

# Identification of spatial biases in Affymetrix oligonucleotide microarrays

Jose Manuel Arteaga-Salas, Graham J. G. Upton, William B. Langdon and Andrew P. Harrison

University of Essex, U. K.





- 1. Introduction
- 2. Identification of spatial biases with replicates .
- 3. <u>Reduction</u> of spatial biases <u>with replicates</u>.
- 4. Identification of spatial biases without replicates.
- 5. <u>Reduction</u> of spatial biases <u>without replicates</u>.
- 6. Conclusions



# 1. Introduction

- Microarrays are popular tools to measure gene expression.
- Several laboratories invest important resources on this technology.
- Affymetrix Oligonucleotide Microarrays <u>contain</u> spatial biases in their hybridizations (Suarez-Fariñas *et. al.* (2005); Langdon *et. al.* (2008)). The problem is <u>independent</u> of chip-type.
- Some methods have been proposed to <u>identify</u> and <u>reduce</u> these biases <u>for replicated arrays</u>.
- No methods available for experiments without replication.



## 2. Identification of spatial flaws w/replicates

- Suarez-Fariñas *et. al.* (2005) developed the "<u>Harshlight</u>" package (available in Bioconductor).
- Harshlight uses statistical and image processing methods to identify spatial defects.
- After identification of flawed locations in the array the user can correct by **substituting with the median** value of all the available arrays at each location, **or with "N/A"**.
- **<u>Disadvantage</u>**: ONLY works in the presence of replicate arrays.





#### Chip summary:

Extended defects: the variance of the Error Image explained by the background is 11.64

|                                                | compact | diffuse |
|------------------------------------------------|---------|---------|
| Number of clusters found:                      | 9       | 9       |
| Percent of the surface covered by the defects: | 0.02    | 5.34    |

Harshlight report for 3 replicates of the GSE4217 experiment available at GEO (arrays GSM96262-4)





## 2.1 Another method

• Arteaga-Salas *et. al.* (2008) developed an independent method to identify spatial biases <u>using</u> replicate arrays.

•For location (*i*,*j*) and replicate r calculate  $d_{iir}$ 

$$d_{ijr} = \frac{L_{ijr} - \alpha_{ij}}{\beta_{ij}}$$

Where  $L_{ijr}$  is the logarithm of the observed intensity values,  $\alpha_{ij}$  is the median of the  $L_{ijr}$  values and  $\beta_{ij}$  is the standard deviation of the  $L_{ijr}$  values.

Select locations where **abs(d**<sub>ijr</sub>)>25% (say).



- The selected locations represent <u>"unusually high"</u> or <u>"unusually</u> <u>low"</u> values, in comparison with a <u>reference set</u> (in this case, the reference set is the <u>median</u> of all replicates).
- <u>Disadvantage</u>: ONLY works in the presence of replicate arrays.
- <u>Next</u>:

Example 1: Three <u>HG-U133 Plus 2.0</u> replicates (from GEO).

Example 2: Three <u>HG-U133A</u> replicates (from Affymetrix).

Example 3: Four **<u>DrosGenome1</u>** replicates (from GEO).



### **Replicate 1**

### **Replicate 2**

### Replicate 3

University of Essex



Spatial flaws for 3 replicates of the GSE4217 experiment available at GEO (GSM96262-4) using HG-U133A Plus 2.0 arrays





Spatial flaws for 3 replicates of the HG-U133A SpikeIn Experiment -- Affymetrix







Spatial flaws for 4 replicates of the GSE6515 experiment available at GEO (GSM149276-9) using DrosGenome1 arrays





# **3. Reducing spatial biases w/replicates**

- Harshlight proposes to <u>substitute</u> flawed locations <u>with the</u>
   <u>median</u> (HMS) of all the arrays at each location or with "<u>N/A</u>".
- Arteaga-Salas *et. al.* (2008) introduced <u>two procedures</u> to assist with flaw removal:
- <u>CPP</u> (complementary probe pair) adjustment, suitable <u>only</u> for <u>replicated</u> arrays.
- **LPE** (local probe effect) adjustment, suitable for **replicate or nonreplicate** arrays.
- CPP and LPE can be used <u>separately</u> or <u>in sequence</u>.



## **3.1 Local Probe Effect (LPE) adjustment**

- LPE can be used whenever R (R>2) <u>arrays</u> are available.
- It uses the spatial structure in a <u>5 x 5 window</u> centred at location *(i,j)* to decide whether adjustment should take place.
- For array *r* we <u>first</u> calculate the values  $d_{ijr}$  given by,

$$d_{ijr} = \frac{L_{ijr} - \alpha_{ij}}{\beta_{ij}}$$

Where  $L_{ijr}$  is the logarithm of the observed value,  $\alpha_{ij}$  is the median of the  $L_{ijr}$  values and  $\beta_{ij}$  is the standard deviation of the  $L_{ij}$  values.



• Now, define  $I_{ii}$  and  $G_{ii}$  as follows:

 $I_{ii}$  – The identifier of the array where  $d_{iir}$  has largest absolute value.

 $G_{ij}$  – Is 1 if the *d*-value with largest magnitude is positive, otherwise is equal to -1.

Using these two values calculate *E<sub>ii</sub>* with,

$$E_{ij} = I_{ij} \times G_{ij}$$

So, with *R* arrays, *E<sub>ij</sub>* takes <u>one</u> of the values { -*R*,-(*R*-1),...,-2,-1, 1,2,... (*R*-1),*R* }



• <u>An example</u>,

Cell at location (i,j)

|                  | <i>r</i> =1 | r=2    | r=3    |
|------------------|-------------|--------|--------|
| Original         | 45          | 38.8   | 34952  |
| L <sub>ijr</sub> | 3.807       | 3.658  | 10.462 |
| d <sub>ijr</sub> | -0.558      | -0.596 | 1.154  |

| $\alpha_{ij}$ =   | 5.976 |
|-------------------|-------|
| β <sub>ij</sub> = | 3.886 |
|                   |       |
| I <sub>ij</sub> = | 3     |
| G <sub>ij</sub> = | 1     |
|                   |       |

5 x 5 window centered at (i,j)



17 cases where E=3

• If the <u>5 x 5 window</u> contains a <u>majority</u> of <u>informative locations</u> (PM or MM only) with the <u>same *E*-code</u>, then a <u>spatial bias</u> is present.

We **adjust** the value in cell (*i*,*j*,*r*).



- Let  $\Delta$  be the set of **N** informative locations within the window (in the example, **N=17**).
- •For each location in  $\Delta$  we calculate the *d*-values for array *r* in need of correction, and let  $\overline{d}$  be their average.
- The adjusted value  $L^a_{ijr}$  is given by,

$$L^a_{ijr} = L_{ijr} - \beta_{ij} \,\overline{d}$$



## **3.2 Results**

• We apply LPE+CPP and Harshlight Median Substitution (HMS) to Example 1 to illustrate the <u>reduction</u> of the spatial biases:

## **Total % of defects**

|             | replicate 1  | replicate 2  | replicate 3  |
|-------------|--------------|--------------|--------------|
| original    | <b>→</b> 6.3 | <b>→</b> 7.9 | <b>→</b> 8.9 |
| HMS (once)  | 1.7          | 3.0          | 3.3          |
| HMS (twice) | 0.8          | 2.2          | 2.3          |
| СРР         | 0.0          | 0.0          | 1.0          |
|             | 0.9          | 0.9          | 1.8          |
| LPE         | 3.8          | 5.3          | 5.2          |
| CPP+LPE     | 0.8          | 0.9          | 1.8          |
| LPE+CPP     | → 0.6        | → 0.6        | <b>→</b> 1.7 |



## **Example 1 (three HG-U133 Plus 2.0 replicates)**







## **Example 1 after LPE+CPP**







# How do we know that these adjustments are the *appropriate* adjustments?





ROC curves to measure the rate of false/negative positives in the HG-U133A Spike-In Experiment (Affymetrix) before and after Spatial Flaws Reduction. Gene Expression summarized with RMA.



From Arteaga-Salas *et. al. (2008)* in "Statistical Applications in Genetics and Molecular Biology" (SAGMB).



Arteaga-Salas, et. al.

University of Esse>

## **4. Identification --- without replicates**

- In the absence of replicates the two methods described before are not applicable to visualize spatial flaws.
- To identify spatial biases without replicates we need an <u>alternative</u>
   <u>reference set</u> to compare the values.
- Langdon *et. al.* (2008) calculated an "<u>Average GeneChip</u>" and a "<u>Variance GeneChip</u>" using Affymetrix Chips in the Gene Expression Omnibus (<u>GEO</u>) as available in February 2007.
- This was done separately by Chip type and organism.



# 4.1 The Average GeneChip

- To obtain the "Average GeneChip" the <u>arithmetic mean</u> of the **natural logarithm** of the observed probe values in each available chip was calculated.
- The <u>upper and lower 0.5%</u> of the values were discarded to avoid the effects of outliers.
- Using the same set of data the <u>variance</u> was calculated to obtain the "Variance GeneChip".



## **4.2 Steps to visualize spatial biases**

Let A be the Average GeneChip, V the Variance GeneChip and L the logarithm of the observed values.

1. For each location *(i,j)* in the array, calculate

$$h_{ij} = \frac{L_{ij} - A_{ij}}{\sqrt{V_{ij}}}$$

 Sort h<sub>ij</sub> by column j. For each sorted value assign a rank, and store them in <u>array K</u>.



- 3. Define a "**sub-array**" centered at *(i,j)*. A sub-array **size 11 x 11** includes enough spatial information in a neighbourhood.
- 4. The sub-array centered at K<sub>ij</sub> contains information about
  PM/MM/other probes. To <u>avoid correlated values</u> we do not consider adjacent cells (only one probe in a PM,MM probe pair). In total we select <u>61 probes</u> from the total 121 available.

Calculate the scores  $Z_{ij}$ ,  $_{61}$ 

$$Z_{ij} = \frac{\sum_{n=1}^{01} K_n - 61^* \mu}{\sqrt{61^* \sigma^2}}$$

 $\mu$  is the mean and  $\sigma^2$  is the variance of a discrete uniform distribution (defined by the size of the chip).

The scores  $Z \sim N(0, S^2)$ . In the absence of spatial biases  $S^2=1$ .

 Plot the locations where *abs(Z)>= 2\*S* to identify neighbourhoods with unusually low or unusually high values.

Following these 5 steps we applied the procedure separately to <u>three HG-U133 Plus 2.0 arrays</u> from GEO (GSM46959, GSM76563 and GSM117700), from the accession number GSE2109.





**GSM76563** 

## **GSM117700**

Scratch

University of Essex



Blobs

## Unusual concentration



# 5. Reducing biases – without replicates

- <u>**Problem</u>**: In the absence of replicates, <u>**two of the three**</u> methods presented are not applicable (CPP and Harshlight are not, LPE is).</u>
- Without replicates we don't know which are the "correct" values (we need some reference arrays).
- <u>Alternative</u>: We can <u>compare</u> a "contaminated" array <u>with other</u>
   <u>arrays</u> (at least two) <u>of the same type</u> where flaws have been <u>previously</u>
   reduced.
- In Section 4 we presented three HG-U133A Plus2.0 arrays "contaminated". In Section 3 we "cleaned" three replicate arrays of the same type.



<u>The "clean" arrays</u>: <u>choose two</u> of the three replicates previously cleaned with LPE+CPP (let's choose the first and second replicates according to the Table).

<u>The "contaminated" arrays</u>: the three arrays presented in part 3.2 (the process is done <u>separately</u> for the three arrays).

- We now have three arrays of the same type.
- We can remove the flaws in the contaminated array using <u>LPE</u>.



### GSM46959

**GSM76563** 

## **GSM117700**







## **Remaining flaws after LPE**







# 5. Conclusions

- Oligonucleotide arrays <u>contain</u> spatial flaws in their hybridizations (they are usually manifested as "blobs", "rings" or "scratches").
- The problem **<u>IS NOT</u>** uncommon.
- Some methods to reduce flaws exist, but <u>not</u> for experiments <u>without replication</u>.
- Spatial biases **AFFECT** gene expression measurements.



# **THANK YOU!**



