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Information theory suggests for most deeply 
nested mutations disruption fails to propagate
to the output.

Instead suggest lung like open architecture 
where most code is less than seven levels from
the environment.
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Long Term Evolution Experiments
v. Artificial Evolution

 Information theory predicts nested functions (eg + * - /) will fail 
to propagate disruption.

 LTEE shows E.Coli continued innovation 75000 generations
 Genetic Programming continued fitness improvement a million 

generations BUT GP slows
● Impact of mutations lost, mostly due to rounding error
● In deep integer trees 92% to 99.97% of evaluation 

changes have no effect
 Exponential decay with depth

● Need to be close to error for tests to find them
● On average <7 more than 50% errors detected 

 Conclude need shallow open architecture to evolve complexity
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Information Funnel

Computer operators are irreversible. Meaning input state 
cannot be inferred from outputs. Information is lost
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Information funnel

More information 
enters than leaves
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Information flow in five nested functions

Potential information loss at each (irreversible) function
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Disruption may fail 
to reach reach 
output.

(No side effects.)

Output
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Deeper programs harder to evolve
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As the GP populations evolve they find thousands of improvements but at 
a slower rate as the trees get deeper. Note log scales.



Exponential fall in fraction of run time disruption 
changing program output with depth
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Perturb evaluation of deep evolved Fibonacci program. Replacement with 
random value seldom has externally visible impact. Note log vertical scale.



To evolve large complex code, 
Must AVOID large fossil of dead code
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● With deep code most 
crossovers and 
mutations make        
no difference.

● Leading to random drift
● Not directed evolution
● To avoid dead center 

evolving code must be 
near environment.

Large dead center

Thin evolving crust



Evolve Large Open, Lung Like, Open Architecture
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● Make code is shallow.
● Shallow code does not 

suffer failed disruption 
propagation.

● Instead fitness disruption 
caused by mutations and 
crossover do have impact.

● Fitness can direct evolution.
● Suggest large porous code
● All code near organism’s 

environment.
● Communication between 

code internally & externally 
eased by globals, side 
effects, pipes, TCP/IP etc. 



1) Information theory predicts, without side effects, nested 
irreversible computation will loose information and so

2) nested expressions suffer failed disruption propagation.

3) Meaning impact of deep code changes does not reach output

4) Deep mutations do not change fitness

5) Without fitness changes there is no evolution

6) To avoid code fossilising, changes must impact performance

7) To evolve code it must be shallow, close to environment

8) Open porous lung like code, possibly in many dimensions, 
with open channels between shallow <7 code modules 
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