
Fitness First

W. B. Langdon

Abstract With side effect free terminals and functions it is possible to evaluate the
fitness of genetic programming trees from their parents without creating them. This
allows selection before forming the next generation. Thus avoiding unfit runt Ge-
netic Algorithm individuals, which will themselves have no children. In highly di-
verse GA populations with strong selection, more than 50% of children need not be
created. Even with two parent crossover, in converged populations, e−2 = 13.5% can
be saved. Eliminating bachelors and spinsters and extracting the smaller genetic ma-
terial of each mating before crossover, reduces storage in an N multi-threaded imple-
mentation for a population M to≤0.63M+N, compared to the usual M+2N. Memory
efficient crossover achieves 692 billion GP operations per second, 692 giga GPops,
at runtime on a 16 core 3.8GHz desktop.

Key words: Speedup technique, fast tree evaluation, memory efficient GA, genera-
tional EA, runt free broods, convergence, tournament selection, extended evolution,
Long-Term Evolution Experiment, LTEE

1 Introduction

It is commonly held that genetic programming run time is dominated by the time
to evaluate evolved individual program’s fitness [7, 30]. However, in the last couple
of years fitness evaluation for floating point problems has progressed enormously
[10, 17, 15, 14, 11, 3], meaning in large programs of tens of millions of opcodes
the primary cost can be in performing crossover rather than fitness evaluation, see
Figures 1, 2 and 3. We show the cost of subtree crossover can be reduced by 1) doing

W. B. Langdon
Department of Computer Science, University College London, Gower Street, WC1E 6BT, UK e-
mail: W.Langdon@cs.ucl.ac.uk
GPTP XVIII, W. Banzhaf, et al., Eds.. 19-21 May 2021. Springer. Preprint

1

W.Langdon@cs.ucl.ac.uk

2 W. B. Langdon

crossover after fitness and 2) separating the subtree donating parent (the dad). See
Figures 4, 5 (page 6) 10 and 11 (page 11).

 1

 10

 100

 500

 0 10000 20000 30000 40000 50000 60000 70000

N
u
m

b
e
r

n
o

t
b

e
s
t

fi
tn

e
s
s
 t
re

e
s
 (

s
m

o
o

th
e

d
)

Generation

Fig. 1 Evolution of fitness convergence. Plot of number of individuals worse than the best
smoothed by plotting running mean of 100 generations. Sudden upticks as new better individual is
found and takes over the population. Pop=500.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000 60000 70000

M
e
a
n
 t
re

e
 s

iz
e
 (

m
ill

io
n

s
)

Generation

Fig. 2 Evolution of tree size.

Fitness First 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10000 20000 30000 40000 50000 60000 70000

T
o

ta
l
s
e
c
o

n
d

s
 p

e
r

g
e
n

e
ra

ti
o

n
 (

s
m

o
o
th

e
d

)

Generation

Crossover orig
Crossover opt

Fitness orig
Fitness first

Fig. 3 Evolution of average time taken by incremental fitness first and crossover evaluation.
Pop=500. 16 core Intel 3.80GHz i7-9800X. Running means of 100 generations.

The next section summarises recent use of high performance parallel computing
for tree based genetic programming. This is followed by Section 3 which describes
how it is possible to assign fitness values to the current generation before it is com-
plete by incrementally evaluating [15] children using only the crossover points and
their parents. Section 4 shows reversing the order of fitness and crossover allows us
to avoid using crossover to create poor fitness individuals. Also separating subtrees
from fathers eases other crossover optimisations, Section 4.1.

The final sections 5–8 deal with implementation issues and analysis. Section 5
says that, contrary to internet wisdom, current implementations of C++ memmove
are not slow compared to memcpy and discusses its implications for our inplace
crossover optimisation. Section 6 describes the GP’s speed. Section 7 gives a brief
model of the impact of tournament selection on diverse populations (such as those
typically found near the start of GP runs). This complements the mathematical anal-
ysis in Section 3, which covers converged populations, when everyone has the same
fitness. The two cases each have benefits which our crossover optimisations are able
to exploit, leading to speedups both at the start and end of GP runs. Section 8 de-
scribes problems of load balancing to get peak performance from modern multi-core
Intel CPUs before we conclude in Section 9. First we describe recent developments
with speeding fitness evaluation and crossover using parallel hardware.

4 W. B. Langdon

2 Faster Genetic Programming via Parallel Hardware

2.1 Multiple CPU Cores

Koza [7] described genetic programming as being embarrassingly parallel, in that
by distributing the population, GP can easily be coded to get near 100% loading
of parallel computers. Typically the population is spread across multiple computers
which operate more or less independently. Similarly, our GP experiments are run
on a parallel Intel multi-core desktop. There is a single administration thread, but
with the creation of each individual in the population by crossover and also its in-
cremental fitness evaluation being treated as separate tasks. These tasks are run in
parallel by the hardware cores. The Linux posix pthreads environment is used with
one thread per CPU core. Load balancing across the cores is achieved by each thread
taking the next individual to be processed as it finishes the last, until the whole pop-
ulation has had its fitness calculated or the required members of the next population
have been created using crossover.

This multi-threading strategy works well when the population size is much more
than the number of CPU cores and the tasks are more or less the same size (but
see Section 8.1) and means the population remains united. This approach also al-
lows a light central core containing all the stochastic code with only resource inten-
sive (deterministic) code running in parallel threads. Thus, with careful control of
pseudo random number seeds, it makes it possible to replicate runs exactly in serial
and different parallel environments. That is, a sequential run will produce the same
sequence of populations as one using 8-cores, which in turn is the same as that pro-
duced on a 16-core machine. Indeed the system has been run on cluster nodes with
48 cores.

Note a single united panmictic population may converge more rapidly than in
parallelisation schemes which require the population to be geographically divided
between physically distinct processors. The next section considers a much finer
grained parallelism in which fitness evaluation of a single individual is spread over
up to 16 compute elements.

2.2 Multiple Fitness Cases Simultaneously

Our use of Intel’s SIMD AVX-512 parallel vector instructions allows 16 test cases
to be evaluated simultaneously [10, 16, 11]. This can be thought of as the float-
ing point equivalent of Poli’s sub-machine code GP [28]. With sub-machine code
GP an opcode (e.g. AND) can be evaluated on 64 Boolean test cases at each clock
tick [27, 9]. Indeed older AVX instructions have been used to evaluate 128 and 256
Boolean test cases simultaneously [6]. Also the newer AVX-512 instructions could
be used to extend this to 512 test cases in parallel. Indeed genetic improvement
([32],[18, 24, 22, 25, 23]) has been applied to AVX code itself [11]. Our latest de-
velopments [15] mean in extended GP runs the primary cost is creating and storing
the next generation, rather than calculating its fitness.

Fitness First 5

2.3 Fitness First

It is relatively straight forward to convert our bottom up incremental evaluation [15]
from evaluating each child directly, to evaluating it indirectly via its parents, Fig-
ure 4. Thus we can find a child’s fitness before creating the child. Figure 6 shows
an example of incremental fitness evaluation using only the child’s parents. Figure 7
shows an example from generation 1000 where incremental evaluation proceeds ap-
proximately half way from the crossover point to the root node. If it turns out the
child is never used, e.g. because it is unfit or unlucky, it need not be created (Fig-
ure 5).

We assume the GP population is made of pure functions (i.e. there are no side
effects) and the same test cases are used to assign fitness of the children as were
used to find the fitness of their parents.

Fitness first starts by evaluating the subtree to be removed from the mum (white)
and the subtree to be inserted (black), Figure 6. Apart from starting at the root of a
subtree (i.e. within a parent) rather than at the root node, the evaluation is the same
as usual. I.e., the normal depth first recursive evaluation is used for all subtrees that
have to be evaluated. (Albeit if AVX-512 is supported in hardware, we use parallel
AVX instructions.)

If, for all test cases, the values produced by the new code to be inserted are
identical to those produced by the code to be removed, the inserted code has no
effect and the child’s fitness must be the same as the mum’s. If any are different, we
proceed up the mum tree towards its root.

The example in Figure 6 shows the next node up is a plus. We find the other
subtree in the mum that is the plus’ other argument (shown in red) and recursively
evaluate it for all the test cases. Again this GP code (which must be identical to that
in the as yet unborn child) is run in the mum in situ. The evaluation again gives
a vector of floats (one element per test case). Next the function (plus) is applied
to each value in the vector (red arrow) and the corresponding value from the mum
subtree (light blue arrow) and similarly to the values from child’s subtree (black
arrow). This gives us two float vectors (one for mum and one for the child). Again if
they are equal we can stop, since, if they are equal, they would remain equal all the
way to the root node. And therefore the child’s fitness must be equal to that of its
mum. Note we still have not gone near the child and indeed we have finished with
the dad.

If the two vectors are not identical, we proceed up the mum tree evaluating side
subtrees and nodes on the path to the root until either we reach a point where the
values in the mum and the values the child would have been identical or we reach
the root. If we reach the root, the child’s fitness is calculated from the values in its
vector of evaluations for each test case. Again we do not need to create the child to
do this.

In very big trees, populations are often highly converged and children often in-
herit the same fitness values as their parents. In which case, fitness first evaluation
can give orders of magnitude savings in evaluation time.

Table 1 gives details of our GP.

6 W. B. Langdon

Root donating parent Second parent

Transfer 48 test case values via stack

Fig. 4 Fitness is evaluated using only parents, i.e., before the child is created by crossover. As-
suming no side effects, the subtree to be inserted (black) is evaluated on all test cases and values
are transferred to evaluation of mum (left) at the location of the subtree to be removed (white). We
use our incremental evaluation [15], so differences between original code (white subtree) and new
are propagated up 1st parent (mum) until either all differences are zero or we reach the root node.

Fitness

7

2

7

7

10

3

0

1

6

Children Next generation

Fig. 5 As fitness can be calculated before crossover (Figure 4), the parents can be chosen before
crossover too. Here two low fitness individuals (fitness 1 and 2) have no children and hence their
creation need not be completed. Lines indicate the two members of each tournament used to select
the first (red) and second (blue) parent. Solid lines with arrows are the winners of each tourna-
ment [29]. (Binary tournament only for illustration, we actually use tournaments with 7 members.)
All common EA selection schemes (with either mutation or crossover) are guaranteed to have
members of the current population who will not have children in the next generation.

Eval gives 48 floatsEval gives 48 floats

+ +
+ gives 48 floats+ gives 48 floats

If 48==48 floats STOP

Eval gives 48 floats

If 48==48 floats STOP

Fig. 6 “Fitness first” begins by evaluating the subtree to be removed from the mum (white) and
the subtree to be inserted (black). It proceeds up the mum’s tree until either the evaluation in the
mum and unborn child are the same or it reaches the root node. The red subtree is in the mum but it
is identical to the code in its child and so need be evaluated only once per test case. Note the code
from the parents is evaluated without creating the child. Example from Figure 4. See also Figure 7.

Fitness
First

7

DIV

ADD SUB

SUB X DIV SUB

MUL X

-0.826 -0.718

DIV MUL SUB MUL

-0.294 -0.621 SUB -0.36

0.026 DIV

0.255 0.997

ADD MUL SUB DIV

0.551 DIV DIV SUB

0.255 0.997 DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB MUL MUL SUB

SUB MUL ADD 0.12

ADD SUB DIV SUB

0.837 X X X DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.769 X X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

0.799 ADD

SUB MUL

1 MUL ADD 0.12

1 MUL -0.621 0.889

1 MUL ADD 0.12

0.255 1 DIV SUB

ADD 1

0.799 -0.273 1 0.12

0.799 1

3 MUL

4 MUL ADD 0.12

4 MUL X 0.889

ADD 4 ADD 0.12

0.255 MUL 4 SUB

ADD 0.12

0.799 -0.273

4 SUB -0.129 DIV

4 SUB MUL SUB

SUB 5 MUL SUB

-0.826 X SUB 37

ADD MUL 37 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

ADD SUB 0.026 DIV

SUB MUL -0.129 X

ADD MUL ADD 0.12

SUB SUB X 0.889

ADD MUL ADD SUB

SUB MUL X 0.889

X MUL DIV 0.12

DIV SUB

DIV SUB 0.026 DIV

ADD SUB SUB X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.474 0.601

0.255 0.997

X X

0.837 X X X

0.799 ADD

SUB SUB

ADD -0.129 ADD SUB

SUB MUL

0.997 MUL DIV 0.12

DIV SUB

DIV SUB X DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.255 0.997

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 0.997

0.837 X X X

0.255 0.997

X 38

38 SUB

38 SUB -0.129 X

0.799 38 SUB SUB

38 MUL

38 0.255 ADD 0.12

SUB 47

ADD MUL 47 0.12

0.255 MUL DIV 0.997

ADD 0.12

0.799 -0.273

DIV SUB

ADD SUB MUL SUB

SUB X X SUB

-0.826 X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

47 ADD

47 SUB SUB SUB

47 MUL ADD SUB

SUB 48 X ADD

ADD SUB 48 0.12

0.551 MUL -0.129 X

SUB -0.826

-0.129 X

X 48

DIV ADD

DIV X SUB MUL

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X MUL DIV 0.12

DIV SUB

DIV SUB 0.026 DIV

ADD SUB SUB X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.474 0.601

0.255 0.997

X X

DIV ADD

DIV -0.769 -0.826 X

0.551 0.601

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X SUB -0.294

0.026 DIV

0.255 0.997

0.889 ADD

SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X X -0.129 SUB

-0.129 X

0.255 ADD

0.799 ADD

SUB X

-0.129 MUL

X 0.889

0.799 ADD

SUB X

-0.129 MUL

X 0.889

0.799 ADD

SUB -0.129

ADD MUL

SUB MUL X 0.889

ADD MUL DIV SUB

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD DIV MUL SUB

SUB X MUL 0.997

-0.826 X X X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

X SUB SUB ADD

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

DIV 0.601 -0.129 X

DIV X

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

0.474 0.601 SUB MUL

-0.129 MUL DIV 0.12

DIV X

DIV SUB

ADD SUB -0.826 SUB

SUB X MUL SUB

-0.826 X X X -0.129 X

SUB SUB

0.474 0.601 -0.129 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 0.997

DIV SUB -0.129 DIV

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X -0.129 SUB

-0.129 X

0.255 0.997

0.799 ADD

SUB SUB

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.273 -0.294

0.799 ADD

SUB SUB

ADD MUL SUB SUB

SUB MUL X 0.889

ADD MUL DIV SUB

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV MUL 0.026 DIV

ADD ADD ADD 0.12

SUB X SUB MUL

-0.826 X SUB MUL ADD 0.12

ADD SUB DIV SUB

0.837 X X X DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.769 X X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

0.799 ADD

SUB MUL

ADD 0.255 ADD 0.12

SUB MUL

ADD MUL ADD 0.12

0.255 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB -0.129 DIV

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X ADD

ADD SUB DIV 0.12

0.551 MUL -0.129 X

SUB -0.826

-0.129 X

X SUB

DIV SUB

DIV X ADD SUB

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

DIV ADD

DIV -0.769 -0.826 X

0.551 0.601

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X SUB -0.294

0.026 DIV

0.255 0.997

0.799 ADD

SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X -0.129 X

-0.826 X

0.255 0.997

X SUB

DIV SUB

DIV SUB -0.129 X

ADD SUB MUL SUB

ADD X MUL MUL

0.837 X X X ADD 0.12

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X -0.129 X

-0.826 X

0.255 0.997

X SUB

DIV SUB

DIV SUB -0.129 X

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.129 -0.294

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.129 -0.294

0.255 0.997

X SUB SUB ADD

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X 0.601 ADD MUL

SUB MUL DIV 0.12

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X SUB

0.12 SUB

-0.129 X

ADD SUB MUL SUB

0.837 X X X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

MUL SUB ADD -0.621

X X SUB SUB

0.474 0.601 -0.129 X

DIV ADD

DIV -0.769 -0.826 X

0.551 X

Fig. 7 Example of incremental evaluation [15]. Parent tree is modified by crossover replacing code with inserted subtree (red). Replaced and new code are both
evaluated on the test set (48 tests). As they are different, the next node above the crossover point is evaluated, taking the 48 values returned by the original and
new code (together with its other argument from the unchanged code). Here too evaluation in the parent and (putative) child are different, so evaluation proceeds
up the tree towards its root node (see also Figure 6). The chain of evaluated nodes is in colour [19]. The size and numbers in each node gives the number of
test cases where the evaluation of the parent and (putative) child are not identical. Their average evaluation difference is indicated on a log scale by the node’s
colour. Average differences greater than 0.01 are shown with dark colours, less than 0.01 by brighter colours. Brightest yellow shows smallest non-zero difference
(RMS 3.1 10−10). If, as here, parent and child evaluations are identical before reaching the root node, the remainder of the evaluation is not needed (gray nodes)
and is skipped and instead fitness is copied from the parent.

8 W. B. Langdon

Table 1 Evolution of Sextic polynomial [7] symbolic regression binary trees using GPquick’s one
byte per opcode.

Terminal set: X, 250 constants between -0.995 and 0.997
Function set: MUL ADD DIV SUB
Fitness cases:48 fixed input -0.97789 to 0.979541 (randomly selected from -1.0 to +1.0). For sim-

plicity, we use all the same test cases in each generation, although of course, testing
can be reduced [21, 5] or made dynamic [18]
Target y = xx(x−1)(x−1)(x+1)(x+1)

Selection: Tournament size 7 with fitness = 1
48 ∑

48
i=1 |GP(xi)− yi|

Population: 500 binary trees. Panmictic (fully mixed), non-elitist, distinct (non-overlapping) gen-
erations.

Parameters: Initial population ramped half and half [7], depth between 2 and 6. 100% unbiased
subtree crossover. 70 000 generations

3 Avoiding Effort Wasted on Poor Fitness Individuals

Whereas the previous approaches, described in Sections 2.1 and 2.2, speed up ge-
netic programming by use of more powerful hardware, we have implemented a fit-
ness first scheme which speeds up GP by 14% by doing less work. (Fitness first
could be widely applicable in evolutionary computing, however only when con-
structing members of the population is expensive compared to fitness evaluation is
it likely to be useful.) For simplicity our implementation ensures that it produces
identical results. That is, given the same pseudo random number seed, the popula-
tion at each generation in the new implementation is identical to that given before.

Early in GP runs at each generation many poor individuals are created (see Fig-
ure 8). All Evolutionary Algorithm (EA) selection schemes aim to ensure poor indi-
viduals are less likely to be selected to have children themselves. (See example with
a population of five in Figure 5.) Since childless individuals have no impact on the
future course of the run, it is wasteful to create such individuals.

Apart from Baker’s Stochastic Uniform Selection (SUS) [1], commonly used
selection schemes, such as tournament selection, allocate children independently.
Thus, even later in the run, when many programs have the same fitness, there will be
some parents who by chance get more than the average number of children and some
who get less. With two parent crossover, on average each member of the current
population gets two children. In the limit of large converged populations (containing
M individuals) on average there will be e−2M individuals which are never selected
to have children (see right hand side of Figure 8). If we consider just the first parent
in crossover, or 100% one parent mutation, then this rises to e−1M.

As Figure 8 shows, delaying crossover until after fitness selection can save cre-
ating more than half the population during the early part of a run. Even later, when
convergence ensures almost the whole population has the same fitness, 14% (e−2)
of the population need not be created. With very large trees, run time can be dom-
inated by crossover (see Figure 3), thus run time savings are possible by avoiding
complete generation of poor fitness individuals.

Fitness First 9

 0

 50

 100

 150

 200

 250

 300

 350

 0 10000 20000 30000 40000 50000 60000 70000

S
te

ri
le

Generations

exp(-2)

 298.7

Fig. 8 Evolution of number in population without children in next generation. 100% two parent
crossover, 7-tournament, pop=500.

4 Asymmetry of GP subtree crossover

We use Koza’s two point subtree crossover [7] but for simplicity with both crossover
points chosen uniformly at random. That is, we do not include a bias in favour of
internal nodes.

Figure 9 shows the dramatic imbalance in the contributions of the two programs
chosen to be parents for the new individuals (note log scale). For example, in gen-
eration 15 000 the root donating trees (mums) supply more than a thousand times as
many opcodes as the dads.

The lower (red) solid line in Figure 9 plots the running mean smoothed over 100
generations of the number of inserted opcodes from each dad program. After gener-
ation 15 000 it changes little, and averages 275.4 opcodes. However the distribution
of inserted subtree sizes varies widely in each generation and between generations
(blue dots). It has a long tail with the mean being typically more than three times the
median. The dad long tailed distribution has some impact on run time, with some
trees taking far longer to evaluate for fitness than others, making it harder to dis-
tribute work evenly between threads on multi-core CPUs. (Section 8.1 considered
how often cores are not being used.) In contrast the number of opcodes inherited
from mum (top line in Figure 9) closely follows the total tree size and even after
generation 15 000 continues to bloat.

10 W. B. Langdon

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10000 20000 30000 40000 50000 60000 70000

C
ro

s
s
o

v
e
r

o
p

c
o
d

e
s
 p

e
r

tr
e

e

Generations

Opcodes from root donating tree
Opcodes inserted

Mean opcodes inserted

Fig. 9 Evolution of number opcodes from each parent. Mums top line. Dads blue lower cloud.
Note log vertical scale.

4.1 Last Child Inplace Dad-Less Crossover
Initially the populations are very variable and, with strong selection, breeding is
concentrated in a few fit parents. As the populations starts to converge, there are
more parents (with fewer children each). In each generation, as each child is created,
eventually for each parent, there is only one child left to be created. (Locks are used
to ensure multi-threaded code neither skips anyone nor creates any child twice). On
reaching the last child for a root donating parent, instead of copying the code into
the child (see Figure 10), the buffer holding the parent’s genome is unhooked from
the parent and passed to the child. This saves copying the first part of the child (see
Figure 11).

As we saw in Figure 9, the second parent (dad) donates only a tiny fraction of the
opcodes in the child. Therefore we extract and save all the subtrees which will be
inserted later. This is relatively cheap and is done (in the sequential code) before the
bulk of the crossover operations are done using the root donating parents (mums) in
multi-threaded code. This simple step allows the mum’s last child crossover short
cut (Figure 11) to be used about twice as often.

Notice whilst fitness convergence reduces the number of childless members of
the population (Section 3), here it helps: as spreading the breeding effort, means
there are more parents in general, and thus more cases where a mum has only one
child left to be created. That is, convergence increases the number of times inplace
crossover optimisation can be applied. Figure 12 shows later in the run as the pop-
ulation converges and there are more parents with children, the number of inplace
crossovers rises, so that on average 268.1 (. M(1− e−2)(1− e−1)) crossovers are
done inplace per generation.

Fitness First 11

memcpy 3memcpy 1 memcpy 2

Fig. 10 Andy Singleton’s GPquick [31] subtree crossover requires three memcpy buffer copies:
1) root segment of donating parent (mum, red/brown) is copied to offspring buffer. 2) subtree from
second parent (dad, blue/black) is copied to offspring. 3) tail (brown) of 1st parent copied to child.

memmove
memcpy

(from heap)

Fig. 11 Inplace subtree crossover. Offspring is last child of 1st parent and reuses its buffer. Only
subtree to be inserted (black) of 2nd parent (dad) is kept. 1) Dad subtree overwrites mum’s buffer.
2) In 71% of children the subtree to be remove (white) and to be inserted (black) are different sizes,
and so memmove is used to shuffle the second part of mum’s buffer (brown) up or down.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10000 20000 30000 40000 50000 60000 70000

C
h
ild

re
n
 c

re
a
te

d
 i
n
 p

la
c
e

Generation

268.1

Fig. 12 Number of times per generation when creating non-sterile children in the next, the root
donating parent (mum) has only one more child to create and so crossover can reuse part of its
genome. Pop=500. See Section 4.1 and Figure 11.

In about one third (28.9%) of cases, the removed subtree and inserted subtree are
the same size. If so, the mum’s buffer can be simply over written with the inserted
code (from the dad). However most (71.1%) of the time they are not the same size
and the buffer must be shuffled either up or down to take account of the difference
in the subtree sizes (see Figure 11). This shuffling is done using memmove, rather
than memcpy. (See also Section 5). Figure 12 confirms, by excluding the dads from
crossover, we can use the inplace short cut more than half the time.

12 W. B. Langdon

The large blue cloud in Figure 13 shows the time originally taken by each of 16
threads to perform crossover of the whole of the current generation late in the run.
The tight red cluster of dots show the same populations after crossover has been op-
timised to: 1) ignore individuals which will not have children (saving about 13.5%)
and 2) where possible, modifying chromosomes inplace. Figure 13 confirms we are
reducing the volume of opcodes copied by crossover by almost a half (48.1%). This
leads to a reduction in the total time taken by the crossover threads by about a quar-
ter (24.4%).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
e
c
o
n
d
s
 p

e
r

c
o
re

Millions of crossover opcodes per 3.8GHz core

 882 MB/sec per core
1218 MB/sec per core

Fig. 13 Time per thread to create children using fatherless (left, red) and traditional (right, blue)
crossovers v. the number of opcodes the thread processes (see Section 4.1). To reduce clutter just
generations 69 000–70 000 are plotted. 16 core 3.8GHz desktop.

5 Efficiency of memmove v. memcpy

Although much has been made of the efficiency of memcpy compared to that of
memmove, with the GCC 9.3.1 g++ compiler and version 2.17 of the GNU C run
time library, for our new crossover implementation we found little difference (see
Figure 14). Indeed instrumenting the memmove operation and the corresponding
memcpy, shows memmove to be 14% faster. On average at the end of the run
memmove moves 970MB/second per core while memcpy copies 851MB/sec per
core (on a 3.80 GHz Intel i7-9800X desktop). Note that these are in place measure-
ments, rather than standalone benchmarks and so memmove has on average slightly
more work.

Fitness First 13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000 60000 70000

G
ig

a
b

y
te

s
/S

e
c
o

n
d

p

e
r

3
.8

G
H

z

c
o

re

Generation

memmove
memcpy

Fig. 14 Evolution of speed of memmove and memcpy as used in GPquick crossover. It appears
the initial high speed of both is due to GP trees not exceeding the cache size, 16.5MB. Plots are
smoothed running means of 100 generations. Note traditionally bandwidth counts each byte moved
or copied twice, i.e. a byte into the CPU and a byte out to memory.

6 Speed of Fitness First and Incremental Fitness

As described in Section 2.3 (page 5), our incremental fitness evaluation [15], which
evaluates side-effect free trees from the crossover point towards the root, can be
readily adapted to evaluate the child via its parents. Apart from adapting pointers
to the crossover points in the parents, rather than in their child, little is changed.
As expected, Figure 15 shows the time taken to find the fitness of the whole of
the current generation depends linearly on the number of opcodes that have to be
evaluated. Note inparticular moving from incremental evaluation of the children to
evaluating them by using only their parents has made little difference, see lower dash
and dotted traces in Figure 3 on page 3. (The fitness results are of course identical.)

7 Mathematical Model of Number of Parents

Section 3 (page 8) has already shown a model of crossover which predicts the num-
ber of members a population with near uniform fitness which do not have children
in the next generation will be e−2M. Figure 8, page 9, confirms the model essen-
tially holds after generation 15 000 even though there remain a few members of the
population with an atypical fitness value. (See also Figure 1 on page 2.)

14 W. B. Langdon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

S
e
c
o
n

d
s
 (

e
x
c
lu

d
in

g
 c

ro
s
s
o
v
e

r)

Incremental evals per 3.8GHz core

74,350,000 opcodes/core/second

Fig. 15 Time taken each generation by each thread to calculate fitness against the number of
opcodes the thread processes. Note incremental fitness evaluation using the child’s two parents
before the child is created. Scatter plot, 16 threads, generations 69 000 to 70 000.

7.1 Number of Parents Initially and in Diverse Populations

Where there is a fitness gradient across the population, a wide variety of selection
schemes will allocate children to the best members of the population. This means
even with two parent operations, like crossover, there will be many low fitness or
just unlucky members of the population, whose genetic material will be lost.

Goldberg’s selection pressure [4] of commonly used fitness selection schemes
has been mathematically analysed by Blickle [2], and ourselves [20, page 185] giv-
ing, in a diverse population, the chance of the rth best individual in the popula-
tion winning the next tournament as (r/M)T − ((r−1)/M)T (see Figure 16). As-
suming distinct non-elitist generations and T -tournament selection, on average the
best member of the population will be selected to be a first parent T times. Using
crossover there are two parents, so parents have twice as many children. Thus, the
best in the population has on average 2T = 14 children (see left of Figure 16). Even
in modest population sizes, the worst member of the population is unlikely to have
children.

A Monte Carlo simulation predicts almost 60% of random populations with a
tournament size of seven will not have children, see Figure 16. This is is good
agreement with many populations up to about generation 5000, i.e. before they near
fitness convergence (see 298.7 of 500, in Figures 8 and 16).

Fitness First 15

 0

 5

 10

 15

 20

 0 100 200 300 400 500

N
u

m
b
e

r
o

f
C

h
ild

re
n

Population

 14

 7

Crossover
Mutation

 0 100 200 300 400 500

Population

298.7 335.2

Crossover
Mutation

Fig. 16 Left: Offspring v. rank. Expected number of children with tournament size T=7 in initial
diverse populations [2, 20]. Pop=500. Single parent mutation (dashed line) not used but shown
for comparison. Right: same data as histograms. E.g. on average 298.7 members of the population
(with crossover) have no children, 49.9 have one child, 29.1 two and so on.

8 Multi-threading Implementation Issues
To minimise memory consumption, we process children whose parents have only
one child left be delt with before the others [12]. This avoids having to store both
the current and the next population at the same time. As children are created, their
parents are moved between two queues. One queue is for parents with one child
left to process and another queue is for parents with two or more children yet to
be created. When a parent’s last child has been created, the parent can be deleted
and the memory it occupied can be freed and thus be used by new children in the
next generation. As we reported earlier [12], with the usual crossover and fitness
evaluation order, M+2N memory buffers are needed. Where M is the population size
and there are N threads. The factor of two comes from using two parent crossover.
(If using only single parent mutation, M+N memory buffers would be needed.)

By using fatherless crossover, M+2N, can be reduced to M+1N. Although father-
less crossover, Sections 4 and 4.1, does require storing the subtrees to be inserted on
the heap. However typically the opcodes inherited from the dads occupy less than a
megabyte (see Figure 9 on page 10).

The two multi-threaded queues [12] give an easy way of recognising mums with
only one child left to create and so help implementing inplace crossover, see Sec-
tion 4.1 (page 10) and Figures 10 11 (page 11). Also, as inplace crossover automat-
ically shares the memory used by the parent and the offspring, in practice memory
consumption is reduced to approximately (1− e−1)M+N = 0.63M+N. That is, al-
though we still have to allow for N threads operating simultaneously: population
fitness convergence, not creating low fitness individuals who will not have children,
fatherless crossover and inplace crossover, together (as well as speeding up GP)
reduce memory consumption by about a third.

Although we know on which of the two queues parents must be placed [12], we
are still free to decide where in the given queue they are to be. As yet we have
not exploited this ordering freedom. In future there may be modest saving to be
made by better scheduling work between the available threads. (We return to this in
Section 8.2.)

16 W. B. Langdon

8.1 Idle Threads

Figures 17 and 18 show the total thread idle time on a 16 core desktop. Figure 18
shows the average waiting time as a fraction of the elapse time for each set of 16
threads in that generation. To improve visibility, the plots have been smoothed by
taking running averages over 100 generations.

In the original scheme (blue dashed lines) multiple threads performed crossover
and evaluated fitness [15]. I.e. children were created and their fitness was imme-
diately calculated, as an indivisible unit, by the same thread. (Note crossover was
performed to create 100% of each population.) In the new scheme, crossover of only
the part of the next generation which has children is done (red lines with crosses).
Fitness evaluation is unchanged. Since crossover and fitness now operate on differ-
ent individuals, they are separated, and each is done by their own set of threads. For
simplicity the two sets do not overlap. I.e. the fitness threads synchronise together
and then the crossover threads synchronise together. In principle the two types of
threads could be intermingled, but this would complicate the implementation.

Thus, in the original scheme, there is only one synchronisation point at the end of
each generation, where idle threads are forced to wait. Whereas there are two syn-
chronisation points in the new scheme. (Hence the three sets of lines in Figures 17
and 18.)

In both schemes, the later stages of the run are dominated by the crossover time
(see top two lines in Figure 3 page 3). However crossover time is much more pre-
dictable and uniform than the time to do fitness evaluation (where the longest fitness
evaluation can exceed the average by a factor of 100 or more). Fitness evaluation
is simply scheduled by the next free thread taking the next individual. Whereas the
order of the crossover threads is dictated by Koza’s algorithm to minimise buffer
usage [8, pages 1044-1045], [12], [13] (see previous section).

The more uniform duration of the crossover tasks means thread idle time, as a
fraction of total time (Figure 18), is low. The wide variation in fitness evaluation time
leads to proportionately more wasted thread idle time. However this is mitigated in
bloated runs by the great speed of incremental fitness evaluation compared to the
time taken to create enormous trees. For example, on average over the last 100
generations, GP was unable to use 39%, of the 16 core computer during fitness
evaluation (top trace in Figure 18), whilst for the new crossover it was 1% unused.

8.2 Future Work: Predicting Thread Execution Time

As mentioned in the previous section, when a thread finishes a task it takes the
next free task and begins processing it. Idle time comes from threads running out
of tasks at different times. When tasks take different lengths of time, there may be
practical savings from more proactive scheduling. Since the threads are (assumed to
be) homogeneous, a simple heuristic of starting with the longest tasks (spread across

Fitness First 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10000 20000 30000 40000 50000 60000 70000

Id
le

 s
e

c
o
n

d
s
 p

e
r

g
e

n
e

ra
ti
o

n
 (

s
m

o
o

th
e
d
)

Generation

Fitness only
Orig combined
Crossover only

Fig. 17 Total time spent by 15 threads waiting for the slowest to synchronise per generation (on 16
core 3.8GHz desktop). In the original implementation (dashed blue line) the original crossover and
our incremental [15] fitness evaluation were performed together. In the new crossover and fitness
are separated, leading to two synchronisation steps per generation and two sets of idle threads
(solid red lines). See also Figure 18.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000 60000 70000

P
e
rc

e
n

t
id

le
 (

s
m

o
o
th

e
d
,
1
6
 t
h
re

a
d
s
)

Generation

Fitness only
Orig combined
Crossover only

Fig. 18 Time spent by 15 threads waiting for the slowest as a fraction of time taken by all 16.
Data as Figure 17 but expressed as percentages.

18 W. B. Langdon

all the threads) and then moving to progressively shorter tasks, may be sufficient.
E.g. sort the tasks into execution time order and then run as now.

Crossover time can be readily predicted from the amount of memory to be moved
(memmove) or copied (memcpy). Given the size of individuals and the location
of crossover points, both can be calculated in advance. So, for simplicity treating
memmove and memcpy as the same, to minimise idle time, we might want to order
the crossover queues to put the largest children first. However, to maximise runtime
savings from inplace crossover, we might want to try to schedule crossovers so
that children with the largest root segments are the last to be done for their mums.
Alternatively to save memory, we might want to do them as soon as possible. (In [12]
we treated all trees as being the same size.)

Fitness evaluation time is very variable and hard to predict, as, even though it
is proportional to the number of opcodes to be evaluated (Figure 15), the number
of evals is only known after the evaluation. It may be possible even a crude model
might help. E.g. guess that a large (or very different) subtree to be inserted, will
cause more disruption and hence require more evals, than a smaller or more similar
one. Fitness first execution times can be very variable and, with 16 threads, a single
evaluation can take as long as the rest of the population (spread over 15 threads).
Given this, there may be only marginal gain from clever scheduling. As the variation
gets still bigger it might be, for very time consuming individuals, worthwhile to
spread their fitness evaluation across multiple threads.

9 Conclusions

Although we have couched our work in GP terms, the memory savings hold for
evolutionary algorithms with crossover or with mutation alone. Where EA chromo-
somes are enormous and (changes in) fitness can be quickly calculated, these ideas
of reversing the order of fitness calculation and offspring creation, might also be
beneficial.

For a typical small GP population (500 trees) on a 16 node desktop, memory use
can be reduced by about a third. On that desktop we have performance equivalent
to 692 Giga GPop/s (6.92 1011 GP operations per second) which is more than four
times the performance that we claimed as a record [16] for a single computer GP
system and that was a 48 core cluster server.

We have shown it is practical to delay subtree crossover until after fitness eval-
uation and so only create GP trees which themselves will carry genetic material
into subsequent generations. Typically early in GP runs, tournament selection gives
a very high selection pressure, meaning there are many trees of low fitness which
do not have children. In any evolutionary algorithm, by reversing the usual order
of program evaluation and creation, it is no longer necessary to create low fitness
individuals. This can save a large fraction of the memory to store them. Even later
in GP runs, when fitness convergence may spread children more evenly, and the cost

Fitness First 19

of creating new GP trees may exceed the cost of fitness evaluation, the saving can
be worthwhile.

Even when trees are large, the asymmetry of GP subtree crossover means, the
code to be inserted into the next generation, (i.e. all the subtrees from each father)
is small. Indeed it may fit into fast cache memory. These subtrees can be extracted
from the population before the bulk crossover operations. This simplifies the rest
of the crossover operations, as they now only use one parent from the population
(i.e. they are fatherless). This can be beneficial in terms of freeing memory early
and reducing crossover effort.

The new GPQuick code is available in http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/gp-code/GPinc.tar.gz

Acknowledgements I would like to thank Stephan Winkler, Sara Silva, people at GPTP and
anonymous reviewers. This work was inspired by conversations at Dagstuhl Seminar 18052 on
Genetic Improvement of Software [26].

Funded by EPSRC grant EP/P005888/1.

References

1. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: J.J. Grefenstette
(ed.) Proceedings of the Second International Conference on Genetic Algorithms and their
Application, pp. 14–21. Lawrence Erlbaum Associates, Cambridge, MA, USA (1987)

2. Blickle, T.: Theory of evolutionary algorithms and application to system synthesis. Ph.D.
thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1996). URL http://
dx.doi.org/10.3929/ethz-a-001710359

3. de Melo, V.V., Fazenda, A.L., Sotto, L.F.D.P., Iacca, G.: A MIMD interpreter for ge-
netic programming. In: P.A. Castillo, J.L. Jimenez Laredo, F. Fernandez de Vega
(eds.) 23rd International Conference, EvoApplications 2020, LNCS, vol. 12104, pp. 645–
658. Springer Verlag, Seville, Spain (2020). URL http://dx.doi.org/10.1007/
978-3-030-43722-0_41

4. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley (1989)

5. Guizzo, G., Petke, J., Sarro, F., Harman, M.: Enhancing genetic improvement of software with
regression test selection. In: A. van Deursen, T. Xie, N.J.O. Dieste (eds.) Proceedings of the
International Conference on Software Engineering, ICSE 2021. IEEE (2021). URL http:
//dx.doi.org/10.1109/ICSE43902.2021.00120. Winner ACM SIGSOFT Dis-
tinguished Artifact Award

6. Hrbacek, R., Sekanina, L.: Towards highly optimized cartesian genetic programming: from
sequential via SIMD and thread to massive parallel implementation. In: C. Igel, D.V. Arnold,
C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni, K. Deb, B. Do-
err, J. Foster, T. Glasmachers, E. Hart, M.I. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin,
M. Kessentini, J.D. Knowles, W.B. Langdon, P. Larranaga, S. Luke, G. Luque, J.A.W. McCall,
M.A. Montes de Oca, A. Motsinger-Reif, Y.S. Ong, M. Palmer, K.E. Parsopoulos, G. Raidl,
S. Risi, G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff, K.O. Stanley, T. Stuetzle, D. Thierens,
J. Togelius, C. Witt, C. Zarges (eds.) GECCO ’14: Proceedings of the 2014 conference on Ge-
netic and evolutionary computation, pp. 1015–1022. ACM, Vancouver, BC, Canada (2014).
URL http://dx.doi.org/10.1145/2576768.2598343

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
http://dx.doi.org/10.3929/ethz-a-001710359
http://dx.doi.org/10.3929/ethz-a-001710359
http://dx.doi.org/10.1007/978-3-030-43722-0_41
http://dx.doi.org/10.1007/978-3-030-43722-0_41
http://dx.doi.org/10.1109/ICSE43902.2021.00120
http://dx.doi.org/10.1109/ICSE43902.2021.00120
http://dx.doi.org/10.1145/2576768.2598343

20 W. B. Langdon

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA (1992). URL http://mitpress.mit.
edu/books/genetic-programming

8. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming III: Dar-
winian Invention and Problem Solving. Morgan Kaufmann (1999). URL http://www.
genetic-programming.org/gpbook3toc.html

9. Langdon, W.B.: Long-term evolution of genetic programming populations. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pp. 235–
236. ACM, Berlin (2017). URL http://dx.doi.org/10.1145/3067695.3075965

10. Langdon, W.B.: Parallel GPQUICK. In: C. Doerr (ed.) GECCO ’19: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pp. 63–64. ACM, Prague, Czech
Republic (2019). URL http://dx.doi.org/10.1145/3319619.3326770

11. Langdon, W.B.: Genetic improvement of genetic programming. In: A.S. Brownlee, S.O.
Haraldsson, J. Petke, J.R. Woodward (eds.) GI @ CEC 2020 Special Session, p. paper
id24061. IEEE Computational Intelligence Society, IEEE Press, internet (2020). URL http:
//dx.doi.org/10.1109/CEC48606.2020.9185771

12. Langdon, W.B.: Multi-threaded memory efficient crossover in C++ for generational genetic
programming. SIGEVOLution newsletter of the ACM Special Interest Group on Genetic and
Evolutionary Computation 13(3), 2–4 (2020). URL http://dx.doi.org/10.1145/
3430913.3430914

13. Langdon, W.B.: Multi-threaded memory efficient crossover in C++ for generational genetic
programming. ArXiv (2020). URL http://arxiv.org/abs/2009.10460

14. Langdon, W.B.: Fitness first and fatherless crossover. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’21. ACM, Internet (2021). URL
http://dx.doi.org/10.1145/3449726.3459437. Forthcoming

15. Langdon, W.B.: Incremental evaluation in genetic programming. In: T. Hu, N. Lourenco,
E. Medvet (eds.) EuroGP 2021: Proceedings of the 24th European Conference on Genetic
Programming, LNCS, vol. 12691, pp. 229–246. Springer Verlag, Virtual Event (2021). URL
http://dx.doi.org/10.1007/978-3-030-72812-0_15

16. Langdon, W.B., Banzhaf, W.: Continuous long-term evolution of genetic programming. In:
R. Fuechslin (ed.) Conference on Artificial Life (ALIFE 2019), pp. 388–395. MIT Press, New-
castle (2019). URL http://dx.doi.org/10.1162/isal_a_00191

17. Langdon, W.B., Banzhaf, W.: Faster genetic programming GPquick via multicore and ad-
vanced vector extensions. Tech. Rep. RN/19/01, University College, London, London,
UK (2019). URL http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_
rn1901.pdf

18. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. IEEE
Transactions on Evolutionary Computation 19(1), 118–135 (2015). URL http://dx.doi.
org/10.1109/TEVC.2013.2281544

19. Langdon, W.B., Petke, J., Clark, D.: Dissipative polynomials. In: N. Veerapen, K. Malan,
A. Liefooghe, S. Verel, G. Ochoa (eds.) 5th Workshop on Landscape-Aware Heuristic Search,
GECCO 2021 Companion. ACM, Internet (2021). URL http://dx.doi.org/10.
1145/3449726.3463147

20. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer-Verlag (2002). URL
http://dx.doi.org/10.1007/978-3-662-04726-2

21. Lim, M., Guizzo, G., Petke, J.: Impact of test suite coverage on overfitting in genetic improve-
ment of software. In: J.P. Galeotti, B. Sharif (eds.) 12th International Symposium on Search
Based Software Engineering SSBSE 2020, LNCS, vol. 12420, pp. 188–203. Springer, Bari,
Italy (2020). URL http://dx.doi.org/10.1007/978-3-030-59762-7_14

22. Petke, J.: Constraints: The future of combinatorial interaction testing. In: 2015 IEEE/ACM
8th International Workshop on Search-Based Software Testing, pp. 17–18. Florence (2015).
URL http://dx.doi.org/doi:10.1109/SBST.2015.11

23. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Ge-
netic improvement of software: a comprehensive survey. IEEE Transactions on Evolution-

http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://dx.doi.org/10.1145/3067695.3075965
http://dx.doi.org/10.1145/3319619.3326770
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1145/3430913.3430914
http://dx.doi.org/10.1145/3430913.3430914
http://arxiv.org/abs/2009.10460
http://dx.doi.org/10.1145/3449726.3459437
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1162/isal_a_00191
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1145/3449726.3463147
http://dx.doi.org/10.1145/3449726.3463147
http://dx.doi.org/10.1007/978-3-662-04726-2
http://dx.doi.org/10.1007/978-3-030-59762-7_14
http://dx.doi.org/doi:10.1109/SBST.2015.11

Fitness First 21

ary Computation 22(3), 415–432 (2018). URL http://dx.doi.org/doi:10.1109/
TEVC.2017.2693219

24. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and
code transplants to specialise a C++ program to a problem class. In: M. Nicolau,
K. Krawiec, M.I. Heywood, M. Castelli, P. Garcia-Sanchez, J.J. Merelo, V.M. Rivas San-
tos, K. Sim (eds.) 17th European Conference on Genetic Programming, LNCS, vol. 8599,
pp. 137–149. Springer, Granada, Spain (2014). URL http://dx.doi.org/10.1007/
978-3-662-44303-3_12

25. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for different down-
stream applications using genetic improvement and code transplantation. IEEE Transactions
on Software Engineering 44(6), 574–594 (2018). URL http://dx.doi.org/10.1109/
TSE.2017.2702606

26. Petke, J., Le Goues, C., Forrest, S., Langdon, W.B.: Genetic improvement of software: Report
from dagstuhl seminar 18052. Dagstuhl Reports 8(1), 158–182 (2018). URL http://dx.
doi.org/10.4230/DagRep.8.1.158

27. Poli, R.: TinyGP. TinyGP GECCO 2004 competition (2004). URL http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/papers/poli04__tinyg.pdf

28. Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: L. Spector, W.B. Lang-
don, U.M. O’Reilly, P.J. Angeline (eds.) Advances in Genetic Programming 3, chap. 13, pp.
301–323. MIT Press, Cambridge, MA, USA (1999). URL http://www.cs.ucl.ac.
uk/staff/W.Langdon/aigp3/ch13.pdf

29. Poli, R., Langdon, W.B.: Running genetic programming backward. In: T. Yu, R.L. Riolo,
B. Worzel (eds.) Genetic Programming Theory and Practice III, Genetic Programming, vol. 9,
chap. 9, pp. 125–140. Springer, Ann Arbor (2005). URL http://dx.doi.org/10.
1007/0-387-28111-8_9

30. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk
(2008). URL http://www.gp-field-guide.org.uk. (With contributions by J. R.
Koza)

31. Singleton, A.: Genetic programming with C++. BYTE pp. 171–176 (1994). URL http:
//www.assembla.com/wiki/show/andysgp/GPQuick_Article

32. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Transac-
tions on Evolutionary Computation 15(4), 515–538 (2011). URL http://dx.doi.org/
10.1109/TEVC.2010.2083669

http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.4230/DagRep.8.1.158
http://dx.doi.org/10.4230/DagRep.8.1.158
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli04__tinyg.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli04__tinyg.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://dx.doi.org/10.1007/0-387-28111-8_9
http://dx.doi.org/10.1007/0-387-28111-8_9
http://www.gp-field-guide.org.uk
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://dx.doi.org/10.1109/TEVC.2010.2083669
http://dx.doi.org/10.1109/TEVC.2010.2083669

	Fitness First
	W. B. Langdon
	Introduction
	Faster Genetic Programming via Parallel Hardware
	Multiple CPU Cores
	Multiple Fitness Cases Simultaneously
	Fitness First

	Avoiding Effort Wasted on Poor Fitness Individuals
	Asymmetry of GP subtree crossover
	Last Child Inplace Dad-Less Crossover

	Efficiency of memmove v. memcpy
	Speed of Fitness First and Incremental Fitness
	Mathematical Model of Number of Parents
	Number of Parents Initially and in Diverse Populations

	Multi-threading Implementation Issues
	Idle Threads
	Future Work: Predicting Thread Execution Time

	Conclusions
	References

