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ABSTRACT

Targeted online advertising is a prime source of revenue for
many Internet companies. It is a common industry practice
to use a generalized second price auction mechanism to rank
advertisements at every opportunity of an impression. This
greedy algorithm is suboptimal for both advertisers and pub-
lishers when advertisers have a finite budget. In a greedy
mechanism high performing advertisers tend to drop out of
the auction marketplace fast and that adversely affects both
the advertiser experience and the publisher revenue. We
describe a method for improving such ad serving systems
by including a budget pacing component that serves ads by
being aware of global supply patterns. Such a system is ben-
eficial for both advertisers and publishers. We demonstrate
the benefits of this component using experiments we con-
ducted on advertising at LinkedIn.

Categories and Subject Descriptors

H.1.0 [Information Systems]: Models and Principles—
General

Keywords

budget pacing; targeted online advertising; generalized sec-
ond price auction

1. INTRODUCTION
Targeted advertising is a significant source of revenue for

many Internet companies. Members visiting a website are
served ad impressions. Members are described by their pro-
file which may include their demographic attributes like their
geographic location, age, gender etc. Advertisers may target
a segment of users specified by a combination of attributes.
Advertisers are required to set up campaigns by specifying
creatives, a target member segment, a bid value and a daily
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budget. As described in [7] and [18], many internet com-
panies use a generalized second-price auction (GSP) mech-
anism to determine which ads to show. A GSP ad auction
is one where at each opportunity of an impression, eligible
campaigns are ranked based on bids and the winner pays
the bid of the second highest bidder.

A second price auction mechanism used for individual auc-
tions is a greedy algorithm. Ad campaigns participate in ev-
ery eligible auction until their daily budget is used up. Here
by eligible auction for a campaign, we mean an opportunity
of an impression to a member who belongs to the targeted
member segment of the campaign. When a campaign’s bud-
get is used up it drops out of the auction marketplace for
the rest of the day. The second price auction mechanism is
greedy as it tries to maximize revenue at each opportunity
independent of other auctions. This greedy mechanism is
not optimal and has several practical drawbacks.

• Campaigns that perform well often use up their budget
fast and drop out of the marketplace early in the day.

• Advertisers often get a skewed representation from mem-
bers within the audience segment they target.

• As campaigns drop out, the competition in the market-
place reduces. In a second price auction mechanism,
reduced competition results in reduced revenue.

• The ad serving infrastructure may have a delay in the
availability of latest spend information and campaigns
spending budget fast may exceed its budget. This re-
sults in over delivery to campaigns which is essentially
loss of monetizing opportunity.

In this paper we describe a budget pacing algorithm that
improves the ad serving mechanism on each of the above
mentioned issues. The budget pacing algorithm aims to
spread out impressions to every campaign evenly over a bud-
get day. The main idea is that we serve impressions to cam-
paigns by being aware of global traffic patterns. For each
campaign we obtain a forecast for the traffic pattern of eli-
gible impressions during the day. Based on the forecasts we
determine an allocation plan in which we allocate spending
budget of the campaign proportional to the forecasted eli-
gible traffic. At runtime, we monitor the spend of each ad
campaign closely and for campaigns that spend faster than
the allocation plan, we throttle them and do not allow them
to participate in some auctions.
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Since this algorithm slows down the spending rate of cam-
paigns that spend faster than the plan, it increases the life-
time of campaigns and helps to mitigate the problems de-
scribed above. Most importantly, this is a desired feature
for many advertisers since they get a more diverse audience.
This improves revenue metrics as campaigns stay alive for
longer and provide higher support for other campaigns in
the GSP auctions.

We describe the system we implemented and deployed at
LinkedIn and the experiments we conducted that proved our
claim. Targeted advertising is a significant source of revenue
for LinkedIn, see [2]. Members visiting LinkedIn.com are
served ad impressions and advertisers pay LinkedIn on a pay-
per-view (CPM) or a pay-per-click (CPC) mode. LinkedIn
has a very rich data about members and allows advertis-
ers to target member segments by attributes like their geo-
graphic location, industry, company, education, professional
skills etc., or their activity attributes on LinkedIn.com like
following companies, group memberships etc. Advertisers
may target a segment of users specified by any combination
of such attributes. Advertisements are ranked using GSP
on expected revenue from the ads where the winner pays an
amount so that the expected revenue from the impression
equals that of the second highest ad.

Our implementation has been deployed in two different
advertising products at LinkedIn.

• Direct Ads is a self service advertising product where
advertisers set up campaigns via a web based UI. The
advertisements appear on many pages within the the
LinkedIn.com domain, e.g., the top and the side panels
on the home page, the profile page, the contacts page
etc. Direct Ads only appears on the desktop environ-
ment.

• Sponsored Status Update or SSU is an advertising prod-
uct that serves advertising content on the update stream
of members. The update stream of a member con-
tains content generated by the member’s connections,
the groups the member belongs to, the companies the
member follows etc. SSUs are contents that are spon-
sored by companies to be promoted on the update
stream of members who do not follow the company.
Such content would otherwise appear naturally on the
update stream of members who follow the company.
Advertisers may set up campaigns via a web based
UI or via interactions with sales agents. The update
stream along with the SSUs appear on the desktop,
mobile and the tablet environments.

In section 2 we describe the algorithm in details. In section
3 we discuss the engineering design of our implementation
at LinkedIn and In section 4 we discuss the design and the
results of the experiments we ran at LinkedIn. The Direct
Ads and the SSU are very different in terms of their age and
status. We observe beneficial but very different effects of
our pacing algorithm on these two products

1.1 Literature
Targeted advertising bears a lot of similarity to the Ad-

Words problem, also known as search advertising, where ad-
vertisers target online search keywords. There is a rich lit-
erature studying various aspects of the AdWords problem,
e.g., the study of game theoretic properties of such auctions

in [7], [18] and [4]; advertiser optimizations like budget op-
timization in [9] and selecting profitable keywords in [16];
revenue maximization for the search engine provider in [13],
[10], [8] and [12].

The AdWords problem is a generalization of the online bi-
partite matching problem. As explained in [13], the greedy
algorithm to serve ads for AdWords has a worst-case com-
petitive ratio of 1/2. Goel and Mehta [10] though showed
that the greedy algorithm has a competitive ratio of 1-1/e
in the random permutation input model and in the i.i.d.
input model. Mehta et.al. described a simple determinis-
tic algorithm in [13] that achieves an optimal competitive
ratio of 1-1/e. There are many other articles that study
practical aspects and methods for revenue and/or relevance
maximization for search ads, see e.g., [15] and [11].

Member demographics based targeted advertising is sig-
nificantly different from the AdWords problem in many ways.
The main difference is that advertisers in AdWords target
at the very atomic target level which are search keywords-
they are able to set different bids for each different keyword.
In targeted advertising, such as the one in use at LinkedIn,
advertisers are not able to target at the most atomic level.
Advertisers set the same bid value for all members in the
target audience. This adds significant complexity to the
problem and makes it difficult to obtain theoretical guaran-
tees.

Mehta et.al. [13], [6], and [1] suggest using a modified
bid of campaigns in every ad auction. In an auction mar-
ketplace where the competition is low, the modified bids of
campaigns exhausting their budget is likely to reduce to very
low amounts. Often times though a reserve price as in [14]
is used for auctions that sets a lower limit on what an ad-
vertiser can bid and pay. Having a reserve price restricts
how low the bid amount can get and hence this technique
might not help in increasing the life of campaigns. Instead of
using a modified bid for auctions we use probabilistic throt-
tling to filter out the high performing campaigns from some
randomly chosen auctions.

Our main contribution is that we developed and deployed
a simple novel algorithm that improves advertiser experience
and publisher revenue for targeted advertising. We set up
appropriate real-life experiments and show the benefits of
our deployed algorithm.

2. THE PACING ALGORITHM
Suppose S is the set of all members. An ad campaign i

targets a subset Si of S , has a bid bi and a daily budget di.
The day is discretized into T equal length time windows and
si,t, for 0 ≤ t < T , denotes the cumulative spend of cam-
paign i from the beginning of the day till the start of window
t. We obtain a forecast for volume of eligible impressions for
campaign i during each time window- fi,t denotes the cu-
mulative number of eligible impressions for campaign i till
the start of window t. We allocate the amount of budget we
would like to spend for a campaign during each time win-
dow proportional to the forecasted volume of eligible traffic
for the campaign during that window. Hence, the amount
allocated to be spend from the beginning of the day till the
start of window t is

ait :=
fi,t
fi,T

di, (1)
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where fi,T is the forecasted total volume of eligible impres-
sions for campaign i for the entire day. We apply a filter
during each ad auction. For each eligible auction a cam-
paign is allowed to participate with probability pi,t, the pass
through rate(PTR). The value of pit is updated at the start
of each time window by

pi,t =

{

pi,t−1 ∗ (1 + rt) ∧ 1 if si,t ≤ ai,t
pi,t−1 ∗ (1− rt) ∨ 0 if si,t > ai,t.

(2)

Here 0 < rt < 1 is an adjustment rate.
For a campaign i, the allocation curve ai,t is fixed at the

start of the day and we control the spend curve si,t by mod-
ifying the PTR pi,t. We aim to keep the spending curve si,t
close to the allocation curve ai,t for every campaign i.

Mehta et.al. [13] suggest using a modified bid of cam-
paigns in every ad auction. They show that using b∗i ,

b∗i = biψ(si,t/di) where, ψ(x) = 1− ex−1. (3)

is an optimal choice. We have already discussed in section
1.1 why we use probabilistic throttling instead of bid modifi-
cation. For probabilistic throttling, it would have been nat-
ural to use p∗i,t = ψ(si,t/di) as PTR. In a linear system this
would result in same expected payoff as in [13]. The GSP
auction mechanism is clearly not a linear system though. We
still tried this choice of PTR. We observed an improvement
in revenue but not a significant increase in campaign life.
This may seem counterintuitive since ψ(x) → 0 as x → 1.
This happens due to a combination of two reasons. Firstly,
this form of PTR does not depend on the rate of budget
spend and can therefore be slow to react. Secondly, system
inefficiencies also reduce the effectiveness of this method.
Based on this experience we developed the dynamic method
of choosing PTR as described in (2) where the value at the
current time window is set as a small perturbation of the
value at the previous time window. We observed remark-
ably good results with this approach.

2.1 Implementation Details

2.1.1 Update Frequency

We update the PTR for each campaign at 1 minute in-
tervals. This frequent updating makes the system agile and
reach a steady state fast.

2.1.2 Forecasting

Forecasting the number of eligible impressions for cam-
paigns plays an important role in our algorithm. It is used
to determine the allocation curve for each campaign. Inac-
curate forecasts may cause unnecessary throttling and may
result in budget not being used up for some good campaigns.

We use a tool that we built at LinkedIn using the method
described in [3]. Note that, in order to forecast the number
of eligible impressions for campaign i, we need to forecast
the number of impressions from the member segment Si,
which is the target audience for campaign i. We maintain
a large list of important member segments which we call
base profiles. For each base profile we update the historical
time series data of number of ad impression opportunities.
We use an ensemble statistical time series model to fit the
up-to-date time series data for each of these base profiles
daily. We obtain forecasts for each targeted segment Si using
correlation models described in [3].

2.1.3 Adjustment Rate

We set the adjustment rate rt at a constant 10%. This
naive choice of the adjustment rate is not only the easiest to
implement, but is also a very robust one. A more theoreti-
cally sound algorithm should involve the derivative ∂si,t/∂t,
the rate of budget spend while computing the PTR; a cam-
paign that spends budget very fast needs to throttled more
whereas a campaign spending budget just a little bit faster
than the allocation curve needs to be throttled less. We
chose the naive form for two main reasons. First, an esti-
mate for ∂si,t/∂t is likely to be noisy. The budget spend
curve is not smooth, especially for cost-per-click campaigns
for whom it changes only when there is a click which is signif-
icantly rare compared to the impressions. Second, we adjust
the PTR frequently and even if we are not at the ideal PTR
at any time point we can reach there fast.

2.1.4 Slow Start

We always start with a PTR of 10% for all campaigns.
We call this a slow start. This may be a low starting value
for some campaigns and may be a high value for some other
campaigns. The advantage of a low starting value is that
it gives the system the time to learn about individual cam-
paigns. On one hand, if a campaign is spending its budget
too slow then it can open up fully with in 25 minutes. On
the other hand if a campaign is spending too fast then hav-
ing a 10% PTR to start with gives the system more time
to reach the correct PTR. For such campaigns starting from
a high PTR may result in using up the budget before the
system learns that it needs to set a low PTR.

It is sensible to customize the starting value of the PTR
for individual campaigns. We aim to do that in future devel-
opments where we plan to make the initial value of the PTR
for a campaign, a function of the demand and the forecasted
supply for the campaign. The demand for a campaign is the
number of impressions required to spend the budget of the
campaign and the supply is the total number of impressions
available for the campaign. It is natural to set a low initial
value of PTR for a campaign with a high demand-supply
ratio.

2.1.5 Fast Finish

We use statistical models to forecast future supply of im-
pressions for each campaign. The models typically have high
accuracy but there are always statistical errors. As a result
there may be situations where the algorithm continuously
sets lower values of PTR for a campaign than what should
have been set. We try to mitigate this issue by fast finish- we
modify the allocation curve slightly so that the algorithm as-
sumes there will not be any traffic during the last two hours
of the day. This way the pacing algorithm attempts to ex-
haust budget within 22 hours. This in turn gives campaigns
that have been wrongly throttled earlier in the day, more
opportunities to use up their budget later.

3. ENGINEERING DESIGN
In LinkedIn’s ad serving system, data on advertiser events

and member events continuously flows through a tracking
pipeline. Advertiser events may include creation of a new
campaign or a modification to an existing one, like change
in bid or daily budget etc. User events include member
page views that resulted in ad request or opportunity, ad
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Figure 1: Engineering design

impressions served and user actions like click or share etc.
This data is stored into a database.

The ad server maintains an index of all campaigns along
with their current status. A pacing module that implements
of our algorithm is deployed in the ad server. The pacing
module receives this data from the database using a technol-
ogy called databus, see [5]. Periodically the pacing module
recalculates the PTR for each campaign using the latest bud-
get/spend data and the allocation curve, and pushes it into
the campaign index. The campaign index is scanned at ad
matching and auction time, during which the PTR is used
in a simple probability test to determine whether a given
campaign should participate in the auction or not.

The forecast for eligible supply of impressions for cam-
paigns is computed in an offline Hadoop system [17]. The
forecast information is pushed to the pacing module on a
daily basis.

As mentioned before, we update the PTR for each cam-
paign at 1 minute intervals on average. The updates are
randomly distributed across campaigns within each minute.
That is, instead of updating all campaigns at once every
minute, we update roughly 12% of all campaigns every 7 sec-
onds. This updating frequency allows the system to reach a
steady state fast and evenly spreads out the server load.

4. EXPERIMENTS

4.1 Experimental design
We designed and ran online experiments on the advertis-

ing products at LinkedIn to ascertain the benefits of deploy-
ing the budget pacing algorithm.

Experimental design, although an age-old topic of research,
has been revolutionized by the Internet industry. Internet
companies use experiments, often called A/B tests, to vali-
date practically every step they take. In a typical A/B test,
in order to compare control A with a treatment B, members
are randomly split into two groups with one group receiv-
ing the control and the other group receiving the treatment.
This approach is not directly applicable in what we wanted
to test.

Randomly splitting traffic into two groups is not enough
since the pacing algorithm would affect the budget spending
for a campaign for an entire day and hence we would need
to apply the same treatment to a campaign for the entire
day. We could randomly split all campaigns into two groups
and run different algorithms on two groups; this would help
us determine the benefits of pacing to advertisers (like life-
time of campaigns etc.) but not the revenue benefits to

the publisher since campaigns from both the groups would
participate in the same auctions.

In order to observe the full benefits of the algorithm it
needs to be turned on for all campaigns for an entire day.
We designed the experiment to run pacing on alternate days.
By running the experiment for at least 2 weeks we are able
to estimate the benefits of the pacing algorithm and control
for any day specific bias and weekly seasonality that may be
present in the system. Table 1 describes the experimental
design.

Table 1: Design of the experiment
Sun Mon Tue Wed Thu Fri Sat

Week 0 Off On Off On Off On Off
Week 1 On Off On Off On Off On
Week 2 Off On Off On Off On Off

...

In our experiments we also controlled for any bias that
may result due to trend. A weekly trend is of much smaller
magnitude compared to the effect of our algorithm but by
controlling for it we expect to get more accurate estimates.

When running the experiment for two weeks we consid-
ered 15 days of data for computing the metrics of interest.
Starting the experiment from Sunday in Week 0 we contin-
ued till Sunday in week 2. The effect of pacing is measured
by averaging over the 7 days when the algorithm was turned
on during this period. The metrics corresponding to the con-
trol was measured using data from 8 days where we take an
average of Sunday in week 0 and Sunday in week 2 to es-
timate the Sunday effect. Every other day gets an equal
weight of 1/7. This mechanism helps to eliminate any linear
trend present in the system.

Another way to run an experiment to determine the effects
of pacing would be one where we create two independent ad
serving systems and put in all the ad campaigns in both
the systems with half the daily budget. We can then split
incoming traffic and randomly allocate to the two different
systems. The advantage of this design would be that we
would not have to be concerned about weekly seasonality
or trend or other daily variations. We chose not to use this
design for two reasons. First, It would be difficult to apply
the algorithm to campaigns with small daily budget and
second, it would take a lot of time and effort to implement
such a two-fold ad serving system which is likely not cost
effective.

4.2 Metrics of importance
The following are the main metrics we measure in our ex-

periments. For most metrics we take the case when pacing
algorithm is turned off as baseline and report the percent-
age change when the algorithm is turned on. The metrics
are computed using all the data from LinkedIn without any
sampling. LinkedIn gets tens of millions of page views regu-
larly and has tens of thousands of advertisers advertising at
LinkedIn on any day. Given the volume of the data we are
confident about the statistical significance of the metrics.

• Advertiser centric metrics

– Campaign life time: We use the time taken to ex-
haust 95% of the budget for a campaign to mea-
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sure the life of the campaign in a budget day. We
report the median life-time of campaigns in hours.

– Unique impressions per spend is the ratio of num-
ber of unique members viewing an ad over the
budget spend for the ad. An increase in this met-
ric denotes an increase in the audience reach for
advertisers with the same advertising spend.

– Number of campaigns served measures the total
number of ad campaigns that were served on a
day.

• Publisher centric metrics

– Cost per request : Ratio of total revenue with total
number of requests or opportunities is measure of
revenue per unit opportunity.

– Over delivery : The dollar amount we delivered to
a campaign beyond its daily budget as a percent-
age of total revenue.

• Member centric metrics

– Unique campaings served : We measure the aver-
age number of unique ad campaigns viewed by
members. This is a measure of diversity of ad-
vertisement content viewed by members and an
increase in this metric is an improvement in mem-
ber experience.

4.3 Direct Ads
Direct Ads is the advertising product that serve adver-

tising content on various LinkedIn webpages. This product
is more than 4 years old and the demand from advertisers
exceed the supply. There is a high coverage in most member
segments.

We ran the experiment in Direct Ads for 2 weeks during
2013 Q4. The key results are tabulated in table 2. As we
mentioned before, due to privacy issues we report most met-
rics in relative form with the baseline being the case when
the pacing algorithm in not running.

Table 2: Results for Direct Ads
Pacing Off On

Campaign life time (hours) 13.54 19.50
Unique impressions per spend - +7.74%
Number of campaigns served - +4.74%

Cost per request - +5.67%
Over delivery 3.8% 3.4%

Unique campings served - +0.15%

The metrics reveal that the pacing algorithm provides
benefits to both advertisers and LinkedIn. The algorithm
increases campaign life time by 44%. Advertisers are able
to reach to a broader audience with the same budget and
more advertisers are served impressions.

There is a benefit to LinkedIn as the cost per ad request
increases. The pacing algorithm keeps campaigns alive for a
longer time in a budget day. As discussed before, this helps
increase competition later in the budget day. This is re-
flected in figure 2 which plots the variation in cost per click
during a budget day. Cost per click (CPC) denotes what
advertisers pay on average per click and in a second price

auction it is a measure of support price for auctions. It is
primarily used for campaigns who pay per click and they are
the dominant kind in Direct Ads. In figure 2, the solid red
line denotes the average CPC curve during each hour within
a budget day on the days when pacing was turned on. The
blue dotted line denotes the same for the days when pacing
was turned off. We see that with pacing turned on, the CPC
is lower during the initial part of the day but higher for a
much longer period during the second half of the day. The
CPC is lower at the start of the day because we throttle all
the high performing campaigns during that time who oth-
erwise all compete together and exhaust their budget fast.
Again, the plot was created from all the data collected by
LinkedIn during the two weeks of experimentation. Figure
3 shows the variation in cost per request during a budget
day.

The loss due to over delivery of impressions to campaigns
is reduced by 10%. There is a little time delay in the avail-
ability of the latest budget spent information in LinkedIn’s
ad serving system. In absence of pacing, the good campaigns
spend at a fast rate and because of the delay in latest bud-
get information, the system often serves impressions to such
campaigns even after the budget for the day has been spent.
The pacing algorithm slows down the rate of spend of such
campaigns and reduces the chances of over delivery.

We do not see a statistically significant effect of pacing
algorithm on the diversity of ad content seen by members.
That is likely because of the long tail of the distribution of
the number of unique campaigns seen by a member.
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Figure 2: Variation in average cost per click during
a day in Direct Ads (scaled so that the baseline at
time 0 is set to 1)

4.4 Sponsored Status Updates
Sponsored Status Updates is a new advertising product

from LinkedIn that was launched in mid 2013. Advertisers
can sponsor a ‘status update’ and promote it to a specified
segment of LinkedIn members. The sponsored content from
an advertiser is blended with the organic content in the up-
date stream and delivered to the members in the targeted
audience.

The Sponsored Status Update marketplace was very dif-
ferent from Direct Ads at the time we ran the experiment.
SSU is a new product, the demand to supply ratio is much
lower but is growing rapidly. The SSUs appear on a prime
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Figure 3: Variation in average revenue per request
during a day in Direct Ads (scaled so that the base-
line at time 0 is set to 1)

space in the LinkedIn webpage and smart phone/tablet apps.
It has a higher visibility because of which campaigns can po-
tentially exhaust the daily budget very fast. Pacing is thus
very important for SSU. We ran a two week experiment on
this product and the key results are tabulated in table 3.

Table 3: Results for Sponsored Status Updates
Pacing Off On

Campaign life time (hours) 6.92 17.25
Unique impressions per spend - +10.52%
Number of campaigns served - +0.25%

Cost per request - +0.96%
Over delivery 4.12% 2.39%

Unique campings served - -0.04%

It is expected that the pacing algorithm will have a much
different effect in SSU and that is what we observe. First,
we see that the increase in cost per request is of much lower
magnitude compared to that in Direct Ads. The reason for
that is the total revenue for SSU (at the time of the experi-
ment) is largely determined by the advertiser demand which
is lower than the supply. Second, the increase of campaign
median life time is much more drastic (149%) compared to
what we observed in Direct Ads.

We observe an improvement in the audience reach for ad-
vertisers as the average number of unique impressions per
spend increased by 10.52%. There is a small increase in the
average number of campaigns that got served per day, but
this change is not statistically significant. We also observe
a marked decrease in loss due to over delivery (42%). The
effect on the average number of unique campaigns seen by
members was slightly lower but this change is statistically
insignificant.

4.5 Some Examples
Here we show the behavior of two specific campaigns dur-

ing our experiments. Albeit two examples, in conjunction
with the results described in sections 4.3 and 4.4, they fur-
ther illustrate how well the pacing algorithm performs.

Figure 4 shows the performance of a specific campaign in
SSU in two consecutive week days during the experiment.

Pacing was turned off on day 1 (blue dotted line) and was
running on day 2 (red solid line). On day 1 the budget was
spent with in the first 30 mins of the day and there was
more than 20% loss due to over delivery. On day 2, the
campaign was active till the 20th hour of the day and had a
significantly lower over delivery loss.
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Figure 4: Cumulative budget spent for a campaign
in SSU (scaled so that the total budget is 1)

Figure 5 demonstrates for a specific campaign that we are
able to align the actual spending curve with the allocation
curve well. The blue line is the observed spending curve and
the red dotted line is the allocation curve for the campaign.
This behavior is observed consistently for most campaigns
with a reasonably high daily budget.
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Figure 5: Actual spend curve vs. the allocation
curve for a campaign in SSU(scaled so that the total
budget is 1)

5. CONCLUSION
We develop a budget pacing algorithm that we use to

evenly distribute the spend of advertising campaigns in a
day. We implemented the algorithm and it is deployed in
two advertising products at LinkedIn. The algorithm helps
improve advertiser experience and provides revenue benefits
to LinkedIn at the same time. We ran real life experiments
at LinkedIn to demonstrate the benefit of using this algo-
rithm. Based on the results of the experiments this algo-
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rithm was been fully deployed in both the advertising prod-
ucts at LinkedIn.
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