. Ta-
ble 3. In contrast the performance of compiled GPs on GPUs has varied widely,
e.g. with number of training examples and program size.

Table 3 Nvidia GeForce 8800 GTX. Genetic Programming Primitives Interpreted Per Second

Experiment No. of Terminals Functions Population Program size Stack Test cases Speed
Inputs+Consts size depth 106 OP/S

Mackey-Glass 8+128 4 204 800 11.0 4 1200 895
Mackey-Glass 8+128 4 204 800 13.0 4 1200 1056
Protein 20+128 4 1 048 576 56.9 8 200 504
Lasera 3+128 4 18 225 55.4 8 151 360 656
Laserb 9+128 4 5 000 49.6 8 376 640 190
Cancer 1 013 888+1001 4 5 242 880 ≤15.0 4 128 535
GeneChip 47+1001 6 16 384 ≤63.0 8 200a 314
Sexticb 1+na 8 12 500 66.0 17 1024 650c

a The 200 test cases used were randomly sampled from 300 000 available every generation
b x6−2x4 + x2 approximated by a CUDA system [48] using an optimised RPN interpreter
c If we excluded Java code running on the host PC and considered only fitness evaluation on the
GPU 1300 MGPop/S was achieved.
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7.2 Computational Cube

In genetic programming fitness evaluation, which usually totally dominates run
time, can be thought of along three dimensions: 1) the population 2) the training
examples and 3) the programs or trees themselves. While it need not be the case,
often the GP uses a generational population. Meaning:

1. the whole population is evaluated as a unit before the next generation is created.
2. Often either the whole of the training data, or the same subset of it, is used to

calculate the fitness of every member of the population. (Sometimes, in other
work, between generations we change which subset is in use.)

3. In many, but by no means all, cases the programs to be tested have a maxi-
mum size and do not contain dynamic branches, loops, recursion or function
calls. Even for trees, this means the programs can be interpreted in a single pass
through a maximum number of instructions. (Shorter programs could, in princi-
ple, be padded with null operations.)

We can think of these three dimensions as forming a cube of computations to be
done. See Figure 19.
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Fig. 19 Evaluating a GP population of four individuals each on the same five fitness cases. There
are upto 4× 5× 12 GP operations to be performed by, in principle, 240 GPU threads. Each cube
needs the opcode to be interpreted, the fitness test case (program inputs) and the previous state of
the program (i.e. the stack).
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In our implementation (Section 5) the computational cube is sliced vertically
(Figure 19) with one GPU thread for each program and each thread looking after all
the fitness cases for an individual program. Explicit code in the thread works along
the length of the program and processes all the fitness cases for that program. We
believe this model of parallel processing works well generally.

Recently we have implemented horizontal slicing. That is, each fitness case has
its own GPU thread. The fundamental switch in the GP interpreter makes little dif-
ference to the GPU and is readily implemented. Indeed in this respect the GPU
is quite flexible. It is relatively straightforward to radically re-arrange the way in
which the GPU parallel hardware is used. We have not as yet tried slicing the com-
putational cube along the programs’ lengths.

In principle it is possible for each GP instruction to be executed in a different
computational thread. In normal programs this would not be contemplated since the
complete computational state would have to be passed through each thread. How-
ever the complete state for many GP applications is purely the stack. In many cases
this is quite small. Therefore executing each function and each GP terminal in a
separate GPU thread could be considered. This dimension, also requires dealing
with programs that are of different lengths. It is also unattractive since variable data
needs to be passed, whilst the corresponding data along the other dimensions are
not modified, which saves writing them back to memory.

The efficient use of current GPUs requires many active threads, perhaps upto
sixty four per stream processor. With a powerful GPU this means thousands of
threads must be kept active to get the best from the hardware, cf. Figure 20. While
the computational cube is an attractive idea it is easy to see that far from having
too few threads it would be easy to try to divide a GP fitness computation into lit-
erally millions of parallel operations, which could not be efficiently implemented.
However dividing it along two of the possible three planes is effective.

7.3 Tesla and the Future of General Purpose GPU Computing

Unsurprisingly a large fraction of the 618106 transistors of the GPU chip are de-
voted to graphics operations, such as anti-aliasing. This hardware in unlikely to be
useful for scientific computing and so represents an overhead. It appears the newly
introduced Tesla cards retain this overhead. However if Tesla makes money, the next
generation of GPGPU may trade transistors to support graphics operations for tran-
sistors to support more scientific data manipulation. E.g. for bigger on chip caches.

7.4 Absence of Debugger and Performance Monitoring Tools

RapidMind allows C++ code to be moved between the CPU, the GPU and CELL
processors without recompilation. Their intention is the programmer should debug
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Fig. 20 Park-Miller random numbers per second (excluding host-GPU transfer time) on nVidia
8800 GTX. In the test environment the rate depends upon how effectively the 128 parallel stream
processors can be used. Only when there are more than 8192 separate threads do the 128 stream
processors effectively saturate [22].

C++ code on the CPU. This allows programmers to use their favourite programming
environment (IDE), including compiler and debug tools. Recently RapidMind has
introduced a “debug backend” but it too actually runs the code being debugged on
the host CPU. Linux GNU GCC/GDB and Microsoft visual C++ are both supported.
Owens et al. say Google’s PeakStream, which has some similarities with RapidMind
but was inspired by Brook, “is the first platform to provide profiling and debugging
support” [42, p886].

The RapidMind performance log can be configured to include details about com-
munication between the CPU and the GPU. Details include, each transfer, size of
transfer, automatic data conversion (e.g. unsigned byte to GPU float) and represen-
tation used on the GPU. (E.g. texture size, shape and data type.) However for the
internal details of GPU performance and location of bottle necks, one is forced to
try and infer them by treating the GPU as a black box.

Recent software advances under the umbrella term of general purpose comput-
ing on GPUs (GPGPU) have considerably enhanced the use of GPUs. Nevertheless,
GPU programming tools for scientific and/or engineering applications are prim-
itive and getting the best out of GPUs “remains something of a black art” [42,
p896,p897]. This is exacerbated by 1) the small number and consequent instabil-
ity of hardware and software vendors in the GPGPU market. 2) Hardware specific
program interfaces (APIs) which have been much more likely to require modifica-
tion to existing programs to take advantage of new hardware than the corresponding
interfaces in CPUs. 3) Lack of vendor independent APIs [42].

For GPU manufactures GPGPU remains an add-on to their principal market:
games. Accompanying the rapid development in hardware they make corresponding
changes in their software. This means the manufacturer’s APIs tend to tested and
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optimised for a few leading games. This can have unfortunate knock effects on
GPGPU applications [42]. Potentially GPU developers can isolates themselves from
this by using higher level tools or languages, like RapidMind.

Despite their undoubted speed, if GPUs remain difficult to use, they will re-
mained limited to specialised niches. To quote John Owens “Its the software,
stupid” [41].

7.5 C++ Source Code

C++ code can be down loaded via anonymous ftp or http://www.cs.ucl.ac
.uk/staff/W.Langdon/ftp/gp-code/gpu gp 2.tar.gzAlso gpu gp
1.tar.gz has a small introductory example [29]. Whereas random-numbers/
gpu park-miller.tar.gz is for generating random numbers [22].

8 Conclusions

We have taken a large GeneChip breast cancer biopsy dataset with more than a
million inputs to demonstrate a successful computational intelligence application
running in parallel on GPU mass market gaming hardware (an nVidia GeForce 8800
GTS). We find a 7.6 speed up.

Initial analysis of the GPU suggests that the major limit is access to its 768Mbytes
where the training data is stored. Indicating that, if other computational intelligence
techniques, access the training data in similar ways, they would suffer the same
bottle neck.

Whilst primarily interested in mutation of the p53 gene, Miller et al. tried sup-
port vector machines and k nearest neighbour but say diagonal linear discriminant
analysis worked better for them [37]. They used DLDA to construct a non-linear
model with more than 704 data items per patient. The non-linear model evolved by
genetic programming uses only three. It has been demonstrated on a separated ver-
ification dataset. As Figure 17 shows, on all the available labelled data (236 cases),
the classifier evolved using a GPU gives a wider separation in the survival data.
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