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ABSTRACT: Evolutionary computation (EC) is a general term applied to a group of global optimization 
techniques whose main characteristics are inspired by biological evolution. Instead of working with one 
possible solution at a time, they usually start with a population of random solutions. The initial population 
evolves into a better set of solutions through three main processes: selection, recombination, and mutation. 
Those solutions having greater fitness are preferentially selected for recombination to produce a new set of 
possible solutions. Mutation is also used to maintain diversity within the newly created solutions. Through 
these processes, the fittest solutions transfer their characteristics to a new generation of solutions. By 
iterating over many generations, EC can find solutions to many complex problems. 

Models and simulations, especially those working as a federation, can serve as the fitness function to 
determine the value or adequacy of particular solutions. In such federations, genetic programming (GP) or 
other EC techniques can quickly find optimal or near-optimal solutions for particular problems or 
situations. The user is not required to systematically search for the optimal solution; the computer 
accomplishes that task. The tradeoff for accepting this advantage is the requirement for the use of high 
performance computing resources. 

In this paper we briefly describe the fundamental characteristics of EC. We also show some of the results 
obtained during our research and development efforts on different problems like image noise reduction and 
discrimination of buried unexploded ordnance. We also provide examples of how EC can be used with 
models and simulations to find optimum solutions to many complicated problems. This technique has great 
potential for use with models and simulations in a federated environment. The modeling and simulation 
community needs to become more aware of these powerful EC techniques so they may be applied in a wide 
range of fields to quickly provide solutions to the warfighter. 

 

Distribution A. Approved for public release; distribution unlimited. 
 
 



1. Introduction 
 
For some fifty years now, computer scientists 
have attempted to find ways to teach computers 
how to solve simple programs in an automated 
fashion. Friedberg and some collaborators 
conducted efforts in this direction initially. [1], 
[2] Artificial intelligence techniques were used 
in the ensuing decades with limited results. For 
“real world” problems the solution space is 
generally extremely complicated. In addition, 
these spaces are neither continuous nor 
differentiable. Classical optimization techniques 
are not applicable in such cases. [3]  
 
In the last couple of decades, emphasis has 
shifted to evolutionary computation (EC) 
techniques. They can solve complex problems in 
an automated fashion. There are many variants 
of EC, although they share certain fundamental 
characteristics. They differ mainly in the 
particular techniques used to pose and solve the 
problem under investigation. Amongst these 
different EC fields we find genetic algorithms 
(GA), evolutionary strategies, immune systems, 
grammatical evolution, genetic programming 
(GP), gene expression programming (GEP) and 
many others. Succinct explanations of many of 
these techniques and their main characteristics 
are available in the books of Sait and Youssef 
[4], and by Glover and Kochenberg [5]. 
 
All of these techniques are inspired in 
evolutionary biology. John Holland of the 
University of Michigan was inspired by 
evolution’s capability of solving very complex 
natural problems. He decided to explore the use 
of evolutionary principles as applied to 
computation. [6] As the field has matured, 
optimized solutions to problems of increasing 
complexity have been found using these 
techniques. Because of its roots in evolutionary 
biology, the terminology used in EC is borrowed 
from biological terms. Consequently, terms like 
gene, chromosome, mutation, fitness, and others 
are commonly used. [7] 
 
In this paper we will expand on the work 
presented during the High Performance 
Computing Modernization Program, Users 
Group Conference 2005 [8]. We will provide a 
brief introduction to EC. Examples of these 
computational methods will help to elucidate the 
techniques used. The examples used will also 
show how models and simulations can be used 
along with EC as part of the search for optimized 

solutions to complex problems. In such cases, 
the availability of High Performance computing 
(HPC) resources is generally indispensable. In 
addition, a discussion of the special needs of 
users applying evolutionary computation will be 
presented. Possible efficient computational 
architectures for exploiting the HPC resources 
will also be offered. 
 
2. General Characteristics of EC 
 
Evolutionary computation is a global 
optimization technique that is modeled after the 
processes of evolutionary biology. EC 
techniques do not work with one solution at a 
time as the techniques we are most familiar with 
do. Instead, EC works with a population of 
solutions, i.e., it works with a large number of 
solutions at the same time. It starts with a 
population of random potential solutions and 
evolves better ones over many successive 
generations. Selection pressure causes each 
generation of solutions to improve over previous 
ones. To avoid getting trapped at a local 
optimum, the operations of recombination and 
mutation are applied so different regions of the 
solutions space are explored.  
 
Evolutionary computing techniques are broadly 
applicable to a wide variety of problems. They 
have been used in areas as diverse as digital 
circuit filter design [9], Wireless LAN antenna 
design [10], sonic boom reduction in supersonic 
aircraft [11], data mining [12], quantum 
computer circuit design [13], and non-linear 
programming [14], to name only a few. In our 
work we have also used it to reduce image 
random noise, in the discrimination of buried 
unexploded ordnance (UXO), in determining the 
minimum-time-to-target for a simple missile, and 
in modeling the Bi-Directional Reflectance 
Function (BRDF) for different surfaces at lidar 
wavelengths. Our work and this paper are mostly 
concentrated on genetic programming (GP) and 
in particular, are inspired by a sub-field thereof 
known as gene expression programming (GEP). 
[15] 
 
3. Requirements for Applying EC 
 
Before using EC we must first ask which 
problems lend themselves to analysis with this 
technique. Several simple requirements must be 
met before a problem is considered to be a good 
candidate for EC techniques. We must determine 



how we are going to encode the problem, what is 
going to be used as the fitness function and what 
are the computational resources available. 
 
1. Encoding. The researcher must elaborate a 

concise representation for potential solutions 
to the problem. Solutions are often encoded 
in the form of a linear string of mathematical 
symbols (operators) or features that is called 
a chromosome. 

2. Fitness function. The researcher must find a 
way to determine the merit of potential 
solutions. This is expressed as a fitness 
function. It allows one to compare the merits 
of any two members of the population of 
potential solutions. Selection of 
chromosomes for later reproduction can then 
be based on this fitness value. 

3. Computer resources. Sufficient 
computational resources must exist to 
evaluate the fitness function over the entire 
population of potential solutions and over 
many consecutive generations. 

 
The first condition requires a careful study of the 
problem by the researcher along with some of 
her creativity and ingenuity. The latter are used 
to develop the appropriate way to encode the 
chromosomes and to generate operators that 
prove fruitful. The second requirement involves 
an understanding of the problem’s nuances. 
Additional creativity is essential to elaborate an 
adequate fitness function that properly evaluates 
the merits of each specific chromosome 
(solution). In addition, the evaluation of the 
fitness function generally requires very large 
computational resources. The fitness function 
may be linked to highly complex models or 
simulations that need to be evaluated to 
determine the quality of the evolved solution. In 
general, most of the computational time is spent 
evaluating the fitness function. This is 
particularly true when it involves the evaluation 
of or more models or simulations. 
 
4. Chromosomes, Fitness Function, 
Recombination, and Mutation 
 
To solve a problem using EC, we must find a 
way to express possible problem solutions in the 
form of a chromosome. We will show how this 
can be done by use of a simple example: the 
traveling-salesperson problem (TSP). The 
concise representation of a chromosome could 

simply be a string with a list of the cities to be 
visited in the order in which they should be 
visited. This would be a string of the form 
“ABCD…” where the letters could represent the 
cities of Atlanta, Boston, Chicago, Denver, etc. 
The string could then be interpreted as a path 
starting at city A and eventually returning from 
the last to the first city. In this case, every string 
permutation is a potential solution since it 
represents the ordered path between the different 
cities. The fitness function would then simply be 
the sum of the inter-city distances. The lower the 
fitness function value, the better the potential 
solution, making it more likely to survive to the 
next generation. 
 
Figure 1 illustrates how recombination between 
two chromosomes is accomplished. The 
chromosomes of two parents are combined to 
create the chromosomes of the next generation. 
These new chromosomes then represent the 
“offspring” of the previous generation. Two 
parental chromosomes designating different TSP 
paths are combined to produce the chromosomes 
of the next generation. These offspring give new 
paths between the cities. The parental 
chromosomes are recombined between positions 
6 and 7. The resultant offspring chromosomes 
have the head sequence of one parent and the tail 
sequence of the other. For TSP, care must be 
taken to avoid duplicate cities in the path, a 
characteristic of such permutation problems. 
 
 

 
Figure 1 Chromosome mating using one-point 
crossover at randomly selected position. 
 
 
The process of mutation can also be illustrated 
using figure 1. For these chromosomes, we 
would have one form of mutation if in the first 
offspring chromosome we randomly selected a 
position—say at R— and exchanged the letter 
sequence from RL to LR. Selection pressure is 



achieved by giving the “most fit” parental 
chromosomes, i.e., those with shorter paths, a 
greater probability of becoming the parents for 
the next generation. In this manner the 
population moves towards better solutions. 
 
Figure 2 illustrates this TSP example using 84 
cities. Certainly genetic programming is not the 
best method for optimizing a TSP problem. This 
example is merely shown to illustrate the 
processes used in genetic computations.  
 
 

 
 
Figure 2 TSP problem. (a) Best random path 
(chromosome) from initial population (b) Best 
path after 500 generations (c) Best path after 
evolution through 25,000 generations (only 6 
seconds of evolution for this simple case). 
 
 
Care is taken to adjust the selection pressure to 
match the computational resource budget. High 
selection pressure causes improvements to 
spread more rapidly through the population, but 
at the expense of population diversity, thus 
possibly missing a global optimum solution. The 
phrase “exploration versus exploitation” is often 
used to describe this trade-off. When 
computational resources are adequate, selection 
pressure can be quite low. 
 
The reader is referred to a great and rapidly 
growing body of literature on EC and GP for 

history, more techniques, theory, and examples. 
In particular, looking at the papers presented at 
the proceedings of the Genetic and Evolutionary 
Computation Conferences (GECCO) [16] [17] 
will show the wide range of topics covered 
(www.isgec.org). These describe a great variety 
of operations that we cannot explain here due to 
space limitations. They expand and improve 
upon the basic algorithms, and include elitism, 
niching, mass extinction, embedded parameters, 
and numerous sorts of types of selection, 
mutation, and recombination. 
 
5.  Work at the ARC 
 
5.1 ARCGPL 
 
The Advanced Research Center Genetic 
Programming Lab (ARCGPL) is a full-featured 
evolutionary computing lab that can run stand-
alone (using an internal evolver) or with any 
number of external evolvers (see figure 3). It 
supports all evolutionary computing paradigms 
including GP, GA, finite state machine (FSM), 
permutation, and, through extensions, any other 
EC type. A wizard facilitates encoding the 
problem under investigation. The ARCGPL has 
almost 150 parameters settable through the GUI 
dealing with selection, recombination, mutation, 
population control, parsimony, logging, etc. It 
provides help for every panel and has a built-in 
tutorial and several built-in demonstrations. 
Classic features such as niching, mass extinction, 
elitism, scheduling, etc., are implemented. 
Commands may be issued through the GUI, by 
command line, or by script. Preferences can 
automate initialization at startup to save time. 
Run progress can be monitored and controlled 
through the GUI or by script. Statistical 
information is provided to the user and can be 
managed through the GUI. 
 
5.2  GP and buried unexploded ordnance 

Expression encoding is stressed herein because it 
is a part of so many types of genetic 
programming. For example, the authors have 
used arithmetic expressions that are a function of 
sensor readings obtained for buried unexploded 
ordnance (UXO) to discriminate ordnance from 
non-ordnance. The resulting value for the 
expressions is compared with a threshold to 
decide whether the buried anomaly represents 
ordnance or perhaps a discarded automobile 
radiator. Since the dig cost is enormous, such 
discrimination ability can be quite valuable. The 



authors recently presented a paper on this buried 
UXO problem at this year’s Genetic and 
Evolutionary Computing Conference (GECCO 
2005, also known as ACM SigEVO) [18]. We 
have also evolved filters for removing noise from 
images and duplicated previously reported 
results for a combustion problem. 
 
 
6.  Interaction 
 
When doing evolutionary computation there are 
a large number of parameters that must be 
controlled by the user. It is quite important for 
people doing evolutionary computation to have 
ready access to their computations. They must 
frequently inspect their computations to see how 
their solutions are evolving. According to how 
well they are performing the user might change 
some of the parameters to achieve better results 
according to their judgment. Some of these 
parameters are: rates of the different types of 
mutation and recombination, frequency of 
population migration, mass extinction rates, and 
many others. This need for increased user 
interactivity means they will be better served by 
a computation center that not only has high 
performance computing resources, but also can 
accommodate them and where they can be 
present to quickly determine what is happening 
and to make necessary changes. The Space and 
Missile Defense Command’s Advanced 
Research Center (ARC) in Huntsville, Alabama, 
is well prepared for this kind of interactivity with 
the HPC user. 
 
7.  HPC and EC 
 
The third requirement, namely computer 
resources, is apparent in many, if not most good 
GP candidate problems. For example, Moore 16 
describes a missile counter-measure problem 
where a strategy was evolved to evade an anti-
aircraft missile. In this problem, a complex 
strategy of countermeasures optimization is 
investigated. A jet attempts to evade a missile 
through the use of several countermeasures: 
maneuvers, flares, and jamming of the missile’s 
radar. Classical evasion techniques required the 
airplane to maneuver in a specific way when the 
missile reached a certain distance from the 
airplane. The chromosomes developed by Moore 
consisted of the sequence of countermeasures 
taken by the jet airplane that took into account 
uncertainties about the type and current state of 

the pursuing missile. Evaluation of each 
chromosome’s fitness required running a 
simulation of both the attacking missile with its 
sensors and the airplane in flight as it 
maneuvered and performed the indicated 
sequence of countermeasures. Running these two 
full simulations concurrently to evaluate each 
chromosome representing a possible solution 
required a large computational resource. As a 
result, the researcher could test only a limited set 
of sequences before exhausting the number of 
CPU hours allocated. Complicating the results 
was the fact that this paucity of computational 
resources severely restricted the population of 
possible solutions examined. The population of 
chromosomes was kept unnecessarily small (100 
individuals in each generation) and the number 
of generations for evolution restricted to just a 
few dozen. Even with the restrictions imposed by 
the limited computational resources, the series of 
countermeasures developed through the use of 
GP attained substantially better survivability 
rates than those developed analytically. 
 
There are many such important problems that 
could be investigated through the use of 
evolutionary computation but have not been 
explored due to the lack of powerful enough 
computers. It would be quite appropriate for the 
HPC community to understand the needs of this 
kind of user and to prepare for their increasing 
use of computational resources. 
 
8.0  EC and Optimization of Models 
and Simulations 
 
Frequently, we must run different models and 
simulations in a federation, where the behavior 
of  one affects the others. This is often done to 
explore and evaluate different courses of action. 
If a particular set of actions is taken in the first 
model or simulation, it will yield results that 
preclude certain actions in the second model or 
simulation and require other responses. How do 
we decide on the best courses of actions when 
more than one model or simulation is used and 
each interacts with the others? Currently, the 
users do this, even when a very complex chain of 
events is contemplated. The user decides 
beforehand how to act under a particular set of 
circumstances or conditions. Experience and 
intuition serve as the main guides to decide on 
the best course of action or strategy for a 
simulation and how to respond when events or 
conditions do not match what is expected. After 



the simulations run and produce results, the user 
studies the responses to establish what new 
strategies or courses of action must be developed 
in light of what actually happened. This process 
is difficult, not only because it may take 
extensive computer resources to run the 
simulations each time, but because the user must 
decide, often in light of a very large number of 
variables, how exactly they must respond to the 
results. Attaining an optimized strategy or set of 
actions under those conditions is close to 
impossible. 
 
EC presents us with a new paradigm. Why not 
let the computer itself search for optimum or 
near-optimum sets of actions or strategies? When 
properly posed, GP or other particular EC 
techniques can search for the best strategies or 
behaviors to attain a particular objective. For this 
purpose, the user needs to search for a way to 
express simulation behaviors and interactions in 
the form of chromosomes. This may seem rather 
difficult at first, but with some research into the 
problem and experience working with EC, it 
turns out to be less complicated than expected. In 
the same manner, we also need to decide what 
are the desired outcomes and develop an 
adequate fitness function. This fitness function 
must evaluate the chromosomes so that solutions 
closer to the desired behavior yield better fitness. 
Such chromosomes will then have a greater 
probability of becoming the parents of the next 
generation. In this manner, an optimum or near 
optimum strategy can be found. The user then 
leaves the task of optimizing the search for the 
best set of actions and interactions between 
simulations to the computer. Their main function 
from then on would be to ensure there exist 
adequate HPC resources for the interacting 
simulations to work and for the evaluation of the 
chromosomes to take place. 
 
This is merely an extension of the approach 
taken when EC is used in the design of antennas 
or in the optimization of other tasks. Instead of 
the user performing the bulk of the exploration 
of all possible solutions (generally an impossible 
task), this work is left to the computer. With 
adequate HPC resources, the modeling and 
simulation community could reach near-
optimum solutions in reasonable time. 
 

9.  GP Architectures for HPC 
 
The need for very large computational resources 
in many problems where GP is used has 
generated great interest in the parallelization of 
the computations. Amongst the different ways in 
which the parallelization can take place there are 
two that seem to be the most used. In the 
chromosome server approach, each node 
evaluates one possible solution chromosome 
independently.  In the population server 
approach, each node can evaluate one or more 
populations of chromosomes. In that case, 
several populations are evaluated 
simultaneously. Each node then is equivalent to 
an island-like separated environment where 
evolution takes place. In our research we have 
used HPC resources (Beowulf clusters) existing 
at the ARC in Huntsville, AL.  
 
Some of the most interesting results come from 
use of the population server approach, where 
each node serves one or more independent 
populations. In that approach, chromosome 
evolution is similar to what happens in an island 
where the local population is isolated from other 
populations since evolution takes place in an 
isolated environment. If we occasionally allow 
the export of the best members of one solution 
population to another population and have them 
compete with the chromosomes already existing 
there, it is as if you had migration from one 
isolated environment to another. Another effect 
permitted by this second approach is termed 
mass extinction. Intermittently, you may 
eliminate the population with the worst 
individuals and seed that population with a fresh 
set of chromosomes. 
 
Which approach to use may depend on the 
relative time needed for fitness evaluation 
compared to the overhead time for selection, 
recombination, and mutation. 
 
Figure 3 shows the architecture we used at the 
ARC. Each of the external processes represents a 
separate set of solution populations. 
 
Our approach to cluster utilization for GP 
problems involves a proxy on the head node to 
serve populations of chromosomes to the 
working nodes and gather new best results from 
each node. Although our current user interface is 
implemented only for Microsoft Windows, the 
computation nodes are written in portable code 
and can run on Beowulf (Linux) clusters as well 



as grids of Windows machines, or with a mixture 
thereof. The purpose of the proxy is to mediate 
access between the working nodes and the user 
interface since cluster policy often dictates 
isolating the working nodes in an internal net.  

 
 

 
Figure 3. External parallel evolver architecture. 
 
 
Every GP problem is different and requires 
custom coding to solve it. Rather than develop a 
special language, we simply assume the power of 
the C++ programming language. The 
programming burden is quite low, however. 
Through a wizard that prompts for essential item 
names, a shell evaluator we call an external 
fitness evaluator (or EFE) is created. A 
programmer then simply fills in the stubbed 
portions. Only two stubs require implementation: 
the first is the fitness function. It is called with a 
chromosome and returns a fitness value that 
allows comparison with other chromosomes. The 
second function simply names the operators that 
are to be used. The wizard-generated code is 
portable to either Linux or Windows and is 
delivered as a Windows DLL or Linux shared 
object file. The graphical user interface allows 
the user to specify the DLL or shared object file 
to load. 
 
This arrangement can be fast. In a combustion 
problem we examined, an initial solution was 
obtained in a short time once we understood the 
problem (less than one hour). However 
refinements and a full problem solution 
necessitated substantially longer time (several 
days). As indicated earlier, initial GP 
calculations require great interactivity with the 

computational process to modify several 
parameters that control the evolution process. 
This interaction is necessary to attain a more 
efficient evolution. Once a satisfactory set of 
parameters is obtained, the process can run with 
less interaction. 
 
Other stubs created by the wizard allow access to 
the user interface for presentation of problem-
specific data and gathering data from the user, 
printing results, handling events, managing 
interrupts, performing your own mutation and 
recombination steps, and more. In one image-
processing problem we simply re-wrapped an 
existing image processing lab as an EFE and had 
near-immediate results for evolving an image 
noise-reduction filter. 
 
 
10.  Summary 
 
Evolutionary Computing, coupled with HPC 
resources, is a robust optimization technique that 
is surely under-utilized and not as widely 
recognized as it should be. Many complex 
problems are well suited for the use of GP in the 
search for optimum or near-optimum solutions. 
This technique will prove very fruitful when 
coupled with the availability of large 
computational resources. When using GP, users 
will not only require HPC resources, but will be 
best served by facilities and environments that 
allow large interactivity with the computations to 
modify them as results are available. The 
computer itself can evolve optimized strategies 
and behaviors interacting models or simulations. 
Facilities like the ARC in Huntsville, AL, are 
already well organized to accomplish this task. 
The modeling and simulation community should 
look closely at evolutionary computations and be 
prepared to facilitate its use. 
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