Why introns in Genetic Programming grow
exponentially

Wolfgang Banzhaf! Peter Nordin'? and Frank D. Francone?

1 1LS11, Dept. of CS, University of Dortmund, 44221 Dortmund, Germany
2 RML Inc., 360 Grand Ave., Oakland, CA, 94610 USA
3 DaCapo AB, Kronhusgatan 9, 41105 Goeteborg, Sweden

Abstract. We argue that introns or non-coding segments of GP pro-
grams are a means for genomes to protect themselves from the destruc-
tive effects of crossover and other operators. There are, however, both
advantages and disadvantages to these protection devices.

Various studies have shown that introns in Genetic Programming Systems
grow heavily if not exponentially towards the end of runs [3, 12, 5, 8, 1, 11], with
some partially contradictory explanations that have been put forward to date
(see also [7, 6, 10]). The matter is far from being settled though. This field is very
young and it may be that all of these studies, some seemingly inconsistent, just
represent different spots on the very complex surface that represents the effect
of introns. Much more study is necessary before anything more than tentative
conclusions may be stated.

Before we suggest a possible explanation for the problem of explosive intron
growth in GP, a few qualifications are necessary:

— Introns may have differing effects before and after exponential growth of
introns begins. After exponential growth occurs, the exponential effect surely
overwhelms whatever effect the introns had previously, if any.

— Different systems may generate different types of introns with different prob-
abilities. It may, therefore be harder to generate introns in some GP systems
than in others.

— The extent to which genetic operators are destructive in their effect is likely
to be a very important initial condition in intron growth. This underlines
the importance of measuring and reporting on destructive, neutral and con-
structive crossover or mutation figures when doing intron research.

— Mutation and crossover may affect different types of introns differently.

— Finally, it is important to distinguish between emergent introns and artifical
intron equivalents [1, 9, 2]. In most systems, the existence and growth of
artifical intron equivalents is more or less free to the system — a gift from
the programmer so to speak. This may well make artificial intron equivalents
much more likely to engage in exponential growth than emergent introns.

We believe that the reason for the growth behavior is that introns can provide
very effective global protection against the destructive effects of operators (mainly



crossover in GP). By that, we mean that the protection is global to the entire
individual. This happens because toward the end of a run, the individuals are at
or close to their best performance. It is difficult for them to improve their fitness
by solving the problem better. Instead, their best strategy for survival changes.
Their strategy becomes to prevent destructive genetic operators from disrupting
the good solutions already found.

One can reformulate the equation for effective fitness given in [4] as follows:

=g =S0pPr (1= ) (1)
T
where p”" now lumps together both the probability of application and of de-
structiveness of an operator r, and L;’T is the corresponding intron length.

When fitness (f;) is already high, the possibility of improving effective fitness
by changing actual fitness is much lower than at the beginning of the run. But
an individual can continue to increase its effective fitness, even late in a run, by
increasing the number of introns (L;-’T) against r in its structure.

Further, there is no end to the predicted growth of introns, apart from reach-
ing the maximally allowed length. Because the number of introns in an individual
is always less than the absolute size of an individual, the ratio (supressing index
), L;/ Lf is always less than one. So introns could grow infinitely and continue
to have some effect on the effective fitness of an individual as long as p? > 0.

The effect of explosive intron growth is dramatic. Normally, crossover is
destructive more than seventy-five percent of the time. But after introns oc-
cupy most of the population, destructive crossover is replaced almost completely
with neutral crossover. Individuals are merely swapping introns with higher and
higher probability each generation. Swapping code that has no effect between
two individuals by definition has no effect. Hence neutral crossover comes to
dominate a run after the explosive growth of introns.

Introns in GP are always a mixed blessing. On the one hand they show how
variable size genomes in EAs reflect the biological paradigm of evolution. With
them, we also observe some unwanted/unsuspected aspects of evolution. Fur-
thermore, they could be put to work for compressing or for structuring effective
code. On the other hand, introns slow down search processes even to the point of
inhibiting evolution altogether. How they can be controlled or otherwise made
useful for the search process is presently a question of utmost importance.

References

1. David Andre and Astro Teller. A study in program response and the negative
effects of introns in genetic programming. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 12-20, Stanford University, CA, USA, 28—
31July 1996. MIT Press.

2. Peter J. Angeline. Two self-adaptive crossover operators for genetic programming.
In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Pro-
gramming 2, chapter 5, pages 89-110. MIT Press, Cambridge, MA, USA, 1996.



3. Peter John Angeline. Genetic programming and emergent intelligence. In Ken-
neth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages
75-98. MIT Press, 1994.

4. W. Banzhaf, F. Francone, and P. Nordin. On some emergent properties of vari-
able size evolutionary algorithms. In Workshop on Variable Size Genomes at this
conference, 1997.

5. W. B. Langdon. Evolving data structures using genetic programming. In
L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth International
Conference (ICGA95), pages 295-302, Pittsburgh, PA, USA, 15-19July 1995. Mor-
gan Kaufmann.

6. W.B. Langdon and R. Poli. Fitness causes bloat. In 2nd Online World Conference
on Soft Computing in Engineering Design and Manufacturing (WSC2).

7. Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication in ge-
netic programming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sizth International Conference (ICGA95), pages 303-309, Pittsburgh, PA, USA,
15-19July 1995. Morgan Kaufmann.

8. Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns
and destructive crossover in genetic programming. In Justinian P. Rosca, editor,
Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 6—22, Tahoe City, California, USA, 9July 1995.

9. Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns
and destructive crossover in genetic programming. In Peter J. Angeline and K. E.
Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 6, pages 111—
134. MIT Press, Cambridge, MA, USA, 1996.

10. J. Rosca. Analysis of complexity drift in genetic programming. unpublished
manuscript, 1997.

11. Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic
programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Con-
ference, pages 215-223, Stanford University, CA, USA, 28-31July 1996. MIT Press.

12. Walter Alden Tackett. Recombination, Selection, and the Genetic Construction of
Computer Programs. PhD thesis, University of Southern California, Department
of Electrical Engineering Systems, 1994.

This article was processed using the IMTEX macro package with LLNCS style



