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Abstract. Evolved genetic programming trees contain many repeated
code fragments. Size fair crossover limits bloat in automatic program-
ming, preventing the evolution of recurring motifs. We examine these
complex properties in detail using depth v. size Catalan binary tree
shape plots, subgraph and subtree matching, information entropy, sen-
sitivity analysis, syntactic and semantic fitness correlations. Programs
evolve in a self-similar fashion, akin to fractal random trees, with dif-
fuse introns. Data mining frequent patterns reveals that as software
is progressively improved a large proportion of it is exactly repeated
subtrees as well as exactly repeated subgraphs. We relate this emer-
gent phenomenon to building blocks in GP and suggest GP works by
jumbling subtrees which already have high fitness on the whole prob-
lem to give incremental improvements and create complete solutions
with multiple identical components of different importance.
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1 Introduction

Genome Biology is full of surprising findings that need explanation. One of
these was the discovery of repeated sequences of nucleotides in genomes which
would sometimes stretch for millions of basepairs. Upon closer inspection it
was found, that repeated sequences are commonplace in natural genomes.
A vast amount of repetition in the DNA of microbes, plants and animals
has been discovered [1]. For instance, less than 3% of a human genome con-
sists of protein-coding genes whereas around 50% of it consist of repetitive
sequences [2,3]. Biologists have recently turned their attention toward these
patterned sequences [4,5,6] because the huge percentage of it indicates that
these sequences play a major role in hereditary biology. We ask whether this
emergent phenomenon might also be present in artificial genomes used for
genetic programming [7,8,9].

Initially, our search was conducted in genomes similar to natural genomes.
We found multiple repetitive sequences in those linear GP genomes [10]. More
recently, we have turned to tree GP genomes [11]. We find that there are indeed
small and large repeated patterns in large trees once evolution has worked for
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a sufficiently long time. Evolved trees are incrementally constructed from high
fitness subtrees. These subtrees are, however, not classic GP building blocks.
Instead, diffuse introns ensure that most code is robust to change.

We suggest that observations of this type can shed some new light on the
old question of building blocks in GP [12]. Do they really exist? If so, how does
GP make use of them? If they do not, how does genetic search succeed? In a
nutshell, the concept of building blocks suggests that solutions to a problem
are assembled from highly fit smaller subsolutions.

We start by following up on our work which suggests repeated patterns
are prevalent in linear genetic programming [10] by evolving solutions within
two different tree based GP systems. We will use our time series modelling
and Bioinformatics classification test problems and we will also use a recent
benchmark (Poly-10 [13]).

The real world problems and benchmark are described in Section 2 and [10].
Analysing the evolved programs shows that, despite high mutation rates, mul-
tiple large repeated patterns can occur in standard subtree crossover as well
as linear GP (Section 3). We deepen this analysis in Section 4 by measuring
tree shape, entropy, sub-fitness and sensitivity within trees. This will lead us
back to suggest (Section 5) at least in some simple modelling and prediction
applications: 1) “introns” are somewhat diffused, rather than discrete subtrees
with a well defined root node that immediately nullifies their effect. Instead,
as information passes up through the tree towards the root node (where it
determines the program’s output) it is progressively diluted. I.e. there is no
single node in the tree which completely disables the code beneath it. 2) GP
incrementally assembles solutions from large fit components. The components
are self similar and to a large degree different from the classic “building block”.
Section 6 concludes.

2 Demonstration Problems

We have chosen three moderately difficult benchmark problems to represent
typical modelling and prediction applications of genetic programming. The
first two were originally used as machine learning benchmarks, whilst the third
has been used by several authors in recent GP work. The Mackey-Glass chaotic
time series has been used to demonstrate scientific, medical and financial
modelling, e.g. [14]. The GP system is given historical data from which to
predict a next value. We used the IEEE benchmark discretised into 8 bit
unsigned integers, see Figure 1. All 1201 sample data points were used for
training.

The second benchmark is a binary classification bioinformatics problem.
Reinhardt and Hubbard [15] have shown that amino acids in a protein can
be used to predict its location in the cell. They trained neural networks to
distinguish between seven cellular locations in animals and microbes. We re-
strict ourselves to localising animal proteins (normally it is known if a protein
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Fig. 1. Discrete Mackey-Glass chaotic time series
http://neural.cs.nthu.edu.tw/jang/benchmark/, τ = 17. 1201 data
points, sampled every 0.1.

is animal or bacterial) and to a binary classification problem. To this end we
evolve models which predict if an animal protein will be found in the cell
nucleus or elsewhere. I.e. in the cell cytoplasm, in the mitochondria or outside
the cell [15]. We used the same Swissprot data for 2427 proteins as used in
[15]. There are 1097 nuclear (and 1330 non-nuclear) sequences of amino acids
(see Figure 2). Data were split evenly into training and test sets.

The last benchmark is a symbolic regression of a multivariate cubic poly-
nomial, Poly-10. Poly-10, is f(x1, · · · , x10) = x1x2 + x3x4 + x5x6 + x1x7x9 +
x3x6x10. The 50 fitness cases are obtained by selecting uniformly at random
each of the ten inputs from the range [−1,+1].

3 Genetic Programming Configuration

Even though we expect crossover [7] to be responsible for repeated patterns,
we follow recent GP practise and use a high mutation rate and a mixture
of different mutation operators. In some runs, to avoid bloat, we also used
size fair crossover (FXO) [16]. See Tables 1 and 2. (Briefly size fair crossover
is like normal subtree crossover except, after the crossover point in the first
parent tree has been chosen randomly, the crossover point in the second par-
ent is chosen so that the size of the exchanged subtree is more-or-less the
same as the size of the subtree to be deleted.) To further demonstrate that
repeated patterns may appear in a wide range of circumstances we also use
a totally different tree GP system, tinyGP [17], on the Poly-10 benchmark.
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Fig. 2. Number of amino acids in nuclear and non-nuclear proteins. To reduce
clutter only 5% of the proteins are plotted. The 3 (of 20) amino acids and
function where suggested by sensitivity analysis of the smallest GP model.

TinyGP is a steady state GA [18], often used with a high point mutation rate
(to combat bloat). Because we cannot expect to see large repeats in small
(i.e. non bloated) programs, we run tinyGP for many more generations than
are commonly used. This allows evolution more time to expand the trees, see
Table 3.

Ten runs, each with an initial population of 500 individuals, suggested this
was too small for the protein localisation benchmark. There was a correlation
(0.4 size fair and 0.2 two point (2XO) crossover) between the fitness of the
best random tree and that of the best 50 generations later. So a population
of 5000 and 50 generations was used. As a result, the correlation co-efficient
fell to 0.17 (FXO) and 0.12 (2XO) and mean holdout fitness rose 4% for both
types of crossover.

The best program in nine Poly-10 random initial populations is x1 × x2.
(This means all but one initial generation have identical fitness. Therefore the
correlation across runs between initial fitness and final fitness, or anything else,
is automatically near zero.) The lack of variation between runs of best initial
populations, the poor performance and [21] all suggest that the already large
population would have to be increased by one or more orders of magnitude to
solve Poly-10. Nevertheless we can learn from unsuccessful runs.

1 In GPquick the protected division operator DIV is defined as DIV(x,y) =
(y = 0)? 1 : x/y;

2 In tinyGP the protected division operator DIV is defined as DIV(x,y) =
(|y| ≤ 0.001)? x : x/y;
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Table 1. GPquick (C++) Parameters for Mackey-Glass time series predic-
tion.

Function set: MUL ADD DIV1 SUB operating on unsigned bytes
Terminal set: Registers are initialised with historical values of time series. D128 128

time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally
D1 with the previous value. Time points before the start of the series
are set to zero. Constants 0..127.

Fitness: RMS error
Selection: generational, non elitist, tournament size 7. Population size 500.
Initial pop: ramped half-and-half (2:6) (50% of terminals are constants)
Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% sub-

tree 2.5%). Max tree size 1000. Either 50% subtree crossover or
50% size fair crossover (90% on internal nodes), FXO fragments
≤ 30 [16]

Termination: 50 (500) generations

Table 2. GPquick Parameters for protein localisation.

Function set: MUL ADD DIV1 SUB operating on floats
Terminal set: Number (integer) of each of the 20 amino acids in the protein. 100

unique constants randomly chosen from tangent distribution (50% be-
tween -10.0 and 10.0) [19]. (By chance none are integers.)

Fitness: 1
2
True Positive rate + 1

2
True Negative rate [20]

Selection: generational, non elitist, tournament size 7. Population size 5000.
Initial pop: ramped half-and-half (2:6) (50% of terminals are constants)
Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% sub-

tree 2.5%). Max tree size 1000. Either 50% subtree crossover or
50% size fair crossover (90% on internal nodes), FXO fragments
≤ 30 [16]

Termination: 50 generations

Table 3. TinyGP (Java) Parameters for Poly-10

Function set: MUL ADD DIV2 SUB operating on doubles.
Terminal set: Ten inputs x1 . . . x10. Training values selected at random from

−1 . . . + 1. No constants.
Fitness: Sum over 50 training examples of absolute difference between GP value

and target value.
Selection: Steady state (binary tournaments used both for selecting parents and

for selecting who is replaced), non elitist, population size 10 000.
Initial pop: created by random recursive growth (depth 2:6).
Parameters: 10% subtree crossover (crossover points chosen uniformly in both par-

ents to give a single child). 90% point mutation (rate 0.02 per node).
No limit on tree size.

Termination: 500 generations
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4 Results

4.1 Performance and Size of Mackey-Glass, Protein and Poly-10
Programs

Table 4 summarises each of the ten runs with the two types of crossover on the
Mackey-Glass modelling problem. As expected, size fair runs are both faster
and evolve significantly smaller trees (Wilcoxon Two Sample Test p=0.007).
Also as expected with standard GP, tree size increases up to the maximum
size limit (1000) when evolution is continued to 500 generations. Figure 3
shows the fall in RMS error of the best individual in the population in each of
the ten extended runs with standard crossover. It is the formation of repeated
subtrees in these runs and similar protein prediction and Poly-10 runs that we
shall concentrate upon. While at first sight progress appears continuous, note
that there are many generations where the best fitness is identical to that in
the previous generation even though the best individual in the population has
been replaced (by crossover/mutation).

Table 4. Best Mackey-Glass prediction error after 50 and 500 generations
using size fair (FXO) and standard two point (2XO) crossover. Rows are RMS
error and size of best of run tree and elapsed time. Results after 500 gener-
ations (2XO only) show all runs improved fitness but trees increased enor-
mously in size.

Mean

FXO error 4.42 4.38 4.85 4.89 4.01 4.92 3.84 4.65 3.66 4.80 4.44
size 33 53 81 39 55 25 15 13 69 27 41
secs 226 342 363 275 363 205 83 44 467 163 253

2XO error 3.82 3.59 3.81 4.27 4.28 2.20 2.78 4.16 2.38 3.47 3.48
size 59 45 143 117 47 87 91 43 123 145 90
secs 617 384 610 416 412 503 543 269 967 645 537

2XO error 3.74 1.51 1.18 3.66 3.41 1.09 2.78 3.78 1.08 1.85 2.41
500 size 793 705 669 957 963 883 847 923 957 467 816
gens secs 13200 12200 11400 16100 11900 14500 11000 14300 22300 9500 13600

Table 5 summarises the ten runs on the protein prediction problem with
both types of crossover. Again size fair crossover produces small trees more
quickly than standard GP. As with Mackey-Glass both tree GP approaches
produce models with a similar performance to linear GP [10]. GP is compara-
ble to the best neural network approaches given in [15]. Figures 4 and 5 show
the evolution of fitness in ten 2XO runs (performance in the size fair runs
evolves similarly).

For the Poly-10 symbolic regression problem, we again made ten indepen-
dent runs. The accuracy and size of the best individual in the last generation
of each run is reported in Table 6. Poly-10 is known to be a very hard problem
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Fig. 3. Evolution of smallest RMS error in ten 2XO M-G runs. Despite size
and shape changing from one generation to the next, for many successive
generations the best fitness is identical to that in the previous generation.
(Initial fitness, not shown, of the ten runs varied from an RMS error of 5.5
to 18.3.)

Table 5. Holdout set fitness on Bioinformatics benchmark. (Fitness is mean
accuracy over nuclear and non-nuclear animal proteins.) 10 tree GP runs with
size fair crossover (FXO) and 10 with standard two point crossover (2XO)
using a population of 5000 and 50 generations. As with Mackey-Glass, size
fair runs are both faster and evolve smaller trees.

Mean

FXO percent 80 82 81 79 82 78 82 80 79 80 80
size 57 77 43 47 69 77 85 59 53 41 61
secs 1400 2300 1300 1200 2100 1700 1600 1700 1400 1400 1600

2XO percent 81 82 80 82 83 82 83 83 82 81 82
size 571 349 223 711 843 283 435 195 515 147 427
secs 6100 5600 4200 6500 9600 4100 4500 4200 4800 3900 5400
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Fig. 4. Evolution of training fitness in ten Nuclear v. non-Nuclear protein
classification runs with normal crossover (2XO). Note change in horizontal
scale compared to Figure 3. Despite size and shape changing from one gener-
ation to the next, in 25% of generations the best training fitness is identical
to that in the previous generation.

and so it is no surprise that a population of 10 000 is not sufficient. Even after
500 generations, no run solved the problem. With our selection of training
data, x1 × x2 is a strong attractor. In 9 of the 10 runs it is the best of the
initial random programs. While in six of nine cases the population escapes
from it within four generations, in the remaining three it remains the best
until the end of the run.

Table 6. Best Poly-10 programs after 500 generations in ten tinyGP runs.
Rows are absolute error summed over 50 training cases, size of best of run tree
and elapsed time. Note runs 3, 5 and 10 collapse to the three node program
x1 × x2.

Mean

2XO percent 6.53 7.82 15.83 4.62 15.83 4.07 8.10 5.33 7.85 15.83 9.18
size 155 6577 3 461 3 635 2419 1321 181 3 1176
secs 1100 12100 200 1400 200 1100 10000 5900 1100 200 3327
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Fig. 5. Evolution of training v. generalisation fitness ( 1
2 true positive

rate+ 1
2 true negative rate) in ten Nuclear v. non-Nuclear protein classifica-

tion runs with normal crossover (2XO). (Same runs as Figure 4). Each arrow
represents the change in performance of the best fitness individual in the popu-
lation in one generation equivalent. Dotted diagonal line shows where training
performance is identical to out of sample (generalisation) performance. Note
performance at the end of the runs is below the diagonal, indicating overfit-
ting. This is common in machine learning.
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4.2 Evolution of Program Shape

To confirm our previous results on the evolution of tree shapes [22,9] on the
three problems, Figures 6–8 plot the size (total number of nodes) and (max-
imum) depth of trees during the standard GP runs. The cross hairs give the
population mean and standard deviation. As expected (except as noted in the
previous paragraph for three Poly-10 runs) the GP runs do not converge, in-
stead the populations contain trees of different sizes and depths. Figures 6–8
are plotted on top of statistics relating not to GP but to the underlying distri-
bution of binary trees (labelled “full”, “5%”, “peak”, “95%” and “minimal”)
[9]. Cf. the Catalan distribution of subtree sizes [23, p241–242]. While ini-
tial populations contain only small trees, Figures 6–8 show they evolve into
populations of trees whose shape lies near that of the most popular trees in
the underlying distribution. Note that Figures 6–8 show similar shaped trees
evolve in radically different problems.

4.3 Shape of Subtrees

The previous section has established that standard GP finds good models on
both real world problems and programs’ size and shape evolves as expected.
Solutions were not expected to Poly-10 but, except for three runs which get
trapped by x1×x2, Poly-10 programs also evolve to have shapes near to those
of random trees. This section starts to consider what is happening inside the
trees. Figures 9–11 use the same size-depth plots as Figures 6–8 to look at the
evolved programs. Instead of taking an average of the whole of the population,
Figures 9–11 plot a point for each node within each of the best trees. Lines
of crosses are caused by chains of nodes in a tree where one argument is a
small subtree and the other continues the chain. Subtrees tend to lie between
the 5% and 95% lines. I.e. subtrees within the best program at the end of the
runs have distributions of size and shape similar to that of the whole trees
in previous generations. This means that there is a strong tendency for trees
to be composed of subtrees which are also approximately randomly shaped.
This fractal self similarity would be expected of random trees.

For comparison Figure 12 plots the size v. depth distribution for seven
randomly created binary trees whose sizes are the same as the highly evolved
Poly-10 trees plotted in Figure 11. While obviously different in detail, it is clear
the subtrees within evolved trees (as plotted in Figures 9–11) show similar
behaviour to those in random binary trees.

4.4 Repeated Code Fragments

In all cases using standard crossover (2XO), GP evolved best of run trees
containing large repeated patterns. As with linear GP, this happens despite a
high level of mutation and a size limit. Figure 13 shows the identical repeated
patterns (allowing overlaps) for one evolved program. Between 56% and 91%
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Fig. 6. Evolution of mean depth and size with mutation and standard
crossover (2XO). 10 Mackey-Glass runs. To reduce clutter standard devia-
tions are only plotted every 100 generations. As expected [22], size increases
until largest in population reach limit (1000) and much of the populations lie
near the peak in the distribution of tree shapes. Dotted lines indicate general
features of binary trees. Moving left to right horizontally, i.e. constant tree
size, “full” indicates shortest most balanced trees. The number of trees of a
given size and depth increases up to the “peak”. “5%” indicates 5% of trees,
of the chosen size, lie between “full” and it. 95% lie to the left of the “95%”
line. Finally the “minimal” line indicates trees without side branches, i.e. the
deepest possible trees.
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Fig. 7. Evolution of mean depth and size with mutation and standard
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ery 10 generations. As with Figure 6, size increases until largest in population
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Fig. 8. Evolution of shape in ten Poly-10 populations. Standard deviations
are plotted every 100 generations. Note, tinyGP does not impose size or depth
limits, however as with Mackey-Glass and Protein prediction (cf. Figures 6
and 7) many individuals in the 7 bloated populations have shapes near those
of random trees.
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Fig. 9. Depth and size of every subtree in best of run trees (2XO). 10 Mackey-
Glass runs. Note the similarity with the shape of whole trees as they evolved,
see Figure 6. (Small amount of noise added to spread data that would other-
wise be plotted directly on top of each other.)
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Fig. 10. Depth and size of every subtree in best of run trees (2XO). 10 pro-
tein runs. Note the similarity with the shape of whole trees as they evolved,
Figure 7. (As Figure 9, small amount of noise added.)
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Fig. 11. Depth and size of every subtree in seven bloated Poly-10 trees. Due
to extreme size of programs in runs 1 and 6 data for the best programs after
250 generations is presented for these two runs. Once again note the similarity
with the shape of whole trees as they evolved, Figure 8. (Again a small amount
of noise added to improve display.)
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Fig. 12. Depth and size of every subtree in seven random binary trees. Size
of trees chosen to be same as those in Figure 11. (Again a small amount of
noise added to improve display.)
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Fig. 13. Repeated patterns in the largest protein prediction program (2XO,
843 nodes). Largest pattern (133 nodes) in black. Other nodes in repeated
patterns are filled according to size of the repeated pattern (33–132 grey and
11–32 light grey). Unique nodes and nodes which are part of small patterns
are not filled.

(mean 71%) of the ten best of run Mackey-Glass (2XO) models are part of
repeated subgraphs which are too big to have formed by chance. (Figure 14
shows in black an example of a repeated subgraph in a tree.) The values for
the ten best of run protein prediction programs are: 33%–92%, mean 74%, and
for seven symbolic regression runs: 65%–84% mean 72%, see Figure 15. The
replications in Figures 13, 14 and 15 refer to any fragment of the whole tree,
while the rest of Section 4 considers only whole non-overlapping subtrees.

4.5 Syntactically Repeated Subtrees

Figure 16 shows the location and size of exactly repeated subtrees in the
largest of the protein prediction trees. Figure 17 gives the same data for the
best program from the first Poly-10 symbolic regression run. Figure 18 refers
to the same 27 best of run programs as Figure 15, however it considers only
exactly repeated subtrees (rather than any fragments). The requirement to
include all the leafs in a repeated fragment tends to reduce their size but we see
a similar picture: in every run, in which non-trivial subtrees evolved, repeated
subtrees are evolved. Further the repeats are too large and/or numerous to
be due to chance.

Obviously the bigger a subtree is the less likely it is to occur more than once
in a random tree. Indeed the largest repeated subtrees observed in random
programs contain three nodes and are repeated in only about one in 500
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Fig. 14. Repeated patterns in best symbolic regression program from first
Poly-10 run (155 nodes). Largest pattern (13 nodes) in black. Other nodes
in repeated patterns are filled according to the size of the largest repeated
pattern to which they belong (8–12 grey). Unique nodes and nodes which are
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Fig. 16. Same program as in Figure 13. Here whole subtrees are exactly
repeated. Nodes are filled according to size of the repeated subtree. Unique
nodes and nodes which are part of small patterns (3 nodes or less) are not
filled. Two largest (59 nodes, right hand side) filled with black. Note these are
partially repeated elsewhere in the tree (e.g. 55 node subtree, centre of figure,
shaded dark grey).

random programs, i.e. p-value 0.2%. Yet evolution produces repeated pattern
far bigger than this. These large non-random repeats are highly significant.
We have developed a model of random trees which estimates probabilities
(p-values).

4.6 Entropy of Subtrees

As might be expected, variation in values calculated by subtrees across the
training set has a strong tendency to increase from the leafs to the root. This is
also true of random programs. Figures 19 and 20 shows the variability within
the largest protein location tree (2XO, 50 generations). We use information
entropy [24] (calculated using signal value to 6 decimal places) as our measure
of variation.

The protein location programs do not contain “classic” intron nodes. I.e.
there are few places deep in the tree where information passes only from one
input of a function to its output, totally ignoring the other input. The entropy,
if any, of such “classic” intron nodes would come from just one input. Thus
the entropy of an “all or nothing” intron would be the same as that of its
active argument.
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Fig. 17. Same program as in Figure 14. Here whole subtrees are exactly
repeated. Nodes are filled according to how unlikely the repeat of the subtree
is to be due to chance. Note six identical five node subtrees are coloured black
(p-value 4 10−20). They are part of four seven node subtrees. The two non-
overlapping nodes are filled with dark grey. Two of these are in turn part of
a pair of 11 node subtrees. Again non-overlapping nodes shaded, this time in
grey. The 20 copies of input x5 (p-value 10−5) are shaded in light grey.
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Fig. 18. Size of identical subtrees v. fraction of best of run trees (2XO). In
every run the largest repeated subtree is too big to arise by chance. Indeed,
depending on run, only 4–29% (Mackey-Glass), 4–30% (Protein) and 54–91%
(Poly10) of these programs is not part of a repeated subtree of five or more
nodes. I.e. at least 96–71% (Mackey-Glass), 96–70% (Protein) and 46–9%
(Poly10) of the code is part of a non-random repeated subtree. The three
x1×x2 Poly-10 programs are not plotted. Two large Poly-10 programs replaced
by programs from generation 250 (plotted with dotted lines).
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Sometimes entropy (i.e. variability) falls from the leaf towards the root are
caused by a SUB subtree with both arguments referring to the same amino
acid. This has no variation since it always yields zero, so the subtree has less
entropy than either of its leafs. (Random programs also contain bottleneck
nodes of low entropy.) Most cases where entropy falls are very close to a leaf.
However a few of the largest protein location (2XO) programs do possess
bottlenecks where entropy falls on the output of a large subtree. This means
the subtree has less effect on the whole program.

Fig. 19. Entropy of each node in largest protein program (cf. Figures 13, 16
and 22.) Darker grey indicates more variation across the training set. Note
entropy tends to increase towards root. (At levels 7 and 9 there are two links,
dotted red, where large subtrees pass through bottlenecks, i.e. entropy falls).
C.f. Figure 20.

We can perform a similar entropy analysis on the symbolic regression prob-
lem but it is less informative. Remember that each of the training examples
is randomly generated. This means none of the 50 × 10 input values are re-
peated. In at least some cases, the evolved program’s subtrees never calculate
the same value. So the plot corresponding to Figure 20 would be a flat line
with every subtree having maximal entropy.

4.7 Fitness of Subtrees

As might be expected, correlation or anti-correlation with training data tends
to rise from the leafs to the root. In protein predictions runs, between 15
and 78 (depending on the run) subtrees in each best of run program exceed
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Fig. 20. Entropy on each of 422 paths from leaf to root in largest protein
program (cf. Figures 13, 16 and 22). At levels 7 and 9 there are two links where
large subtrees pass through bottlenecks. The bottlenecks near the root show
up as repeated dips in the tail. This structure is an artifact caused by paths
passing through similar routes near the root but having different lengths.

the performance of random search (106 ramped half-and-half trees), see Fig-
ure 21. Since fitness tends to fall away from the root, there are more lower
fitness subtrees. Secondly, despite being non-elitist, fitness increases monoton-
ically. Therefore the fitness distribution within the best subtrees can also be
explained by saying: the longer evolution has had to work since a fitness level
was reached, the larger the number of subtrees exceeding that fitness there
will be.

In Poly-10 runs, subtrees in evolved solutions also tend to increase in fitness
toward the root. Typically only the root node has a fitness (or correlation with
the target) that exceeds that of x1 × x2. This may be due to the difficulty of
the problem, exacerbated by the random test data.

4.8 Importance of Subtrees (Sensitivity analysis)

While the trees do not contain large numbers of “classic introns”, where one
argument of a function has no impact on its output, some nodes do have much
more impact than others. To see this, we replaced each subtree in turn by its
median value and counted the number of training cases where this changed the
output. (Those which changed the prediction in more than ten fitness cases are
highlighted in Figure 22.) The upper solid curves in Figure 23 plot the number
of fitness cases where the output was changed by more than 0.005%. While
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Fig. 21. High fitness (or anti-fitness) subtrees as a fraction of the 10 best
protein trees (2XO). Note range of horizontal axis. Since fitness is a very
non-linear function, we define a normalised fitness as being, for each run, the
generation in which a program of the corresponding fitness was first found.
All runs exceeded the best fitness found in a million random trees programs
by generation 8.

the lower dashed curves show the number of cases where subtrees contribute
to fitness, i.e. the number of training cases where replacing it changed the
program’s prediction. Between 5% and 23% of nodes in protein prediction
programs have less than 0.005% impact on all training cases. If we consider
just fitness (lower dashed curves) this rises to between 7% and 57% of the
program. I.e. on average 30% of subtrees can be replaced without changing
any of the program’s predictions.

For the Poly-10 problem deciding how to quantify the importance of sub-
trees proved more problematic. Since the test cases are chosen with (approx-
imately) equal positive and negative values, the median values are usually
near zero. This tends to make DIV operations appear important. To avoid
this problem, the importance of subtrees was measured by replacing them
with leafs and calculating the mean change in fitness. Figure 24 shows the im-
pact of replacing each subtree with each input x1 . . . x10 in the first symbolic
run. While Figure 25 plots the sensitivity for all seven non-trivial Poly-10 best
of run programs. Figure 25 makes clear that the performance of evolved trees
on the training data depends little on a large proportion of the tree. We can
also see that bigger evolved trees are less sensitive.
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Fig. 22. Importance of nodes within protein prediction trees. Largest protein
prediction tree. The 125 (15%) subtrees which change more than 10 training
cases are highlighted in black. (Same example as in Figures 13, 16 and 19.) Of
the remaining 725, 277 have no impact on fitness at all, while a further 151
affect only one (of 1213) training case. Note several large repeated subtrees
(which must produce the same values) make little contribution to fitness.
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Fig. 23. Number of training cases which subtrees influences as a fraction of
the 10 2XO best of run programs. Solid curves plot where impact is more than
0.005%. Dashed lines: node causes prediction to change.
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Fig. 24. Importance of nodes within symbolic regression trees (best program
in first Poly-10 run, cf. Figures 14 and 17). Subtrees which when replaced by a
leaf would produce on average more than a 10% change in fitness are shaded.
More than 100% change are highlighted in black. Note identical subtrees make
different contributions to fitness.
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Fig. 25. Mean change in fitness when each part of program is replaced by
a leaf. Showing only a small part of large evolved programs is very impor-
tant within symbolic regression trees. Best programs from seven Poly-10 runs.
Three runs converged to x1 × x2 are not plotted. The huge programs evolved
by generation 500 in runs 1 and 6 are replaced by the best of generation 250.

Depending upon run, between 15% and 89% of Poly-10 trees can be re-
placed with leafs without changing their error by more than 1.0, averaged
across all ten inputs x1 . . . x10. (In Figure 24 a fitness difference of 1.0 is
shaded with the lightest grey, e.g. the leaf X8 furthest from the root.) An-
other way of looking at the data presented in Figure 25 is to consider which
subtrees are important I.e. which subtrees – when replaced – will on average
change fitness by at least 1.0. In these seven Poly-10 runs, there are only
94–153 important nodes in the evolved programs. (Note by this point in the
runs, half the population was within 1.6–3.1 of the best in the population.
Since we are using binary tournament selection, a change in fitness of 1.0 will
reduce their expected rate of producing children by a factor of less than 2 [25,
page 71].)

5 Discussion

Sections 4.2 and 4.3 confirm (cf. [22]) trees have evolved to the same fractal
shape as random trees but Sections 4.4 and 4.5 show repeated patterns which
are far from random. Sections 4.6 and 4.7 suggest GP programs (composed of
non-Boolean function sets without side effects) are composed of high fitness
subtrees which mostly pass information upwards towards the root. That is,
they are not dominated by classic “introns” (which ignore data from one or

26



more subtrees). However the sensitivity analysis (Section 4.8) shows that large
parts of the tree, including repeated parts, can be replaced (e.g. by a constant
or input) and this will have no or little effect on fitness.

We suggest the repeated patterns seen in GP used for modelling and pre-
diction are not like classic GA “building blocks” [12]: 1) They are not small;
2) they have high fitness on the whole problem, rather than sub-components
of it. It appears evolution is haphazardly assembling a complete program by
repeatedly reusing subtrees it has already discovered in ways allowing it to
squeeze out marginal incremental improvements. In the process some compo-
nents become of lesser importance in the final program than others.

In simple genetic programming problems, the preferred subtrees are not
classic building blocks, since they tend to have high fitness on the whole prob-
lem rather than on components of the problem. Also as GP jumbles together
copies of subtrees to create complete solutions, similar, or even identical, com-
ponents (which may in themselves have similar, or indeed, identical problem
solving abilities) tend to have very different importance in the whole program.
So over time, evolved programs accumulate exact or nearly exact copies of use-
ful code but most copies have only a marginal impact.

6 Conclusions

Correlation between performance of initial and evolved populations suggests
lack lustre initial random programs can have an impact on the final outcome.
While results from different problems are mixed, such correlation might yet
prove to be a useful population size analysis tool or aid to finding a restart
heuristic.

As expected, size fair crossover (FXO) [16] and a range of mutation opera-
tors controlled bloat [22]. In these experiments, the compact models performed
slightly worse than the much larger ones evolved with standard crossover and
mutation.

Entropy and subtree fitness analysis suggest genetic programming (GP)
succeeds in finding ways to put together moderately sized fit subtrees to yield
larger trees containing few highly sensitive components with higher perfor-
mance. The situation seems to resemble that found in genomes, where certain
segments of genes have much more impact on the final organism than others.

While it is always difficult to generalise from a limited number of exam-
ples, we have investigated a variety of representations, genetic operations and
generational strategies, implemented in two different languages, using three
diverse non-trivial problems (two successfully solved and one less so). In every
case, where program size allows, we have seen the spontaneous emergence of
repeated patterns in both linear [10] and tree based GP. This leads use to
tentatively suggest on problems, without tight limits on tree size, depth, etc.,
where bloat is possible, GP will generally evolve programs containing copious
repeated patterns. Although this work is far from complete, we suggest future
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analysis may discover further spontaneous effects which arise from evolution
rather than the programmer, cast light on the workings of GP and may lead
to new automatic programming techniques.
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Source Code

A modified version of Andy Singleton’s GPquick (GProc) can be obtained via
anonymous ftp site cs.ucl.ac.uk directory genetic/gp-code. Code to gen-
erate Graphviz format dot files from GP programs can be found at http://www.
cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html.
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