
Modeling and Simulation Optimization Using Evolutionary
Computation

Edwin Núñez
Paul Agarwal

COLSA Corporation
6726 Odyssey Drive

Huntsville, AL 35806
256-964-5295, 256-964-5355

enunez@colsa.com, pagarwal@colsa.com

Marshall McBride
Ron Liedel

Claudette Owens
U.S. Army Space & Missile Defense Command (USASMDC)

Huntsville, AL 35898
marshall.mcbride@us.army.mil, ronald.liedel@us.army.mil, claudette.owens@us.army.mil

Keywords:

Evolutionary computation, genetic programming, software tools, optimization techniques, modeling and
simulation

ABSTRACT: Evolutionary computation (EC) is a general term applied to a group of global optimization
techniques whose main characteristics are inspired by biological evolution. Instead of working with one
possible solution at a time, they usually start with a population of random solutions. The initial population
evolves into a better set of solutions through three main processes: selection, recombination, and mutation.
Those solutions having greater fitness are preferentially selected for recombination to produce a new set of
possible solutions. Mutation is also used to maintain diversity within the newly created solutions. Through
these processes, the fittest solutions transfer their characteristics to a new generation of solutions. By
iterating over many generations, EC can find solutions to many complex problems.

Models and simulations, especially those working as a federation, can serve as the fitness function to
determine the value or adequacy of particular solutions. In such federations, genetic programming (GP) or
other EC techniques can quickly find optimal or near-optimal solutions for particular problems or
situations. The user is not required to systematically search for the optimal solution; the computer
accomplishes that task. The tradeoff for accepting this advantage is the requirement for the use of high
performance computing resources.

In this paper we briefly describe the fundamental characteristics of EC. We also show some of the results
obtained during our research and development efforts on different problems like image noise reduction and
discrimination of buried unexploded ordnance. We also provide examples of how EC can be used with
models and simulations to find optimum solutions to many complicated problems. This technique has great
potential for use with models and simulations in a federated environment. The modeling and simulation
community needs to become more aware of these powerful EC techniques so they may be applied in a wide
range of fields to quickly provide solutions to the warfighter.

Distribution A. Approved for public release; distribution unlimited.

1. Introduction

For some fifty years now, computer scientists
have attempted to find ways to teach computers
how to solve simple programs in an automated
fashion. Friedberg and some collaborators
conducted efforts in this direction initially. [1],
[2] Artificial intelligence techniques were used
in the ensuing decades with limited results. For
“real world” problems the solution space is
generally extremely complicated. In addition,
these spaces are neither continuous nor
differentiable. Classical optimization techniques
are not applicable in such cases. [3]

In the last couple of decades, emphasis has
shifted to evolutionary computation (EC)
techniques. They can solve complex problems in
an automated fashion. There are many variants
of EC, although they share certain fundamental
characteristics. They differ mainly in the
particular techniques used to pose and solve the
problem under investigation. Amongst these
different EC fields we find genetic algorithms
(GA), evolutionary strategies, immune systems,
grammatical evolution, genetic programming
(GP), gene expression programming (GEP) and
many others. Succinct explanations of many of
these techniques and their main characteristics
are available in the books of Sait and Youssef
[4], and by Glover and Kochenberg [5].

All of these techniques are inspired in
evolutionary biology. John Holland of the
University of Michigan was inspired by
evolution’s capability of solving very complex
natural problems. He decided to explore the use
of evolutionary principles as applied to
computation. [6] As the field has matured,
optimized solutions to problems of increasing
complexity have been found using these
techniques. Because of its roots in evolutionary
biology, the terminology used in EC is borrowed
from biological terms. Consequently, terms like
gene, chromosome, mutation, fitness, and others
are commonly used. [7]

In this paper we will expand on the work
presented during the High Performance
Computing Modernization Program, Users
Group Conference 2005 [8]. We will provide a
brief introduction to EC. Examples of these
computational methods will help to elucidate the
techniques used. The examples used will also
show how models and simulations can be used
along with EC as part of the search for optimized

solutions to complex problems. In such cases,
the availability of High Performance computing
(HPC) resources is generally indispensable. In
addition, a discussion of the special needs of
users applying evolutionary computation will be
presented. Possible efficient computational
architectures for exploiting the HPC resources
will also be offered.

2. General Characteristics of EC

Evolutionary computation is a global
optimization technique that is modeled after the
processes of evolutionary biology. EC
techniques do not work with one solution at a
time as the techniques we are most familiar with
do. Instead, EC works with a population of
solutions, i.e., it works with a large number of
solutions at the same time. It starts with a
population of random potential solutions and
evolves better ones over many successive
generations. Selection pressure causes each
generation of solutions to improve over previous
ones. To avoid getting trapped at a local
optimum, the operations of recombination and
mutation are applied so different regions of the
solutions space are explored.

Evolutionary computing techniques are broadly
applicable to a wide variety of problems. They
have been used in areas as diverse as digital
circuit filter design [9], Wireless LAN antenna
design [10], sonic boom reduction in supersonic
aircraft [11], data mining [12], quantum
computer circuit design [13], and non-linear
programming [14], to name only a few. In our
work we have also used it to reduce image
random noise, in the discrimination of buried
unexploded ordnance (UXO), in determining the
minimum-time-to-target for a simple missile, and
in modeling the Bi-Directional Reflectance
Function (BRDF) for different surfaces at lidar
wavelengths. Our work and this paper are mostly
concentrated on genetic programming (GP) and
in particular, are inspired by a sub-field thereof
known as gene expression programming (GEP).
[15]

3. Requirements for Applying EC

Before using EC we must first ask which
problems lend themselves to analysis with this
technique. Several simple requirements must be
met before a problem is considered to be a good
candidate for EC techniques. We must determine

how we are going to encode the problem, what is
going to be used as the fitness function and what
are the computational resources available.

1. Encoding. The researcher must elaborate a

concise representation for potential solutions
to the problem. Solutions are often encoded
in the form of a linear string of mathematical
symbols (operators) or features that is called
a chromosome.

2. Fitness function. The researcher must find a
way to determine the merit of potential
solutions. This is expressed as a fitness
function. It allows one to compare the merits
of any two members of the population of
potential solutions. Selection of
chromosomes for later reproduction can then
be based on this fitness value.

3. Computer resources. Sufficient
computational resources must exist to
evaluate the fitness function over the entire
population of potential solutions and over
many consecutive generations.

The first condition requires a careful study of the
problem by the researcher along with some of
her creativity and ingenuity. The latter are used
to develop the appropriate way to encode the
chromosomes and to generate operators that
prove fruitful. The second requirement involves
an understanding of the problem’s nuances.
Additional creativity is essential to elaborate an
adequate fitness function that properly evaluates
the merits of each specific chromosome
(solution). In addition, the evaluation of the
fitness function generally requires very large
computational resources. The fitness function
may be linked to highly complex models or
simulations that need to be evaluated to
determine the quality of the evolved solution. In
general, most of the computational time is spent
evaluating the fitness function. This is
particularly true when it involves the evaluation
of or more models or simulations.

4. Chromosomes, Fitness Function,
Recombination, and Mutation

To solve a problem using EC, we must find a
way to express possible problem solutions in the
form of a chromosome. We will show how this
can be done by use of a simple example: the
traveling-salesperson problem (TSP). The
concise representation of a chromosome could

simply be a string with a list of the cities to be
visited in the order in which they should be
visited. This would be a string of the form
“ABCD…” where the letters could represent the
cities of Atlanta, Boston, Chicago, Denver, etc.
The string could then be interpreted as a path
starting at city A and eventually returning from
the last to the first city. In this case, every string
permutation is a potential solution since it
represents the ordered path between the different
cities. The fitness function would then simply be
the sum of the inter-city distances. The lower the
fitness function value, the better the potential
solution, making it more likely to survive to the
next generation.

Figure 1 illustrates how recombination between
two chromosomes is accomplished. The
chromosomes of two parents are combined to
create the chromosomes of the next generation.
These new chromosomes then represent the
“offspring” of the previous generation. Two
parental chromosomes designating different TSP
paths are combined to produce the chromosomes
of the next generation. These offspring give new
paths between the cities. The parental
chromosomes are recombined between positions
6 and 7. The resultant offspring chromosomes
have the head sequence of one parent and the tail
sequence of the other. For TSP, care must be
taken to avoid duplicate cities in the path, a
characteristic of such permutation problems.

Figure 1 Chromosome mating using one-point
crossover at randomly selected position.

The process of mutation can also be illustrated
using figure 1. For these chromosomes, we
would have one form of mutation if in the first
offspring chromosome we randomly selected a
position—say at R— and exchanged the letter
sequence from RL to LR. Selection pressure is

achieved by giving the “most fit” parental
chromosomes, i.e., those with shorter paths, a
greater probability of becoming the parents for
the next generation. In this manner the
population moves towards better solutions.

Figure 2 illustrates this TSP example using 84
cities. Certainly genetic programming is not the
best method for optimizing a TSP problem. This
example is merely shown to illustrate the
processes used in genetic computations.

Figure 2 TSP problem. (a) Best random path
(chromosome) from initial population (b) Best
path after 500 generations (c) Best path after
evolution through 25,000 generations (only 6
seconds of evolution for this simple case).

Care is taken to adjust the selection pressure to
match the computational resource budget. High
selection pressure causes improvements to
spread more rapidly through the population, but
at the expense of population diversity, thus
possibly missing a global optimum solution. The
phrase “exploration versus exploitation” is often
used to describe this trade-off. When
computational resources are adequate, selection
pressure can be quite low.

The reader is referred to a great and rapidly
growing body of literature on EC and GP for

history, more techniques, theory, and examples.
In particular, looking at the papers presented at
the proceedings of the Genetic and Evolutionary
Computation Conferences (GECCO) [16] [17]
will show the wide range of topics covered
(www.isgec.org). These describe a great variety
of operations that we cannot explain here due to
space limitations. They expand and improve
upon the basic algorithms, and include elitism,
niching, mass extinction, embedded parameters,
and numerous sorts of types of selection,
mutation, and recombination.

5. Work at the ARC

5.1 ARCGPL

The Advanced Research Center Genetic
Programming Lab (ARCGPL) is a full-featured
evolutionary computing lab that can run stand-
alone (using an internal evolver) or with any
number of external evolvers (see figure 3). It
supports all evolutionary computing paradigms
including GP, GA, finite state machine (FSM),
permutation, and, through extensions, any other
EC type. A wizard facilitates encoding the
problem under investigation. The ARCGPL has
almost 150 parameters settable through the GUI
dealing with selection, recombination, mutation,
population control, parsimony, logging, etc. It
provides help for every panel and has a built-in
tutorial and several built-in demonstrations.
Classic features such as niching, mass extinction,
elitism, scheduling, etc., are implemented.
Commands may be issued through the GUI, by
command line, or by script. Preferences can
automate initialization at startup to save time.
Run progress can be monitored and controlled
through the GUI or by script. Statistical
information is provided to the user and can be
managed through the GUI.

5.2 GP and buried unexploded ordnance

Expression encoding is stressed herein because it
is a part of so many types of genetic
programming. For example, the authors have
used arithmetic expressions that are a function of
sensor readings obtained for buried unexploded
ordnance (UXO) to discriminate ordnance from
non-ordnance. The resulting value for the
expressions is compared with a threshold to
decide whether the buried anomaly represents
ordnance or perhaps a discarded automobile
radiator. Since the dig cost is enormous, such
discrimination ability can be quite valuable. The

authors recently presented a paper on this buried
UXO problem at this year’s Genetic and
Evolutionary Computing Conference (GECCO
2005, also known as ACM SigEVO) [18]. We
have also evolved filters for removing noise from
images and duplicated previously reported
results for a combustion problem.

6. Interaction

When doing evolutionary computation there are
a large number of parameters that must be
controlled by the user. It is quite important for
people doing evolutionary computation to have
ready access to their computations. They must
frequently inspect their computations to see how
their solutions are evolving. According to how
well they are performing the user might change
some of the parameters to achieve better results
according to their judgment. Some of these
parameters are: rates of the different types of
mutation and recombination, frequency of
population migration, mass extinction rates, and
many others. This need for increased user
interactivity means they will be better served by
a computation center that not only has high
performance computing resources, but also can
accommodate them and where they can be
present to quickly determine what is happening
and to make necessary changes. The Space and
Missile Defense Command’s Advanced
Research Center (ARC) in Huntsville, Alabama,
is well prepared for this kind of interactivity with
the HPC user.

7. HPC and EC

The third requirement, namely computer
resources, is apparent in many, if not most good
GP candidate problems. For example, Moore 16
describes a missile counter-measure problem
where a strategy was evolved to evade an anti-
aircraft missile. In this problem, a complex
strategy of countermeasures optimization is
investigated. A jet attempts to evade a missile
through the use of several countermeasures:
maneuvers, flares, and jamming of the missile’s
radar. Classical evasion techniques required the
airplane to maneuver in a specific way when the
missile reached a certain distance from the
airplane. The chromosomes developed by Moore
consisted of the sequence of countermeasures
taken by the jet airplane that took into account
uncertainties about the type and current state of

the pursuing missile. Evaluation of each
chromosome’s fitness required running a
simulation of both the attacking missile with its
sensors and the airplane in flight as it
maneuvered and performed the indicated
sequence of countermeasures. Running these two
full simulations concurrently to evaluate each
chromosome representing a possible solution
required a large computational resource. As a
result, the researcher could test only a limited set
of sequences before exhausting the number of
CPU hours allocated. Complicating the results
was the fact that this paucity of computational
resources severely restricted the population of
possible solutions examined. The population of
chromosomes was kept unnecessarily small (100
individuals in each generation) and the number
of generations for evolution restricted to just a
few dozen. Even with the restrictions imposed by
the limited computational resources, the series of
countermeasures developed through the use of
GP attained substantially better survivability
rates than those developed analytically.

There are many such important problems that
could be investigated through the use of
evolutionary computation but have not been
explored due to the lack of powerful enough
computers. It would be quite appropriate for the
HPC community to understand the needs of this
kind of user and to prepare for their increasing
use of computational resources.

8.0 EC and Optimization of Models
and Simulations

Frequently, we must run different models and
simulations in a federation, where the behavior
of one affects the others. This is often done to
explore and evaluate different courses of action.
If a particular set of actions is taken in the first
model or simulation, it will yield results that
preclude certain actions in the second model or
simulation and require other responses. How do
we decide on the best courses of actions when
more than one model or simulation is used and
each interacts with the others? Currently, the
users do this, even when a very complex chain of
events is contemplated. The user decides
beforehand how to act under a particular set of
circumstances or conditions. Experience and
intuition serve as the main guides to decide on
the best course of action or strategy for a
simulation and how to respond when events or
conditions do not match what is expected. After

the simulations run and produce results, the user
studies the responses to establish what new
strategies or courses of action must be developed
in light of what actually happened. This process
is difficult, not only because it may take
extensive computer resources to run the
simulations each time, but because the user must
decide, often in light of a very large number of
variables, how exactly they must respond to the
results. Attaining an optimized strategy or set of
actions under those conditions is close to
impossible.

EC presents us with a new paradigm. Why not
let the computer itself search for optimum or
near-optimum sets of actions or strategies? When
properly posed, GP or other particular EC
techniques can search for the best strategies or
behaviors to attain a particular objective. For this
purpose, the user needs to search for a way to
express simulation behaviors and interactions in
the form of chromosomes. This may seem rather
difficult at first, but with some research into the
problem and experience working with EC, it
turns out to be less complicated than expected. In
the same manner, we also need to decide what
are the desired outcomes and develop an
adequate fitness function. This fitness function
must evaluate the chromosomes so that solutions
closer to the desired behavior yield better fitness.
Such chromosomes will then have a greater
probability of becoming the parents of the next
generation. In this manner, an optimum or near
optimum strategy can be found. The user then
leaves the task of optimizing the search for the
best set of actions and interactions between
simulations to the computer. Their main function
from then on would be to ensure there exist
adequate HPC resources for the interacting
simulations to work and for the evaluation of the
chromosomes to take place.

This is merely an extension of the approach
taken when EC is used in the design of antennas
or in the optimization of other tasks. Instead of
the user performing the bulk of the exploration
of all possible solutions (generally an impossible
task), this work is left to the computer. With
adequate HPC resources, the modeling and
simulation community could reach near-
optimum solutions in reasonable time.

9. GP Architectures for HPC

The need for very large computational resources
in many problems where GP is used has
generated great interest in the parallelization of
the computations. Amongst the different ways in
which the parallelization can take place there are
two that seem to be the most used. In the
chromosome server approach, each node
evaluates one possible solution chromosome
independently. In the population server
approach, each node can evaluate one or more
populations of chromosomes. In that case,
several populations are evaluated
simultaneously. Each node then is equivalent to
an island-like separated environment where
evolution takes place. In our research we have
used HPC resources (Beowulf clusters) existing
at the ARC in Huntsville, AL.

Some of the most interesting results come from
use of the population server approach, where
each node serves one or more independent
populations. In that approach, chromosome
evolution is similar to what happens in an island
where the local population is isolated from other
populations since evolution takes place in an
isolated environment. If we occasionally allow
the export of the best members of one solution
population to another population and have them
compete with the chromosomes already existing
there, it is as if you had migration from one
isolated environment to another. Another effect
permitted by this second approach is termed
mass extinction. Intermittently, you may
eliminate the population with the worst
individuals and seed that population with a fresh
set of chromosomes.

Which approach to use may depend on the
relative time needed for fitness evaluation
compared to the overhead time for selection,
recombination, and mutation.

Figure 3 shows the architecture we used at the
ARC. Each of the external processes represents a
separate set of solution populations.

Our approach to cluster utilization for GP
problems involves a proxy on the head node to
serve populations of chromosomes to the
working nodes and gather new best results from
each node. Although our current user interface is
implemented only for Microsoft Windows, the
computation nodes are written in portable code
and can run on Beowulf (Linux) clusters as well

as grids of Windows machines, or with a mixture
thereof. The purpose of the proxy is to mediate
access between the working nodes and the user
interface since cluster policy often dictates
isolating the working nodes in an internal net.

Figure 3. External parallel evolver architecture.

Every GP problem is different and requires
custom coding to solve it. Rather than develop a
special language, we simply assume the power of
the C++ programming language. The
programming burden is quite low, however.
Through a wizard that prompts for essential item
names, a shell evaluator we call an external
fitness evaluator (or EFE) is created. A
programmer then simply fills in the stubbed
portions. Only two stubs require implementation:
the first is the fitness function. It is called with a
chromosome and returns a fitness value that
allows comparison with other chromosomes. The
second function simply names the operators that
are to be used. The wizard-generated code is
portable to either Linux or Windows and is
delivered as a Windows DLL or Linux shared
object file. The graphical user interface allows
the user to specify the DLL or shared object file
to load.

This arrangement can be fast. In a combustion
problem we examined, an initial solution was
obtained in a short time once we understood the
problem (less than one hour). However
refinements and a full problem solution
necessitated substantially longer time (several
days). As indicated earlier, initial GP
calculations require great interactivity with the

computational process to modify several
parameters that control the evolution process.
This interaction is necessary to attain a more
efficient evolution. Once a satisfactory set of
parameters is obtained, the process can run with
less interaction.

Other stubs created by the wizard allow access to
the user interface for presentation of problem-
specific data and gathering data from the user,
printing results, handling events, managing
interrupts, performing your own mutation and
recombination steps, and more. In one image-
processing problem we simply re-wrapped an
existing image processing lab as an EFE and had
near-immediate results for evolving an image
noise-reduction filter.

10. Summary

Evolutionary Computing, coupled with HPC
resources, is a robust optimization technique that
is surely under-utilized and not as widely
recognized as it should be. Many complex
problems are well suited for the use of GP in the
search for optimum or near-optimum solutions.
This technique will prove very fruitful when
coupled with the availability of large
computational resources. When using GP, users
will not only require HPC resources, but will be
best served by facilities and environments that
allow large interactivity with the computations to
modify them as results are available. The
computer itself can evolve optimized strategies
and behaviors interacting models or simulations.
Facilities like the ARC in Huntsville, AL, are
already well organized to accomplish this task.
The modeling and simulation community should
look closely at evolutionary computations and be
prepared to facilitate its use.

10. References

[1] Friedberg, R.: “A Learning Machine, Part

I.” IBM J. Research and Development,
Vol. 2, pp. 2-13, 1958.

[2] Friedberg, R., Dunham, B., and North,

J.A.: “A Learning Machine, Part II.” IBM
J. Research and Development, Vol. 3, pp.
282-287, 1959.

[3] Langdon, W.B., and Poli, R.: Foundations
of Genetic Programming, Springer-
Verlag, Heidelberg, 2002, p.3.

[4] Sait, S.M., and Youssef, H.: Iterative

Computer algorithms with Applications in
Engineering: Solving Combinatorial
Optimization Problems, IEEE Computer
Society, Los Alamitos, CA, 1999.

[5] Glover, F., and Kochenberg, G.A.

(editors): Handbook of Metaheuristics,
Kluwer Academic Publishers, Boston,
MA, 2003.

[6] Holland, J.: Adaptation in Natural and

Artificial Systems, MIT Press,
Cambridge, MA, 1975.

[7] Goldberg, D.E.: Genetic Algorithms in

Search, Optimization, and Machine
Learning, Addison Wesley, Reading, MA,
1989.

[8] Núñez, E., Banks, E.R., Agarwal, P.,

McBride, M., and Liedel, R.: “High
Performance Evolutionary Computation”,
Proceedings of the High Performance
Computing Modernization Program,
Users Group Conference 2005, June 27-
30, Nashville, TN, p. 308-313.

[9] Koza, J., Bennett (III), F.H., Andre, D.,

and Keane, M.A.: Genetic Programming
III: Darwinian Invention and Problem
Solving, Morgan Kaufman, 1999.

[10] Sanderson, R.: “Automatic Synthesis of

an 802.11a Wireless LAN Antenna Using
Genetic Programming: A Real World
Application”, Genetic and Evolutionary
Computation – GECCO 2004 Conference
Proceedings, Part II, Springer. Seattle,
WA, June 2004. , p. 1201-1213.

[11] Karr, C.L., Bowersox, R., and Singh V.:

“Minimization of Sonic Boom on
Supersonic Aircraft Using an
Evolutionary Algorithm”, Genetic and
Evolutionary Computation – GECCO
2003 Conference Proceedings, Part II,
Springer, Chicago, IL, July 2003, p. 2157-
2167.

[12] Araujo, D.L.A., Lopes, H.S., and Freitas,

A.A.: “A Parallel Genetic Algorithm for

Rule Discovery in Large Databases”,
Proc. 1999 IEEE Systems, Man and
Cybernetics Conf., Vol. III, Tokyo, Oct.
1999, p. 940-945.

[13] Barnum, H., Bernstein, H.J., and Spector,

L.: “Quantum Circuits for OR and AND
for Ors”, Journal of Physics A:
Mathematical and General, Vol. 33, 2000,
p. 8047-8057.

[14] Koza, J.R., Mydlowec, W., Lanza, G., Yu,

J., and Keane, M.A.: “Automatic
Synthesis of Both the Topology and
Sizing of Metabolic Pathways using
Genetic Programming”, Proceedings of
the Genetic and Evolutionary
Computation Conference, San Francisco.
Morgan Kaufmann, July 7-11, 2001.

[15] Ferreira, C.: “Gene Expression

Programming: A New Adaptive
Algorithm for Solving Problems”,
Complex Systems, Vol. 13, 2001, p. 87-
129.

[16] Banshaf, W., Daida, J., Eiben, A.E.,

Garzon, M., Honavar, V., Jakiela, M., and
Smith, R.E. (editors): Proceedings of the
Genetic and Evolutionary Computation
Conference, Vols. 1 and 2, July 13-17,
1999, Orlando, FL, Morgan Kaufmann
Publishers, San Francisco, CA.

[17] Deb, K., Poli, R., Banshaf, W., Beyer,

H.G., Burke, E., Darwen, P., Dasgupta,
D., Floreano, D., Foster, J., Harman, M.,
Holland, O., Lanzi, P.L., Spector, L.,
Tettamanzi, A., Tierens, D., and Tyrrell,
A. (editors), Genetic and Evolutionary
Computation – GECCO 2004,
Proceedings, Parts I and II, June 26-30,
2004, Seattle, WA, Springer-Verlag,
Berlin Heidelberg, Germany.

[18] Banks, E.R., Núñez, E., Agarwal, P.,

Owens, C., McBride, M., and Liedel R.:
“Genetic Programming for Discrimination
of Buried Unexploded Ordnance (UXO)”
GECCO 2005, June 25-29, Washington,
DC.

Author Biographies

DR. EDWIN NÚÑEZ is a Senior Scientist at
COLSA Corporation where he has managed

projects in applying evolutionary computing and
genetic programming techniques. He is a
graduate of the University of Puerto Rico and
Colorado State University. He is also a member
of the American Association for Artificial
Intelligence, International Society for Genetic
and Evolutionary Computation, American
Geophysical Union, American Meteorological
Society, and the American Physical Society.

PAUL AGARWAL of COLSA Corporation is
the Software Engineering Manager for the U.S.
Army Space and Missile Defense Command
USASMDC Advanced Research Center. He has
over 20 years experience in the public and
private sectors with computer software design,
development, implementation, and evaluation,
and in systems analysis. He is currently involved
in program management.

MARSHALL McBRIDE is the government
technical monitor responsible for the day-to-day
operations of the U.S. Army Space and Missile
Defense Command (USASMDC) Advanced
Research Center, in Huntsville, AL. He has 15
years experience in research & development,
modeling & simulation, program management,
test & evaluation, and high performance
computing center management. He is a graduate
of Auburn University with a BS degree in
Aerospace Engineering

RON LIEDEL is a senior engineer with the
Future Warfighter Center of the U.S. Army
Space and Missile Defense Command
(USASMDC) in Huntsville, AL, and has
authored numerous SMDC and MDA policy
forming software documents. These documents
include the SMDC Software Development Plan,
the SMDBL 10 Year Software Plan, as well as
the Command Software Mission and Function
Statement. Mr. Liedel founded and chaired the
SMDC/SDIO Computer Resource Working
Group and has presented several papers
nationally on Software Sizing for Mega Systems.
He serves as the Technology Products and
Services Director for SMDC.

DR. CLAUDETTE OWENS is Acting Chief of
the Information and Computational Engineering
Division of the Future Warfighter Center, U.S.
Army Space and Missile Defense Command
(USASMDC) in Huntsville, AL. Dr. Owens
oversees the Advanced Research Center and the
Simulation Center, and manages the DOD High
Performance Computing Management Program

(HPCMP) Shared Resource Center located at
SMDC. She has over 20 years experience in
basic R&D, engineering and simulation in
government. Dr. Owens holds a Ph.D. and
Masters in Physics from Alabama A&M
University and BS degrees in Electrical
Computer Engineering and Electrical
Engineering Technology from the University of
Alabama, Huntsville and Alabama A&M
University, respectively.

