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Abstract. Precise measurement of software execution time is challeng-
ing due to environmental variability and measurement overheads, an is-
sue critical for search-based software improvement systems that evaluate
thousands of variants. While precise measurements offer precise fitness
measures, they often introduce a significant time overhead. To under-
stand which measures are most effective as fitness functions in search-
based software optimisation, we conducted an empirical study of 21 ap-
proximates of execution time. These included hardware-level counters
from perf, RAPL energy, and a custom measure based on weighted
instruction cycles. To improve reliability, we evaluated each fitness func-
tion up to five times, using medians to reduce noise. We integrated the
13 most promising measures into a search-based software optimisation
framework called MAGPIE. We evaluated these fitness functions plus Time,
already present in MAGPIE, on 7 benchmarks using both code-level and
parameter-level mutations. To assess generalizability, we tested the best
performing measures with the parameter tuning tool ParamILS and ana-
lyzed how tool and search strategy affect outcomes. Our results show that
perf’s cycles measure yields the best overall performance, outperform-
ing Time by 5.1%. Sampling three times balances reliability and explo-
ration. Energy and the weight-based measure excel in specific scenarios,
with weights being the best for parameter optimization on MAGPIE, but
are better suited to longer searches due to their overhead. We highlight
a trade-off: low-overhead measures like Time work well for short runs,
while robust measures such as cycles and weights benefit longer ones.

Keywords: Software Performance - Search-Based Software Engineering
- Genetic Improvement

1 Introduction

Optimisation of non-functional properties of software, such as runtime or its en-
ergy use, have been pursued through a variety of strategies at the code level [7]:
static methods compare variants to the original without re-evaluation (e.g., [I]);
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sampling methods test selected variants via random or systematic sampling (
e.g., [13]); exploratory methods iteratively refine variants using Bayesian tuning
(e.g., [2]) or fuzzing (e.g., [4]); evolutionary approaches, notably genetic im-
provement [30], that mutates code, have achieved success in domains like bioin-
formatics (e.g., [23]), while manual methods remain in use when automation is
impractical (e.g., [I8]). More recently, large language models have been utilised
to find efficiency improvements in code [32]. To be useful, they require a large set
of training data with reliable measures of the non-functional property of interest.

A recurring challenge in optimisation of naturally noisy measures is selection
of reliable fitness functions. Here, we consider the most common non-functional
optimisation objective — program’s running time [7]. Execution time as a fit-
ness is common but noisy [I0/25]; stable proxies like instruction count or ex-
ecuted lines (e.g., [23]) are more repeatable but may not reflect real runtime
impact. Search-based methods employed in sampling (e.g., via random search),
exploratory (e.g., genetic improvement), and evolutionary approaches (e.g., ge-
netic algorithms) for runtime improvements [7], require evaluation of even thou-
sands of software variants; even more would have to be evaluated to provide
a training set for currently popular LLMs. This motivates exploring measures
balancing cost to evaluate software variants, and their correlation with the ob-
jective of interest, as well as the ability to guide a given search strategy towards
improved code. With this work we aim to close this gap in the literature.

First, we evaluated 21 runtime-approximating measures, from perf hardware
counters to Intel RAPL energy readings and a custom instruction-weighted
measure, to assess their stability and correlation with execution time. Although
the selected measures are generally widely used, we have not found work that
compares them all with respect to proxy for execution time.

Next, we integrated the top-performing measures into MAGPIE [0], a search-
based improvement framework, and tested on seven benchmarks using genetic
improvement and parameter tuning. Moreover, we examined multi-run retry
strategies to reduce measurement noise and their trade-offs with search breadth.
As far as we know, we are the first to compare these measures with the aim of
finding the best trade-off between measurement accuracy and its ability to guide
search towards improving software variants. Overall, our experiments cover 70
configurations (14 measures x 5 retry levels) across 22 scenarios (Section [3),
totalling 1540 software improvement runs. Results show that the cycles, Time,
branches, and cache_references measures provide strong search guidance,
while retry of 3 balances robustness and efficiency. The energy and weights
measures excel for long-running, repeatedly measured tasks despite higher cost.

Furthermore, we integrated the best measures into a parameter tuning tool
called ParamILS to explore our findings in a different context. We observed that
lightweight fitness measures dominate under short, multi-instance searches, while
robust measures remain competitive in cost-tolerant contexts.

To sum up, our contributions are:

1. A comparative study of consistency and runtime correlation of 21 measures.
2. Integration of all measures as fitness functions into the search-based im-
provement framework MAGPIE.
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3. Analysis of 70 measure-retry setups for optimal cost—effectiveness trade-offs
within genetic improvement and parameter tuning settings with both local
search and genetic programming searches in MAGPIE.

4. A case study evaluating our best performing measures within a different
search-based context, a parameter tuning framework ParamILS.

2 Research Questions

In order to assess the trade-offs between accuracy of candidate fitness functions
as proxies for runtime vs. effectiveness in leading search towards improved vari-
ants in search-based software optimisation frameworks, we pose the following
research questions:
RQ1: Which measures are most consistent and which most closely correlate
with execution time, potentially serving as its surrogates?
Knowing which execution time surrogates are most accurrate and at the same
time most consistent could save valuable resource time wasted on repetitions.
Answer to this question goes beyond applicability in the search-based context.
RQ2: Which performance measures are most effective as fitness functions, in
terms of guiding search towards finding the most time-saving software variants
within a constrained time budget?
Within the search-based context we want to know which measures are lightweight,
yet accurate enough, to guide search towards improved software variants.
RQ3: How many repeated measurements (retries) provide the best trade-off
between measurement precision and computational overhead?
Here we are interested in establishing the needed measurement overhead, per
measure. Some proxies for time might require less repetitions to provide enough
accuracy to guide search towards improved software variants.
RQ4: Which performance measures and retry parameters lead to the most
consistent search, ensuring stable and progressive optimization?
Answer to this research question will provide recommendations for best use of
each measure of interest.

3 Methodology

Performance Measure Collection We evaluated 21 execution time surrogates (Ta-
ble [1). We selected these primarily from perf hardware counters (e.g., cycles,
cache, branches, instructions) due to their established correlation with execution
time: hardware performance counters and energy have long been used as reliable
surrogates for runtime prediction across architectures and workloads [I1/31]. En-
ergy usage was recorded using Intel’s RAPL interface. We also used the weights
metric [8], which applies throughput-based weights [16] to assembly instructions.
This involves first profiling with perf-record, computing per-function runtime
shares via perf-report, then identifying per-command shares within functions
using perf-annotate and lastly multiplying command throughput by its func-
tion share and command share, and aggregating. This yields a weighted sum
approximating runtime more accurately than raw instruction counts.
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Measure Consistency and Correlation with Ezecution Time To answer RQ1, we
assessed which measures are both consistent and proportional to execution time.
We repeated runs on each benchmark 21 times (based on the calculations in the
online |Appendix DJ). For each measure—benchmark pair we computed coefficient
of variation C'V = (o/u) x 100%, then took the median CV across benchmarks.
Lower CVs indicate higher reliability, with measures beating Time considered
stronger guides. Rather than Pearson’s r (insensitive to systematic scaling), we

examined proportionality: for each measure(M)-benchmark(b) pair we computed
Median(M,b)

Median(T})
benchmarks. Low Factor CV indicates consistent scaling with execution time.

the median ratio Factoras, = and the CV of these factors across

Search-Based Optimisation Frameworks We selected two frameworks for our
evaluation: MAGPIE (to answer RQ2-RQ4) and ParamILS to show generalisation
potential and explore shorter budgets.

MAGPIE [6] is a Python-based, language-agnostic framework for search-based
software improvement, representing edits as XML sequences to decouple search
from specific modification techniques. This way searches across both parameters
and modification directly to code are possible. MAGPIE supports multiple local
search (LS) and genetic programming (GP) search strategies. We adopt the
best variants from [5]: First-Improvement local search and GP with uniform
concatenation crossover, both at statement and parameter level — i.e., genetic
improvement and parameter tuning settings. For GP we used a population of
10, running as many generations as the time budget allowed for.

We integrated 18 perf measures as fitness functions, Intel RAPL energy,
and the weighted-instruction weights measure [8]; standard Unix Time was al-
ready present. We introduced a retries parameter into MAGPIE, re-executing each
variant 1 to 5 times and taking the median to suppress noise. While this increases
runtime, stability markedly improves, but early experiments showed no benefit
beyond 5 retries. Recall, we need to balance the measurement accuracy against
time for the search process. In that sense repetitions of 20-30 tries commonly
recommended in the literature outside of search-based contert, and confirmed in
our experiments on measure consistency (Appendix D)), are simply impractical.

To test measure effectiveness in a different search context, we used ParamILS
(v2.3.8) [20]— a mature, model-free parameter optimizer with features like adap-
tive capping and anytime behavior. Its proven performance across diverse do-
mains and differing search dynamics from MAGPIE make it well-suited for evaluat-
ing our measures and retry strategies in alternative search contexts, particularly
shorter and more localized searches. We modified ParamILS’s evaluation script to
capture perf, energy, and weights outputs. Experiments focused on parameter
tuning over the same benchmarks as MAGPIE, using eight measures: the six best
from experiments with MAGPIE plus weights and energy (see answer to RQ2 in
Section for justification).

Benchmarks We used benchmarks common in related research [7], selected for
popularity, maintainability, and computational intensity.
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For RQ1 we used 8 popular controlled micro-benchmarks from standard
suites: bzip2, gzip from SPEC [33]; £ftp, 1u from SPLASH-2 [34]; blackscholes
from PARSEC [28]; and bitcount, sha, jpeg from MiBench [27].

For RQ2-RQ4 and the ParamILS case study 7 larger, optimization-rich
benchmarks were employed: MiniSAT, MiniSAT_hack, SAT4J, Weka, LPG (these
were used in the original MAGPIE paper and we thus know that optimizations can
be found), plus 2 parameter-heavy real-world tasks (scipy.optimize.minimize,
z1lib.compress). All were parameter-optimized in both MAGPIE and ParamILS;
for MAGPIE, code optimization was also applied to MiniSAT, MiniSAT_hack,
SAT4J, and Weka. LPG was limited to parameter tuning (legacy library issues),
while scipy and z1ib lack meaningful code-level variants. We used both the best
local search (LS) and genetic programming (GP) variants with MAGPIE, totalling
22 scenarios (4 x 2 code optimisation tasks plus 7 x 2 parameter tuning tasks).

Thus, RQ1 used small, stable workloads for consistency/correlation, while
RQ2-RQ4 employed benchmarks with substantial optimization potential, span-
ning both parameter and code optimization contexts.

Ezxperimental Setup We ran our experiments on a Rocky Linux 9.4 Desktop with
an 8-core Intel(R) Xeon(R) E5-1620 CPU with 16 GBs RAM. For MAGPIE, we
recorded the number of variants examined under each measure-retry combina-
tion. We selected a 30-minute fixed time budget in order to balance practical
resource constraints with established practices in the field. This duration aligns
with prior studies in search-based software engineering, where similar time bud-
gets have been effectively employed [3],[I4]. Each configuration of ParamILS
was given 5 minutes per benchmark; for each benchmark-measure pair. Since
ParamILS specializes in parameter tuning, exploratory trials showed that runtime
can already find near-optimal solutions within this budget. Allowing longer runs
would mainly advantage high-overhead measures, while runtime (the baseline)
already converges quickly, so 5 minutes provides a fair comparison of surrogates
against execution time. Three optimization runs were executed (as 3 samples
were found sufficient to minimize randomness as a factor), and the median of
the best configuration of each of the three runs determined ranking.

4 Results and Discussion

Next, we present our experimental results and answer our research questions.
Data in each table that answers RQs 2—4 reflects results from one of two setups:
MAGPIE with local search (LS) or genetic programming (GP). To recap, each
setup has been run across 7 benchmarks, 4 run in genetic improvemenet mode,
making code-level mutations, and all 7 run in parameter tuning mode, thus data
from 11 scenarios is aggregated per LS or GP. The number of runtime surrogates
and retries considered for each sceanrio are outlined in each subsection.

4.1 RQ1: Measure Consistency & Correlation with Execution Time

First, we present the results of running our initial experiments on measure con-
sistency and correlation to execution time in Table
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Table 1: RQ1 Variability and correlation to execution time for 8 standard bench-
marks. MCV: Median Coefficient of Variation across benchmarks; MCVR: Me-
dian Ranking for CV across benchmarks; FCV: CV of Factor across benchmarks.
Lower is better for all measures.

Measure MCV | MCVR|FCYV |[Measure MCV MCVR|FCV
major-faults 0.000 1.0 [108.49||perf time 0.852| 13.5 0.58
minor-faults 0.046 5.0 |231.22||dTLB-loads 0.840| 12.0 |146.79
total-faults 0.040 4.5 |231.21||weights 0.523| 11.5 24.82
branches 0.004 3.0 90.88||cache-misses 1.972| 17.0 [113.60
L1-dcache-loads| 0.096 6.0 53.82||L1-dcache-load 1.170, 15.5 |100.05
instructions 0.001 2.0 43.09([-misses

cycles 0.221 8.0 0.81||cache-references 0.881| 13.0 88.76
branch-misses | 0.150 7.0 |112.40||Time 0.814| 16.5 0.00
energy 0.452 | 10.0 14.96||dTLB-load-misses| 3.920| 17.5 (243.43
task-clock 0.593 | 13.5 0.30||cs 30.201| 20.0 53.23
cpu-clock 0.754 | 15.0 0.63||migrations 142.980| 21.0 |106.42

Among traditional runtime proxies, branches, cycles, branch_misses,
L1_dcache_loads, and instructions showed very low CV (0.0013-0.22%), con-
firming their stability. Fault-related measures such as total-faults,
minor_faults, and major_faults also had extremely low CV (<0.05%), likely
due to their rare occurrence. In contrast, raw Time and perf_time were less
reliable (CV ~0.8-0.85%), sensitive to system load. Clock-based metrics such as
cpu_clock, task_clock performed slightly better (<0.75%), while
context_switches and mitigations were unusable. Energy (0.45% CV) and
the custom weights metric (0.52%) occupied a mid-range. The weights CV
could be reduced by higher perf sampling rates, but experimentation showed
little benefit for benchmark runs over ~1s, while overhead increased sharply. A
sampling rate at ~2000 Hz is a practical trade-off. Correlation analysis (Table
showed that time-based measures (perf_time, cpu_clock, task_clock) best
tracked execution time (FCV <0.63%). Cycles performed almost as well (0.81%)
but with much lower CV, making it a robust surrogate. Surprisingly, energy
(14.96%) and weights (24.8%) correlated more strongly with execution time
than instructions or branches, despite moderate CV, highlighting their promise.
This is particularly valuable when direct time measurement is impractical or un-
reliable, such as in parallel or distributed environments. Other low-CV measures
(branch_misses, branches, L1_dcache_loads, instructions) showed
weaker correlates (FCV 43-112%).

Answer to RQ1: cycles is the most reliable surrogate for execution time.
energy and weights also show potential, thus we recommend these especially
for contexts where direct time measurement is infeasible.

4.2 RQ2: Execution-time Surrogates as Fitness Functions

To evaluate performance measures for software optimization, we evaluated the
best 14 as fitness functions within the MAGPIE framework. Original is the program
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Table 2: RQ2 Mean Median Execution Times (MET), Median Ranks (MR), and
Number of Variants (Nov) for Each Measure. Columns 2-4: experiments with
Local Search. Columns 5-7: experiments with Genetic Programming. Lower is
better for MET and Rank, for NoV higher is better.

Measure Mean |Median|NoV| Mean |Median|NoV
MET(s)| Rank MET(s)| Rank

local search genetic programming

Original 1028 [ 12 | - 9.65 | 13 -
perf-measures
L1 dcache loads| 5.42 7 240 5.99 7 397
branch misses 5.46 8 222 5.75 5 431
branches 5.17 6 252 6.22 7 393
cache misses 5.63 4 255 7.02 8 419
cache references 5.40 8 234 4.64 5 451
cpu_clock 10.28 14 157 8.85 14 376
cycles 5.02 4 252 6.15 4 426
faults 8.92 11 176 7.28 12 381
instructions 5.59 7 270 6.48 7 384
task clock 10.45 13 164 9.87 14 387
perf time 5.43 6 257 5.66 7 409
other

energy 6.53 6 156 6.21 11 257
Time 5.29 4 260 5.17 4 414
weights 7.02 10 106 6.96 12 275

before optimization. We first discuss results obtained with first-improvement
local search (LS), followed by genetic programming (GP).

The 7 measures omitted from Table [77] were excluded from later experi-
ments due to excessive variability (MCV>2) or lack of correlation with execution
time(FCV>120). With faults we refer to major_faults from now on.

For each benchmark, we used one of the 14 measures as the fitness function
to optimize the original program and obtain an improved variant with lower
execution time. We then ranked each measure by the execution time of its best
variant per benchmark and summarized performance by median execution time
(MET), average rank across benchmarks, and the mean number of explored
variants (Table [77).

Regarding the LS approach, cycles emerged as the most effective fitness
function (5.02s), closely followed by branches (5.17s) and Time (5.29s).

Other strong performers included perf_time, cache_references, and
L1_dcache_loads, confirming cycles, branches, and cache-related metrics as
robust alternatives to raw execution time. Energy ranked well (median rank 6)
despite a middling mean MET (6.53s), excelling in three benchmarks.

The custom weights measure, though hindered by high overhead (=~ 40%
of variants explored vs. perf), achieved leading results in LPG (18% faster than
the runner-up) and SAT4J, especially where execution traces were simple and
dominated by few options (it was the best for parameter optimization). Energy
also incurred overhead (=~ 60% of variants explored) but still showed competi-
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Measure Mean MET(s)|Median Rank|NoV
Original 9.65 13 -
perf-measures
L1 dcache loads 5.99 7 397
branch misses 5.75 5 431
branches 6.22 7 393
cache misses 7.02 8 419
cache references 4.64 5 451
cpu_ clock 8.85 14 376
cycles 6.15 4 426
faults 7.28 12 381
instructions 6.48 7 384
task clock 9.87 14 387
perf time 5.66 7 409
other

energy 6.21 11 257
Time 5.17 4 414
weights 6.96 12 275

Table 3: Mean Median Execution Times (MET), Median Ranks, and Number of
Variants for Each Measure under Genetic Programming.

tive effectiveness. Most perf measures achieved comparable search depth since
they rely on perf-stat. By contrast, measures like faults, cpu_clock, and
task_clock underperformed not due to measurement overhead but because they
poorly reflect runtime improvements, failing to accelerate patch discovery.
Regarding the GP approach, cycles consistently ranked as a top performer,
excelling in three cases despite lower performance in two scenarios, which affected
its mean MET. The measure of cache_references notably achieved the best
mean MET (4.635 s), underscoring the significant impact of cache operations on
execution time. L1_dcache_loads, branch_misses, branches, instructions,
Time, and perf_time performed well as they did for local search, with mean
METs ranging from 5.17 to 6.48. Intel’s RAPL energy consumption measure was
a viable surrogate with a mean MET of 6.2s, indicating its potential for represent-
ing execution time. Conversely, faults, task_clock_time, and cpu_clock_time
were again the least effective measures. The custom weights measure, also un-
derperformed (6.96s) hindered by the number of variants, but demonstrated high
consistency and can be very effective given sufficient exploration time.

Answer to RQ2: cycles, Time, branches, cache_references, perf-time,
and L1_dcache_loads achieved the lowest MET (5.02-5.43s vs. baseline 10.28s
in LS setup). Energy ranked above average (median rank 6), while weights
was the best measure in two benchmarks despite high overhead, but underper-
formed when used with GP.

4.3 RQ3: Optimal Number of Retries for Measures

We ranked retry counts for each benchmark—measure pair median execution time
of the optimized variant, and aggregated these rankings across benchmarks (Ta-
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Table 4: RQ3 Recommended Retry Num-
bers for Each Measure from LS experiments.
MaRN: Mean Retry Number; MRN: Median

Retry Number. Table 5: RQ3 Percentage De-
Measure MaRN MRN IQR |STD crease in Variants examined by
energy 3.273 | 4.000 |1.0001.009]  Number of Retries in LS experi-
L1_dcache_loads| 2.636 | 2.000 |2.500(1.433 ments. RN: Retry No.; MaDP:
branch misses 2.273 | 2.000 |2.000|1.348 Mean Decrease %: MDP: Me-
branches 2.636 | 2.000 (2.000{1.502 dian Decrease % ’

cache misses 2.273 | 2.000 {2.500(1.272 .
cache:references 2.545 | 2.000 |2.500|1.572 RN MaDP MDP|STD IQR
cpu_clock 2.636 | 3.000 [2.500(1.567| |1 | 00 | 0.0 4007100
cycles 2.636 | 2.000 |3.000|1.629| |2 | 30-71 |30.65119.2528.47
faults 2.909 |2.000 |3.000(1.700| |3 | 47-54 |48.92120.63[29.11
instructions 3.273 | 3.000 [2.500(1.348| [+ | 9937 | 60.96 |18.58123.52
task _clock 3.636 | 4.000 |1.500|1.121| (5| 67-49 [68.87[16.24]20.73
perf time 2.636 | 1.000 [{4.000|1.963

Time 2.273 | 2.000 |2.500(1.272

weights 3.091 | 3.000 |1.000{0.944

Table 6: RQ3 Statistical Analysis of Table 7: RQ3 Statistical Analysis of

Retry Rankings Across All Bench- Retry Rankings Across All Bench-
marks from LS experiments. MaR: marks from GP experiments. MaR:
Mean Rank; MR: Median Rank. Mean Rank; MR: Median Rank.
Retries| MR |[MaR |STD|IQR Retries MR |MaR|STD IQR

1 3.143(3.078 0.389(0.429 1 2.36| 2.47 | 0.27 1 0.39

2 3.000]2.974(0.2880.250
3 2.929(2.974)0.2980.464
4 2.989|3.005(0.325|0.357 3.29] 3.18 | 0.41 | 0.39
5 3.071]2.992(0.3890.500 3.36] 3.33 | 0.41 | 0.32

ble [6] for Local Search). Mean (MaR), median (MR), with standard deviation
(STD), and interquartile range (IQR) of ranks show that retry = 3 is optimal:
it yields the most consistent improvements while exploring enough variants. Be-
yond 3, retries reduce the number of variants without notable consistency gains,
Conversely, 1 or 2 retries explore more variants but less efficiently.

Table[d] provides measure-specific recommendations. Measures with low MCV
(e.g., instructions) require fewer retries, reflecting inherent stability. Measures
with higher MCVs (e.g., energy, weights) benefit from larger retry counts to
mitigate run to run variability. For all results in Tables [4] to [7], lower is better.

Retries directly reduce the number of variants explored: compared to 1, retry
= 3 reduces steps by ~ 48% (Table. Despite this cost, retries markedly increase
reliability of optimization trajectories, enabling clearer convergence toward im-
proved variants. Thus, retry = 3 offered the best balance between search breadth
and stability, though the optimum varies by measure

For GP, retries ranked from 1 (best) to 5 (worst), showing no benefit from
higher values (Table . Unlike local search, where consistency is vital to not

2.93] 2.95 | 0.40 | 0.50
3.00| 3.07 | 0.46 | 0.71

Tk W N
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Table 8: RQ4: Median and Mean MAD, STD, IQR (lower is better), and Search
Performance (TD, ADPS, POD) (higher is better) for Each Measure and Retry
Number. TD: Total decreases; ADPS: Percentage of decrease that are achieved
per step on average; POD: Percentage of Steps that are overall decreases.

Measure Med. MAD |Mean MAD|STD |IQR|TD|ADPS|POD
energy 0.157 0.155 0.267/0.266| 6.0 0.047 |0.098
L1_dcache loads| 0.174 0.166 0.198]0.200| 7.0| 0.040 {0.074
branch misses 0.145 0.143 0.301|0.324| 9.0| 0.041 |0.079
branches 0.188 0.198 0.307(0.329| 8.0| 0.040 |0.081
cache_misses 0.165 0.167  |0.270|0.261] 8.0| 0.043 |0.068
cache refs 0.163 0.166 0.220(0.219| 8.0| 0.048 |0.077
cpu_ clock 0.390 0.329 0.134|0.124| 4.0| 0.171 |0.053
cycles 0.155 0.147  |0.288]0.271{10.0| 0.043 [0.085
faults 0.030 0.031 0.055(0.042| 9.0| 0.011 |0.090
instructions 0.199 0.211 0.306/0.318| 9.0 0.038 |0.093
task clock 0.415 0.314  |0.175|0.155| 4.0 0.200 |0.051
perf time 0.194 0.203 0.320(0.314| 8.0 0.045 |0.077
Time 0.164 0.166 0.311(0.341| 9.0| 0.047 |0.087
weights 0.187 0.174  |0.297|0.276| 5.0| 0.089 |0.077

Retries|Med. MAD|Mean MAD|STD|IQR|TD|ADPS|POD

1 0.245 0.179  |0.278]0.291| 9.0 | 0.047 |0.040

2 0.214 0.186  [0.265]0.266| 7.5 | 0.046 |0.062

3 0.177 0.167  |0.235]0.265| 8.0 | 0.047 [0.079

4 0.180 0.170  [0.239/0.258| 7.0 | 0.050 |0.095

5 0.157 0.156  |0.215]0.233| 7.0 | 0.051 [0.110

divert the search, GP’s population diversity offsets noise, making a single retry
most effective, since it increases the number of variants.

Regarding recommendations, we observed no significant difference in results
between GP and LS experiments, thus to save space, we report on the LS ex-
periments only, and provide results for GP in the available online Appendix B\

Answer to RQ3: Retry = 3 balances exploration and reliability, achieving the
best overall ranks despite halving the number of explored variants. The precise
optimum varies with the stability of the measure (as indicated by MCV). For
GP retry of 1 is often surprisingly sufficient.

4.4 RQ4: Consistency Analysis Across Measures and Retries

When looking at the data to answer RQ4, we observed no significant difference
in results between experiments with LS and GP. Given that local search variants
proved very effective both in GI [5] and parameter tuning work [20], we report on
results from experiments with LS only. We provide result tables obtained from
GP runs in the online |Appendix B.

Consistency through MAD. We assessed consistency via Mean Absolute
Deviation (MAD) from a best-fit line across retry—measure combinations, a stan-
dard robustness metric [35)21]. Table [8 shows median and mean MAD grouped
by measure and by retry count. The measure faults (3% MAD) was by far
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the most stable, while branch_misses, cycles, cache_misses, and Time also
ranked highly consistent. Even energy and weights maintained relatively low
variance (< 19%). Higher retry values systematically reduced MAD, confirming
that retries dampen stochastic noise.

Consistency through decreases. We further analyzed the search trajec-
tory by: (i) total decreases (TD) in fitness, (ii) average decrease percentage per
step (ADPS), and (iii) proportion of decreases (POD). While retries sharply cut
the number of evaluated variants (Table , the number of decreases fell only
mildly, so POD actually rose. ADPS also improved slightly with retries. Thus,
retries trade off exploration depth for efficiency: fewer steps, but each more likely
and impactful. A retry value of 3 offered the best balance, aligning with Table [6]

Measure-specific effects. Across measures (irrespective of retries), energy,
faults, instructions, Time, and cycles achieved high POD (> 8.5%), re-
inforcing their role as reliable guides. Notably, cycles combined middle-range
ADPS (4.3%) with the highest TD (10), showing how steady, incremental progress
can accumulate. In contrast, weights produced the largest ADPS (8.9%), but
low TD (5) due to fewer opportunities, illustrating the cost of sparse sampling
despite steep improvements. For Time, high variance meant some “decreases”
were likely noise, particularly with low retries.

Example search space comparisons. Figure 1 in the onlindAppendix A|com-
pares task_clock (retry=1) vs. weights (retry=3) on LPG. The former yields
chaotic, untargeted exploration with near-baseline variants and only one late
cluster of modest improvements. In contrast, weights exhibits better guidance
with clear “staircase” of optimization phases producing distinct improved groups.

Answer to RQ4: Larger retries consistently stabilize search (lower MAD),
reduce steps but increase per-step efficiency (higher POD and ADPS). Stable
measures like branch_misses, cycles, cache_misses, and especially faults
guided the search reliably. weights demonstrated the steepest per-step im-
provements, though constrained by limited sampling opportunities.

4.5 Cross-Tool Validation with Short Search Budgets

Table [9] reports the results of our ParamILS experiments, where each run was
limited to 5 minutes. To ensure stability under this shorter budget, each bench-
mark configuration was executed 21 times per run, with medians averaged across
three searches. We report both the average Median Execution Time (MET) and
the average rank of each measure across benchmarks.

ParamILS uses adaptive instance-level evaluation, sampling, and racing strate-
gies that preclude meaningful tracking of intermediate variants. Consequently,
we focused on the final best configuration as the primary performance indica-
tor. Comparing MAGPIE’s interpretable variant counts against ParamILS’s end
results, offers insights into the trade-offs between search depth, consistency, and
efficiency across different search-based optimization paradigms.

Results show a clear trade-off between overhead and guidance. The lightweight
metric time consistently ranked best, confirming that minimal-overhead mea-
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sures are most effective when thousands of fast evaluations are required. In con-
trast, weights, which incurs sampling overhead, performed worst. We note that
the sampling rate for weights was selected after experimentation, as higher
rates offered limited benefit for benchmarks exceeding one second per run, while
adding substantial cost. Intermediate hardware measures (L1_dcache_loads,
branches, cycles) performed competitively with only modest overhead, while
perf_time showed high variability across benchmarks. The energy measure also
underperformed, ranking second worst.

These findings suggest that short-budget optimization favors measures that
minimize overhead, while more detailed or resource-intensive measures become
valuable primarily in longer searches or when exploring fewer variants.

Case Study Insight: Under limited search time, lightweight metrics such
as time clearly dominate by balancing low overhead with sufficient guidance.
Hardware-based counters remain competitive but add cost, while complex or
high-overhead measures provide little advantage in this setting.

Table 9: ParamILS Experimental Results Across Measures.

Metric Average MET (s)|Average Rank
time 3.894 3.000
L1_dcache_loads 3.976 3.714
branches 3.983 3.857
cycles 4.148 4.714
cache_references 4.215 4.857
perf_time 4.649 3.714
energy 4.787 6.000
weights 6.200 6.143

5 Threats to Validity

The generalizability of our findings may be limited due to the use of 22 benchmark-
search type combinations in this study. While the benchmarks cover a variety
of tasks and the search type includes both parameter tuning and source code
optimization to broaden applicability, they may not fully represent all poten-
tial use cases. In our experiments we selected real-world benchmarks commonly
used in the literature to ensure relevance. Our study was conducted on a single
computer system due to the need for uniform platform for all measures. This
means that certain measures might be influenced by the underlying architecture.
However, we are interested in finding measures that could serve as fitness func-
tions, thus consistently differentiating between two software variants. Therefore,
we believe that our results will generalise, although future studies could enhance
the robustness of our findings by replicating the experiments on other hardware
configurations. We employed a consistent seed across all runs to ensure a fair
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starting point and designated a substantial time budget (30 minutes) to explore
hundreds of variants, randomness may still influence outcomes. However, consid-
ering the extensive number of combinations (1540 in total) tested in this study,
we expect that randomness would average out, mitigating its impact on the
overall results. To further address generalisability concerns, we have established
an infrastructure that allows for easy inclusion of additional benchmarks, which
future researchers can leverage to expand our work. All code, documentation,
and results are available at: https://anonymous.4open.science/r/Optimise
d-fitness-functions-ssbse/README.md.

6 Related Work

Bloat and Petke in their survey of benchmarks for automated improvement of
software’s non-functional properties [7] conclude that the most targeted non-
functional property is execution time, with energy usage and software size being
the 2nd and 3rd most improved property in the literature. Various strategies
have been adopted to improve code performance at the software level. The most
common are compiler optimizations, algorithm configurations, and source code
modifications. Among these techniques, the application of metaheuristics for
software improvement have emerged as particularly potent methods due to their
ability to explore complex search spaces efficiently [7]. Most search-based empir-
ical studies that focus on runtime improvements at the code level use the Unix
Time command or the perf-time commands as the main part of the fitness func-
tion, e.g., [20] and [9]. Liou et al. employed GPU kernel runtime [24]. Langdon
et al. based their fitness function on the number of task units performed in a
specific time window [22], while Garciarena and Santana, [I7] used both compi-
lation and execution time. Other works, such as the Cole framework [19], try to
achieve multi-objective optimization, which include the execution time as one of
their primary objectives, alongside other criteria of memory usage, power con-
sumption, and code size. However, the reliance of all those tools on accurate and
consistent time measurements is fundamentally flawed since research has shown
the limitations of simple runtime measurements due to their susceptibility to
external variations such as background CPU processes, varying CPU loads, and
multi-core contention. Carothers and Fujimoto [I0] and Meyer et al.[26] have
shown that execution time is a very volatile measure that is affected by back-
ground processes and CPU load, Mazous et al.[25] studied how time is affected
by multi-core or parallel executions. These studies underscore the necessity for
incorporating a broader set of performance indicators that can more accurately
reflect the true efficiency of software under various conditions. Another potential
measure is the weighted sum of the assembly commands in the binary program,
based on the commands’ CPU cycle throughput. Patterson’s and Hennessy’s
book on computer organization and design [29], proves that execution time and
CPU cycles for each command are deeply connected. However, the use of pipelin-
ing in modern CPUs makes the two measures no longer analogous. Despite these
challenges, the work by Bouras et al. [§], along with additional research on the
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correlation between cycles-per-instruction and total execution cycles with run-
time [I5], supports the reasonable assumption of such a correlation.

7 Conclusion

Precision of execution time measurement strongly affects the efficiency of search-
based software optimisation. Our study showed that multiple hardware-level
measures, notably cycles, branches, and RAPL’s energy, can serve as reliable
surrogates for execution time, often providing more consistency under noisy con-
ditions. Recomputing fitness values three times and taking the median further
improved stability, albeit at the cost of exploring fewer variants. These findings
highlight practical trade-offs between precision, overhead, and search efficiency,
and point to broader applications where robust performance proxies are valuable.
The insights gained from exploring new performance measures as fitness func-
tions underscore the potential for broader applications, inspiring further research
to refine these techniques and extend their use in more diverse computational
environments. It would be interesting to explore the potential of our weighted
measure in the context of recent advances such as Google’s AlphaDev [12]. The
weight measure could provide a more precise measure and thus enhance the ro-
bustness of such systems. Furthermore, such measures could be used to efficiently
evaluate large corpora of data to provide training bed for LLMs.
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