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Abstract. We argue that variable-length evolutionary algorithms be-
have qualitatively different from their fixed-length counterparts. We point
out some of these differences derived from emergent properties of the al-
gorithms.

Evolutionary algorithms with variable-size genomes have emergent properties
that may not be obvious until observed in action. As such they share many
properties with DNA and RNA in nature. In particular, it has turned out over
recent years, that variable-length evolutionary algorithms behave qualitatively
different from their fixed-length counterparts which are mainly studied in the
EA community.

Differences between fixed and variable length genomes are

1. the ability of variable-size genomes to choose their own representation for
the target problem,

2. the emergence of neutral and effective code, the former of which ultimately
produced in large amounts in EAs with variable size genomes

3. the different ability of both types of genomes to stabilize a population against
the destructive effects of operator activities.

We note in passing that variable size EAs also have a maximum length for
genomes. The reason is that variable-length genomes are mapped into a finite
storage space. One must, therefore, carefully discern possible boundary effects
when length of genomes approaches the maximum from real variable size effects.

1 Choosing a representation

The ability to evolve a representation for a problem depends on the ability
of a learning algorithm to modify its own structure that codes for a solution.
Typical fixed length EAs have little capacity for evolution of their genotype
(their structure) because one has determined the length and meaning of each
element in advance. By evolving structure, a variable length genotype may be
able to learn not only the parameters of a solution, but also how many parameters
there should be, what they would mean and how they needed to interrelate. This
variability introduces many degrees of freedom into the evolutionary search that



are missing in fixed length structures. Two examples of variable length EAs are
messy GAs [2] and Genetic Programming (GP) [3]. Here we shall have a closer
look at the latter.

As a simple exemplification, consider a GP-system which has to breed al-
gorithms with the following arithmetic functions: Plus, Minus, Times, Divide.
The system might change this representation by ignoring any of these functions,
thereby reducing the function set. So if solutions which use the Divide operator
were, in general, producing worse results than others, we could expect the system
to reduce and, eventually, to eliminate the Divide operator from the population.

This is but one example showing the ability of variable-size genomes to adapt
their representation to the problem they are supposed to solve. But while vari-
able length solutions have potential advantages to artificial evolution, they also
appear to be the cause of what may be troubling emergent properties called,
variously, neutral code, non-coding segments, introns or bloat.

2 Neutral and effective parts of the genome

In GP, an interesting observation made by Peter Angeline [1] was that many of
the evolved solutions in [3] contained code segments that, when removed, did not
alter the result produced by the solution. He also made the connection between
such code and biological introns. Subsequent research has revealed that ‘introns’
are a persistent and problematic part of the GP process [4, 6]. The evidence is
strong that, as in biology, evolution selects for the existence of introns [5]. (For
a recent review of biological introns, see [7].) But how and why?
Two features may be used to define what we shall call introns here:

— An intron is a segment of the genotype that emerges from the process of the
evolution of variable length structures; and
— An intron does not affect the survivability of the individual directly.

Because introns have no effect on the fitness of the variable size individual,
we would not expect to see strong selection pressure to create this genomic
structure. After all, it does not affect the fitness of an individual. So why do
introns emerge?

In summary, the answer is that, while introns do not affect the fitness of
the individual directly, they may affect the likelihood that the individual’s de-
scendents will survive. In other words, the effective fitness of an individual is a
function not only of how fit the individual is mow but also of how fit the indi-
vidual’s offspring are likely to be in the future. By this view, the ability of an
individual to have high fitness children (given the existing genetic operators) is
as important to the continued propagation of its genes through the population
as is its ability to be selected for crossover or mutation in the first place. It
does no good to have high fitness and to be selected for crossover or mutation
if the children thereby produced are very low in fitness. Thus, we would expect
individuals to compete with each other to be able to have high fitness children.



3 Effective fitness

This, naturally, leads to the question whether it would make sense to modify
fitness with a term which reflects the influence that an individual exerts onto
the fitness of its offspring. Indeed, we believe so. Because crossover is by far
the most prominent operator used in GP, let us, for the sake of the argument,
concentrate on crossover here. The argument can be easily extended to other
search operators.
The probability that crossover in an ’effective’ part of a genome will lead to
a worse fitness for the individual is called probability of destructive crossover,
p?. Recall now that one could discern absolute length* and effective length of
programs in GP (and of genomes in other variable length EAs in general). Let
L5 be the effective length of genome j, and L{ its absolute length. Let us further
assume only crossover (probability p.) and reproduction in a generational EA.
The probability that a program j will be destroyed by crossover is
L
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i.e. the probability of the application of the operator times the probability of its
action being destructive. This probability has a profound effect on the proportion
of individuals with this genome [4]. We can use the crossover related term as
a direct subtraction term from regular fitness in an expression for reproduction
through selection. In other words, reproduction by selection and crossover acts
as reproduction by selection only, if the fitness is adjusted by the term mentioned
above. We call this “effective fitness” f7.
The effective fitness of a parent individual, therefore, reads
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and measures how many children of that parent are likely to be chosen for
reproduction in the next generation. A parent can increase its effective fitness

by either of two strategies:

1. by lowering its effective genome length (in GP, that is, having its functional
code become more parsimonious); or
2. by increasing its absolute genome length

In other words, the difference between effective fitness and actual fitness mea-
sures the extent to which the destructive effect of genetic operators is warping
the real fitness function away from the fitness function originally designed.

The same argument can be made for other types of operators working on
genomes, e.g. for mutation. The main effect of operators can be subsumed in
their tendency to change genomes to the good or to the bad. The main goal

4 We use length and size synonymously. In tree-based GP the linear notion of length
can be substituted by another complexity measure, e.g. number of nodes.



of genomes, on the other hand, can be subsumed in their tendency to try to
proliferate or to stabilize themselves, whether their fitness is high or low. It is in
the balance of these two processes that evolutionary algorithms work.
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