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DEEP BELIEF NETWORKS (DBNS)

“Deep belief nets are probabilistic generative models that are
composed of multiple layers of stochastic latent variables. The
latent variables typically have binary values and are often called
hidden units or feature detectors. [...] The lower layers receive
top-down, directed connections from the layers above. The states
of the units in the lowest layer represent a data vector.”

Geoffrey E. Hinton [Hinton et al., 2006]
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MOTIVATION

The robustness and efficiency by which humans can
recognize objects has ever been an intriguing challenge in
computational intelligence.

Theoretical results suggest that deep architectures are
fundamental to learn complex functions that can represent
high-level abstractions (e.g. vision, language) [Bengio, 2009]

Empirical results show their successful application:
classification, regression, dimensionality reduction, object
recognition, information retrieval, robotics, and collaborative
filtering etc. [Larochelle et al., 2007, Swersky et al., 2010].
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DEEP BELIEF NETWORKS

DBNs are composed of several Restricted Boltzmann
Machines (RBMs) stacked on top of each other.
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RESTRICTED BOLTZMANN MACHINES

An RBM is an energy-based generative model that consists of a
layer of binary visible units, v, and a layer of binary hidden units, h.
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RESTRICTED BOLTZMANN MACHINES

Given an observed state, the energy of the joint configuration of
the visible and hidden units (v,h) is given by (1):

E(v,h) = −
I∑

i=1

aivi −
J∑

j=1

bjhj −
J∑

j=1

I∑
i=1

Wjivihj , (1)
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RESTRICTED BOLTZMANN MACHINES

The RBM defines a joint probability over (v,h):

p(v,h) =
e−E(v,h)

Z
, (2)

where Z is the partition function, obtained by summing the energy
of all possible (v,h) configurations:

Z =
∑
v,h

e−E(v,h) . (3)
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RESTRICTED BOLTZMANN MACHINES

Given a random input configuration v, the state of the hidden unit j
is set to 1 with probability:

p(hj = 1|v) = σ(bj +

I∑
i=1

viWji) , (4)

Similarly, given a random hidden vector, h, the state of the visible
unit i can be set to 1 with probability:

p(vi = 1|h) = σ(ai +
J∑

j=1

hjWji) . (5)



TRAINING AN RBM

The following learning rule performs stochastic steepest ascent in
the log probability of the training data:

∂ log p(v,h)

∂Wji
= 〈vihj〉0 − 〈vihj〉∞ (6)

where 〈·〉0 denotes the expectations for the data distribution (p0)
and 〈·〉∞ denotes the expectations under the model distribution
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GIBBS SAMPLING
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ALTERNATING GIBBS SAMPLING
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ALTERNATING GIBBS SAMPLING
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CONTRASTIVE DIVERGENCE (CD–k)

Hinton proposed the Contrastive Divergence (CD) algorithm

CD–k replaces 〈.〉∞ by 〈·〉k for small values of k.



CONTRASTIVE DIVERGENCE (CD–k)

v(0) ← x

Compute the binary (features) states of the hidden units, h(0),
using v(0)

for n← 1 to k
Compute the “reconstruction” states for the visible units, v(n),
using h(n−1)

Compute the “reconstruction” states for the hidden units, h(n),
using v(n)

end for

Update the weights and biases, according to:

∆Wji = γ(〈vihj〉0 − 〈vihj〉k) (7)

∆bj = γ(〈hj〉0 − 〈hj〉k) (8)

∆ai = γ(〈vi〉0 − 〈vi〉k) (9)
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DEEP BELIEF NETWORKS (DBN)
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DEEP BELIEF NETWORKS (DBN)
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GPU IMPLEMENTATION

Training a DBN is a computationally expensive task that
involves training several RBMs and may require a
considerable amount of time.

Solution?
GPU Parallel implementation
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CUDA – DEVICE ARCHITECTURE
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CUDA – LAUNCHING A KERNEL GRID

Grid
Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

Block(3,0)
Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Threads within a block can share information.

However blocks are required to run independently.

To address scalability the tasks should be partitioned.
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CUDA – SCALABILITY
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KERNELS

vdata ∈ IRN×I

RBM inputs (x)

ComputeStatusHiddenUnits

Step 1. Compute hdata

hdata ∈ IRN×J

RBM outputs (data)

ComputeStatusVisibleUnits

Step 2. Compute vrecon

vrecon ∈ IRN×I

reconstructed inputs

ComputeStatusHiddenUnits

Step 3. Compute hrecon

hrecon ∈ IRN×J
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COMPUTESTATUSHIDDENUNITS AND

COMPUTESTATUSVISIBLEUNITS

KERNELS

Each thread represents a connection
Multiplies the clamped input by the weight
Stores the weight in the shared memory

Each block represents a neuron
Uses fast shared memory to sum up the values computed by
each thread

Block (Neuron)

Connection 1 Connection 2 Connection 3
. . .

Connection J



STORING THE CONNECTION WEIGHTS

ComputeStatusHiddenUnits - Coalesced access

ComputeStatusVisibleUnits - Uncoalesced access
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CORRECTWEIGHTS KERNEL

FIRST APPROACH

Each thread gathers and sums up the values for one or more
samples

Each block corrects the weight of a connection

Block (Connection)

Sample 1 Sample 2 Sample 3
. . .

Sample N



PROBLEMS?
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CORRECTWEIGHTS KERNEL

IMPROVED APPROACH

Each block has 16× 16 threads.

Each thread within a block must now process all the samples.
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CORRECTWEIGHTS KERNEL

IMPROVED APPROACH

But we can access vi and hj variables in a coalesced way and
store them in shared memory for faster accesses.

Although, this new approach has a smaller number of blocks,
it performs much better than our first approach (≈ 15× faster).

Block 0 (16×16 connections)

Connection (0,0) Connection (0,1) Connection (0,2)
. . .

Connection (0, 15)

Connection (1,0) Connection (1,1) Connection (1,2)
. . .

Connection (1, 15)

Connection (2,0) Connection (2,1) Connection (2,2)
. . .

Connection (2, 15)

· · · · · · · · · · · · · · ·

Connection (15,0) Connection (15,1) Connection (15,2)
. . .

Connection (15, 15)



TIME SPENT IN EACH TASK

FIRST AND SECOND APPROACHES

Generate random numbers (cuRAND)
ComputeStatusHiddenUnits kernel
ComputeStatusVisibleUnits kernel
CorrectWeights kernel
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EXPERIMENTAL SETUP

We tested our approach with the MNIST database

Each sample has 28× 28 pixel image of a hand-written digit
(784 inputs)
Hardware

CPU: Intel dual-core i5-2410M (8GB Memory)
GPU: NVIDIA GeForce 460 GTX



NVIDIA GEFORCE 460 GTX

Number of Streaming Multiprocessors 7
Number of cores 336
Peak performance (GFLOPS) 940.8
Device Memory (GB) 1
Memory bandwidth (GB/sec) 112.5
Shading clock speed (GHz) 1.4



RESULTS (1,000 SAMPLES)
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RESULTS (10,000 SAMPLES)
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RESULTS (60,000 SAMPLES)
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ADAPTIVE STEP SIZES

Training images

Reconstruction
after 10 epochs

Reconstruction
after 100 epochs

Reconstruction
after 250 epochs

Reconstruction
after 500 epochs

Reconstruction
after 750 epochs

Reconstruction
after 1000 epochs

Adaptive Step Sizes Fixed (optimized) learning rate 0.1



CONCLUSIONS AND FUTURE WORK

Creating a Deep Belief Network (DBN) model is a time
consuming and computationally expensive task that involves
training several Restricted Boltzmann Machines (RBMs)
upholding considerable efforts.

Our work has demonstrated that by taking a non-trivial
approach of GPU implementation we attained significant
speedups.

The adaptive step-size procedure for tuning the learning rate
has been incorporated in the learning model with excelling
results.

Future work will test this approach with other databases in
particular in real-world problems.
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