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Abstract—Multi-touch attribution, which allows distributing
the credit to all related advertisements based on their cor-
responding contributions, has recently become an important
research topic in digital advertising. Traditionally, rule-based
attribution models have been used in practice. The drawback
of such rule-based models lies in the fact that the rules are
not derived form the data but only based on simple intuition.
With the ever enhanced capability to tracking advertisement
and users’ interaction with the advertisement, data-driven
multi-touch attribution models, which attempt to infer the
contribution from user interaction data, become an important
research direction. We here propose a new data-driven attribu-
tion model based on survival theory. By adopting a probabilistic
framework, one key advantage of the proposed model is that it
is able to remove the presentation biases inherit to most of the
other attribution models. In addition to model the attribution,
the proposed model is also able to predict user’s ‘conversion’
probability. We validate the proposed method with a real-world
data set obtained from a operational commercial advertising
monitoring company. Experiment results have shown that
the proposed method is quite promising in both conversion
prediction and attribution.

Keywords-Multi-touch attribution, Survival theory, Online
Advertising

I. INTRODUCTION

Over the past decade, digital advertising has become

increasingly important. It has been reported that Internet ad

spending has for the first time surpassed broadcast TV in

20131. The driven force of such rapid growth of digital

advertising comes from the following two aspects. First,

increased web usages allows the Internet to better influence

consumers on their purchase decisions. Secondly, digital

advertising, with its ability to tracking users’ interactions

with the advertisements, enables more targeted delivery and

hence more effective advertisement.

Digital advertising is available in a number of formats,

including but not limited to textual ads, banner ads, rich

media ads, and social media pages. The different forms of

advertisements are delivered through multiple media chan-

nels, such as search, display, social, mobile and video. An

advertising campaign is generally composed of a coordinated

series of linked advertisements in multiple combinations of

formats and delivery channels. To improve the return on

1http://mashable.com/2014/04/10/mobile-surge-internet-beats-tv/

investment (ROI) of advertising, how to allocate budget

among different ad formats and ad channels becomes one of

the most essential problem in advertising. Since the infancy

of advertisement, many efforts have been devoted to study

the effectiveness of advertising [6], [9], [11], [2]. However,

most the existing studies either perform their analysis based

on small scale user studies or ignored the interaction among

different advertisement channels.

Typically, an individual user is exposed to multiple adver-

tisement impressions delivered through multiple advertising

channels. Attribution is to understand the contribution of

different advertisements in driving users to desired actions

such as clicking or making a purchase. To measure the

effectiveness of different advertisements and hence optimize

advertising campaigns, attribution has been recognized as

one of the most critical problems in digital advertising. Last
Touch Attribution, one of the earliest attribution models, is to

give all the credit to the last advertisement a user sees before

a conversion. It is widely adopted in practice and considered

as standard attribution model in most web analytics tools.

However, despite of its simplicity, one significant disadvan-

tage of the last touch attribution is that it only recognizes the

contribution of one single advertisement impression for any

conversion and cannot credit the advertisement presented

before the ‘last touch’. In fact, conversion often is due to

the cumulative effect of a cascade of advertisement. Simply

attributing the credit to last touch may over-weight the

contribution of some particular types of advertisements, such

as Search advertisement, which is initiated by user queries.

In fact, very often, the querying could be due to a previously

viewed advertisements.

Multi-touch attribution, which allows distributing the

credit to all related advertisements based on their corre-

sponding contributions, was recently introduced and become

an important research topic in digital advertising. Several

rule-based attribution models have been proposed, including

last-touch model, first-touch model, linear model, and time

decay model, where last-touch model and first-touch model

may be viewed as special cases of multi-touch attribution

models. See Figure 1 for an illustration of different attribu-

tion models. The drawback of the above rule-based models

lies in the fact that the rules are derived from some simple

intuition and may not fit the reality well. With the ever

2014 IEEE International Conference on Data Mining

1550-4786/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDM.2014.130

687



Figure 1. Illustration of rule-based methods.

enhanced capability to tracking advertisement placement and

users’ interaction with the advertisements, a few data-driven

multi-touch attribution models [8], [3], which attempt to

infer the contribution from real user interaction data, are

recently proposed. However, most of the existing data-driven

attribution methods suffer from the following drawbacks: 1)

ignoring the presentation biases introduced by advertising

placement, and 2) focusing solely on the modeling of the

attribution and lacks of a solid conversion prediction model.

In this paper, we propose a new data-driven model, addi-

tive hazard model, for multi-touch attribution. In particular,

the proposed model considers not only the differences in the

impact strength of different advertising channels but also

the variations of their time-decaying speed. Each channel

is characterized by a set of two parameters, the maximum

strength of its impact and the time-decaying speed of its

impact. We model the time-dependent contribution of an

advertisement channel using a hazard function with a set

of additive exponential kernel functions, each of which

is assumed to reflect the dynamics of the influences of

an advertisement channel on user conversion. Based on

survival theory, we further model the conversions as a user’s

‘death’ after a cascades of advertisements. We denote the

proposed model as ADDITIVEHAZARD model thereafter.

The ADDITIVEHAZARD model is fitted by maximizing the

log-likelihood function in an iterative manner. The major

contributions of this paper are as follows. First, in ad-

dition to modeling the attribution, the proposed model is

able to predict user’s ‘conversion’ probability. Secondly, by

modeling the impact of advertisement strength and time-

decaying speed, we attempt to remove the presentation

biases introduced by advertising placement. We validate the

proposed method with a real-world data set obtained from

an operational commercial advertisement monitor company.

Experiment results have shown that the proposed method is

quite promising in both conversion prediction and attribution

modeling.

The rest of this paper is structured as follows: Section II

briefly reviews the related work on multi-touch attribution.

In Section III, we introduce basic concepts of survival

models. The proposed Additive Hazard model for multi-

touch attribution is presented in Section IV. The distributed

implementation using MAPREDUCE is presented in Section .

Section VI and Section VII present the experiments and

results on synthesis data sets and real-world data sets,

respectively. Finally, we conclude the paper and propose for

future work in Section VIII.

II. RELATED WORK

The multi-touch attribution problem is generally defined

as the assignment of conversion credit when multiple ad-

vertising channels reach a given online user. The most

commonly used attribution methodology in the industry

is generally to assign full conversion credit to a single

advertising channel, typically the last advertising channel

to a conversion (‘last-touch’ attribution) or the first adver-

tising channel (‘first-touch’ attribution). However, the above

models rely on the rules which are not derived form the data

but only from simple intuition, which might lead to a biased

estimate.

Some recent research papers have been devoted to s-

tudy the conversion attribution problem with data-driven

approaches. Shao and Li [8] propose two models to solve

the multi channel attribution problem. The first one is

a bagged logistic regression method. They combine the

commonly used logistic regression, which is simple and easy

to interpret, and the bagging idea, which is to help reduce the

estimation variability due to the highly correlated covariants.

The second one is a probabilistic model based on a com-

bination of first and second-order conditional probabilities.

For a given data set, they compute the empirical probability

of the main factors

P (y|xi) =
Npxi

Npxi +Nnxi

and the pair-wise conditional probabilities

P (y|xi, xj) =
Npxi, xj

Npxi, xj +Nnxi, xj
, i �= j,

where y is a binary outcome variable denoting a conversion

event, and xi, i = 1, ..., p denote p different advertising

channels. Np(xi) and Nn(xi) denote the number of positive

or negative users exposed to channel i, respectively, and

Np(xi, xj) and Nn(xi, xj) denote the number of positive

or negative users exposed to both channels i and j.

Xe et al. [10] develop a stochastic model for online

purchasing and advertisement clicking that incorporates mu-

tually exciting point processes with individual heterogene-

ity in a Bayesian hierarchical modeling framework. The

mutually exciting point process is a multivariate stochastic

process in which different types of advertisement clicks and

purchases are modeled as different types of random points in

continuous time. The occurrence of an earlier point affects

the probability of occurrence of later points of all types so

that the exciting effects among all advertisement clicks are
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well captured. As a result, the intensities of the point process,

which can be interpreted as the instant probabilities of point

occurrence, depend on the previous history of the process.

They applied Bayesian inference using Markov chain Monte

Carlo (MCMC) method to a mutually exciting point process

model, which enables them to fit a more complex hierar-

chical model with random effects in correlated stochastic

processes. They find that the commonly used measure of

conversion rate is biased in favor of search advertisements by

overemphasizing the ”last click” effects and underestimates

the effectiveness of display advertisements the most severely.

Dalessandro et al. [3] first propose the following prop-

erties a good attribution system should have-fariness, data-

driven and interpretability. And then they formulate multi-

touch attribution as a causal estimation problem. They

present a causal framework for evaluating multi-touch at-

tribution. They define parameters of interest that directly

measure the additive marginal lift of each ad within the ad

campaign and argue that this lift represents the value created

by targeted and thus attribution credit should be directly

derived from this measure. The basis of each attribution

parameter is a counterfactual framework that under strict

assumptions about the data can be interpreted as causal

parameters. They discuss the practical limitations of this

fully casual method and then define an approximate attribu-

tion measure that can be recast through the lens of channel

importance estimation.

Abhishek et al. [1] use a HMM to capture the user’s

deliberation process and his movement down the conver-

sion funnel as a result of the different ad exposures he

experiences. In accordance with the conversion funnel, they

construct an HMM with four states where the four states are

”dormant”, ”awareness”, ”consideration” and ”conversion”.

The consumer model is used to generate a new attribution

technique which might be useful for future research in

analyzing the impact of advertising on consumer behavior.

III. SURVIVAL MODELS

In this section, we briefly introduce basic concepts of

survival models [7], based on which we build our own

attribution model. Let T be a non-negative continuous vari-

able representing the waiting time until the occurrence of an

event, which is a conversion in our context. For simplicity,

we will adopt the terminology of survival analysis, referring

to the conversion of a user as ’death’ and to the waiting time

as ’survival’ time.

A. The Survival Function

The survival function is defined as:

S(t) = Pr(T > t), (1)

where t is some time and Pr stands for probability. The

survival function is the probability that the time of ’death’

is later than some specified time t. And then the cumulative

distribution function F (t) is defined as:

F (t) = Pr(T ≤ t) = 1− S(t). (2)

If F (t) is differentiable, the probability density function

(p.d.f) f(t) is :

f(t) =
d

dt
F (t). (3)

B. The Hazard Function

Formally, we define the hazard function (or instantaneous

rate of occurrence of the event) as:

λ(t) = lim
dt→0

Pr(t ≤ T ≤ t+ dt|T > t)

dt
(4)

Furthermore, we have

λ(t) = lim
dt→0

Pr(t ≤ T ≤ t+ dt|T > t)

dt

= lim
dt→0

Pr(t ≤ T ≤ t+ dt)/Pr(T > t)

dt

= lim
dt→0

(F (t+ dt)− F (t))/S(t)

dt

=
f(t)

S(t)

= −S′(t)
S(t)

. (5)

Since
d(log g(t))

dt = g′(t)
g(t) , where g is a differentiable

function, we have

λ(t) = −d(logS(t))

dt
. (6)

Thus,

S(t) = exp(−
∫ t

0

λ(u)du). (7)

IV. ADDITIVEHAZARD MODEL FOR ONLINE

ADVERTISING

In this section, we introduce the proposed AdditiveHazard

model for simultaneously modeling conversions and attri-

bution in online advertising based on the survival models.

We denote the users as {1, · · · , U} and the advertising

channels as {1, · · · , n}.The obeseration is a set of cascading

behaviors of the users {c1, · · · , cU}, each of which is

in the form of {{(aui , tui )}lui=1, Xu, Tu}, where aui is the

advertising channel ID, tui is the timestamp of impression, lu
is the length of cascade cu and Xu is the conversion result

(Xu = 1 means conversion). If Xu = 1, the last timestamp

Tu is the conversion time. If Xu = 0, the last timestamp Tu

is the observation time window.

We propose an additive risk model, ADDITIVEHAZARD,

for user conversions in online advertising. We consider

hazard function λu(t) of user u to be additive on the clicking
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or viewing online advertising channels. The hazard function

of cascade cu can be expressed as:

λu(t) =

{∑
tui ≤t gau

i
(t− tui ), t ≤ tlu ,

0, otherwise
(8)

where gau
i
(·) is the the kernel function used to model

the advertising channel aui ’s effect on the conversion of

user u. We select the exponential kernel function so that

the dynamics of the influences of an advertisement on

user conversion can be reflected by explicitly modeling the

strength of impact βk and its time-decaying property ωk.

Figure 2 shows a example of our model’s kernel function and

the resulting hazard function, from which we can see that the

hazard function is the sum of kernel functions triggered by

corresponding advertising channels. The hazard function of

cascade cu with the exponential kernel can then be expressed

as:

λu(t) =

{∑
tui ≤t βau

i
ωau

i
e
(−ωau

i
(t−tui )), t ≤ tlu ,

0, otherwise
(9)

where βau
i
ωau

i
exp(−ωau

i
(t− tui )) is the kernel function we

choose and it decreases as time decays, βau
i

stands for the

strength of the effect triggered by advertising channel aui
and ωau

i
controls the speed of the time-decaying effect.

We collect the parameters into matrix-vector forms, β =
(βi) for the strength coefficients and ω = (ωi) for the time-

decaying coefficients. We use β ≥ 0 and ω ≥ 0 to indicate

that we require the matrices to be entry-wise nonnegative.

The log-likelihood function of the parameters Θ = {β,ω}
can be expressed as follows.

Lu(Θ) = log((S(Tu)λ(Tu))
XuS(Tu)

1−Xu)

= Xu

(
logS(Tu) + log λ(Tu)

)
+(1−Xu) logS(Tu)

= Xu log λ(Tu) + logS(Tu)

=
∑
Xu=1

log(
∑
i

βau
i
ωau

i
exp(−ωau

i
(Tu − tui )))

−
∫ Tu

0

∑
tui ≤t

βau
i
ωau

i
exp(−ωau

i
(t− tui ))dt

=
∑
Xu=1

log(
∑
i

βau
i
ωau

i
exp(−ωau

i
(Tu − tui )))

−
∑
i

∫ Tu

tui

βau
i
ωau

i
exp(−ωau

i
(t− tui ))dt

=
∑
Xu=1

log(
∑
i

βau
i
ωau

i
exp(−ωau

i
(Tu − tui )))

−
∑
i

βau
i
(1− exp(−ωau

i
(Tu − tui ))) (10)

In the log-likelihood function, the first part

Xu

(
logS(Tu) + log λ(Tu)

)
stands for the probability

of user who purchased, the second part (1−Xu) logS(Tu)
stands for the probability of user who did not.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ
(t
)

t1 t2 t3

ga1 (t−t1)

2∑

i=1
gai

(t−ti)
3∑

i=1
gai

(t−ti)

Figure 2. A simple example of our model’s hazard function.

Thus, the inference problem is:

maximize
Θ

L(Θ)

subject to βi ≥ 0, i = 1, . . . , n,

ωi ≥ 0, i = 1, . . . , n.

(11)

By maximizing the likelihood function, we can obtain the

estimates of the parameters β and ω.

It turns out that the above objective function can be opti-

mized efficiently by the MM(minorize maximize) algorithm

[5] in a iterative manner. In particular, we construct a lower-

bound Q(Θ|Θ(t)) at current estimation Θ(t) as follows:

Q(Θ|Θ(t)) =
∑
Xu=1

∑
i

pui log
βau

i
ωau

i
e
(−ωau

i
(Tu−tui ))

pui

−
∑
i

βau
i
(1− exp(−ωau

i
(Tu − tui ))),

(12)

where pui is defined as follows:

pui =

⎧⎨
⎩

βau
i
ωau

i
exp(−ωau

i
(Tu−tui ))

∑lu
i=1 βau

i
ωau

i
exp(−ωau

i
(Tu−tui ))

, Xu = 1

0, Xu = 0
(13)

The pui have the nice interpretations that reveal the con-

tribution of adversing channels for the conversion of user

u. Specifically, pui represents the contribution of the i-th
advertising channel for the conversion user u at time Tu if

Xu = 1.

The following two properties hold for Q(Θ|Θ(t)):

L(Θ) ≥ Q(Θ|Θ(t)), ∀Θ (14)

L(Θ(t)) = Q(Θ(t)|Θ(t)) (15)

Moreover, let Θ(t+1) = maxΘ Q(Θ|Θ(t)), we have

L(Θ(t+1)) ≥ Q(Θ(t+1)|Θ(t)) (16)

≥ Q(Θ(t)|Θ(t)) = L(Θ(t)), (17)
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which shows that L increases monotonically during the

iterations and it can be shown that the iterates converges

to the local optimal Lhotness [5].

Another advantage of optimizing Q(Θ|Θ(t)) is that all

variables β and ω can be optimized independently with

closed-form solution and the non-negativity constraints are

naturally taken care of.

Optimizing with respect to βk: Let ∂Q
∂βk

= 0, we have

∂Q

∂βk
=

∑
u,i,Xu==1,au

i ==k p
u
i

βk

−
∑

i,au
i ==k

1− e−ω
(t)
k (Tu−tui )

The following update equation for βk:

βk =

∑
u,i,Xu==1,au

i ==k p
u
i∑

u,i,au
i ==k 1− e−ω

(t)
k (Tu−tui )

Optimizing with respect to ωk: Let ∂Q
∂ωk

= 0, we have

∂Q

∂ωk
=

∑
u,i,Xu==1,au

i ==k

pui (
1

ωu
k

− (Tu − tui ))

−
∑

i,au
i ==k

β
(t)
k (Tu − tui )e

−ω
(t)
k (Tu−tui )

Therefore, we can update ωk as follow:

ωk =

∑
u,i,Xu==1,au

i ==k p
u
i∑

u,i,au
i ==k p

u
i (Tu − tui ) + β

(t)
k (Tu − tui )e

−ω
(t)
k (Tu−tui )

After fitting the ADDITIVEHAZARD model, we take the

conversion probability that a user touches one single adver-

tisement channel k as the contribution of the channel k. The

AdditiveHazard models the dynamics of the influences of an

advertisement on user conversion by explicitly modeling the

strength of influence and its time-decaying property. Hence,

in calculate the contributions of any advertisement, we need

to set a pre-defined observe window T . According to the

above derivation, the probability of conversion in the time

window T can be formulated as:

P (C|βk, ωk, T ) = 1− exp(−βk(1− exp(−ωkT ))).

V. DISTRIBUTED IMPLEMENTATION USING MAPREDUCE

Considering the large volume of advertising data used

for the multi-touch attribution, we implemented the Ad-

ditiveHarzard model using MAPREDUCE framework. The

distributed architecture of inference algorithm of each iter-

ation is shown in Figure 3, following the main idea of the

well-known distributed programming model, MAPREDUCE

[4]. Firstly, we distribute the training data and the inferred

parameters of previous iteration into different mappers, with

nearly equal amount of training data on each mapper. And

then, each mapper processes the training data and give the

key-value output as shown in the figure, where key= aui and

input data

inferred

parameters

of previous

iteration

mapper

key=aui ,

value=vm

mapper

key=aui ,

value=vm

mapper

key=aui ,

value=vm

reducer

key=aui ,

value=(βau
i
, ωau

i
)

reducer

key=aui ,

value=(βau
i
, ωau

i
)

output

{(β, ω)}

· · ·

· · · · · ·

Figure 3. The distributed architecture of our inference algorithm. Note:

The output value of mappers vm = (pui , 1 − e
−ω

(t)

au
i
(Tu−tui )

, pui (Tu −
tui ) + β

(t)
au
i
(Tu − tui )e

−ω
(t)

au
i
(Tu−tui )

).

value= vm as shown in Figure 3. After shuffle and sort, the

output of mappers with the same key go to the same reducer.

In the reducers, we combine the data with the same key and

output the value of β and ω of this iteration. The inference

iterates until the inferred parameters converge.

VI. EXPERIMENTS ON SYNTHETIC DATA

To validate the proposed algorithm, we first experiment

with the synthetic data. A two-step process is employed to

perform the experiment: 1. Generate simulation data based

on our proposed ADDITIVEHAZARD model; 2. Perform

parameter inference on the data using the proposed MM

alogrithm. We experiment with various parameter settings

in order to understand the performance of the proposed

algorithms under different settings. The parameters of the

underlying ADDITIVEHAZARD model are chosen in the

following way: we draw β from a uniform distribution

unif(0, 1) and ω from a uniform distribution unif(1, 10).
In the data generation step, we set the time window to 10
and number of users to 10000.

We use relative error to measure the accuracy of the

parameter inference. Suppose β∗ and β̂ are the true and in-

ferred parameters, respectively. The relative error is defined

as follows:

relative error =
|β∗ − β̂|

β∗
.

As we can see from Table I, the relative error of all

parameters is generally less than 1.4%, suggesting that the

proposed ADDITIVEHARZARD method can accurately infer

the parameters.
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Table I
RELATIVE ERRORS OF INFERRED PARAMETERS.

β∗ ω∗ Avg. record length Conversion rate Relative error of β Relative error of ω
0.463565 3.2648 1.10531 0.56305 0.00177014 0.00563106
0.294258 4.30407 1.08586 0.41912 0.000997106 0.0131392
0.423249 2.04359 1.10514 0.52856 0.000803873 0.00406164
0.758402 8.83509 1.09455 0.72663 0.00876188 0.0100482
0.391734 8.54506 1.08888 0.50772 0.00269725 0.00135432
0.579898 5.09531 1.10532 0.63764 0.00091742 0.00130336
0.97636 2.64656 1.0994 0.79586 0.00317727 0.00477636
0.171916 8.23815 1.06038 0.27889 0.00241287 0.0108729

VII. EXPERIMENTS ON REAL DATA

A. Dataset description

We use the data set openly published by Miaozhen Sys-

tem2, which inludes about 380 million cookies. The data are

collected from PCs and mobile devices from May 1 ,2013

to June 30, 2013 and from April 4, 2013 to June 9, 2013,

respectively. Every time a user clicks on or is exposed to one

of the online advertisement channels, the exact time of the

event and the ID of the corresponding online advertisement

channel are recorded. The information concerning users’

identities is primarily determined by tracking cookies stored

on their computers and encrypted in consideration of privacy.

Besides that the company also provides the purchase data

recording the exact time and user ID of each purchase. With

all the data mentioned above, we are able to construct the

historical time line of the clicks, exposures of advertisement

channels and purchases for each user. We also know the

type of advertisements and the website for each advertising

channel.

The data contain 377,008,065 users, 10,240,200 ad clicks,

1,200,101,507 ad exposures and 4,281 conversions. There

are 2605 ad channels with 46 different types and 35

websites. We present distributions of the data in Figure

4, from which we can see that the distributions of ad

clicks, exposures and conversions and the the distributions

of channel appearances of different types and sites all show

a long-tailed pattern.

B. Experiment Setup

We get the user ID, the advertising channel ID, time,

and click or exposure identification from the above data

set and put them in the form of {{(aui , tui )}lui=1, Xu, Tu}
as explained in section IV. We split the whole data set

into training data and testing data, each of which is 50%

of the original data set. Then we fit the proposed ADDI-

TIVEHAZARD model, last-touch, logistic regression, simple

probabilistic model, and causal attribution model using the

training data, and present the attribution of different adver-

tisement channels. While it is difficult to directly validate the

2http://www.miaozhen.com/BDC2013.html

attribution models, we valid the models by further predicting

the conversions in the test data based on the above attribution

models.
Three metrics are employed to measure the performance

of conversion prediction: precision, recall and f1-score.

Suppose X∗
u and X̂u are the true and inferred results of

conversion (Xu = 1 means a conversion), respectively. The

precision, recall, and f1-score are defined as follows:

P =

∑
u(X

∗
u == X̂u)∑

u 1

R =

∑
u(X

∗
u = 1 AND X̂u = 1)∑

u X
∗
u = 1

F1 =
2PR

P +R
.

For each given advertisement cascade, we calculate its

conversion probability in the time window. The top N scored

users are selected as the users who will convert during

the time window. By varying N , the number of users we

choose, we generate the precision-recall and f1-score graph

to compare the performance of different methods.

C. Interpretation of Model Parameters for ADDITIVEHAZ-

ARD

The AdditiveHazard models the dynamics of the influ-

ences of an advertisement on user conversion by explicitly

modeling the strength of impact βk and its time-decaying

property ωk. While it is impossible to evaluate the accuracy

of the model fitting for βk and ωk, we here try to present

a qualitative analysis of the channels with the highest and

lowest value of βk and ωk.
Table II shows that 8 among the 10 channels with the

largest βk value are of the type SEM and on the site

SearchEngine1, suggesting that SearchEngine1 is a high

impact web site and SEM is an influential type of advertising.

A further analysis of the data set reveals that SEM adver-

tisements are all Search Clicks, which is known to having

high influence on user conversion. On the other hand, the 10

channels with the lowest βk are of the type Video(15s) and

on various video site, suggesting that video site so far is a

less effective medium and Pre-moive ads are less influential

type of advertising.
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Figure 4. Data distribution.

Table II
THE CHANNELS WITH THE HIGHEST & LOWEST IMPACT STRENGTH βk .

Channel Type Site βk ωk

100234261 Column SearchEngine1 1.69 0.03
100242639 SEM SearchEngine1 0.51 7.93
100242089 SEM SearchEngine1 0.30 0.0025
100291542 SEM SearchEngine1 0.17 0.0068
100281116 SEM SearchEngine1 0.11 0.47
100281075 SEM SearchEngine1 0.09 0.043
100281076 SEM SearchEngine1 0.06 0.31
100234135 Button SearchEngine1 0.06 0.43
100275049 SEM SearchEngine1 0.05 77.37
100242479 SEM SearchEngine1 0.05 71.13
100242745 Pre-moive15s VideoSite3 1.1e-6 0.0053
100256638 Back bomb Portal1 1.1e-6 0.025
100262130 Video(15s) VideoSite6 1.1e-6 0.10
100242709 Video(15s) VideoSite4 1.1e-6 0.0053
100262175 Video(15s) VideoSite5 10.0e-7 0.0053
100262158 Video(15s) VideoSite6 9.8e-7 0.0044
100242450 iFocus VerticalSite7 9.7e-7 0.051
100262062 Video(15s) VideoSite4 9.2e-7 0.0057
100256703 iFocus VerticalSite25 9.2e-7 0.10
100275296 SEM SearchEngine1 7.8e-7 0.0054

Table III shows that 9 out of the 10 channels with the

largest ωk value are of the type SEM and on the site

SearchEngine1, suggesting that the impact of the SEM
type at the site SearchEngine1 decays very fast. SEM is

known for its high influence on user conversion. However,

our results have also revealed that the impact of some of

the SEM advertisements may decay fast. This could be

explainable: since SEM is generally user initiated, its impact

could diminish very fast if the SEM does not match the

user intension well. On the other hand, the 10 channels

with the lowest ωk are of various types, such as Promoted-
Download, iFocus, SEM, and Banner and on various portal

sites and search engine sites. An interesting finding is that

all these channels are associated with quite low values of

βk, suggesting that some low influential advertisement could

continuously give users a low-level stimulus for conversion.

D. Conversion Prediction

A challenge in validating various attribution models is that

there is no ‘ground truth’ attribution score available. So we

need to find an alternative benchmark to evaluate different

attribution methods. In this section, we test the five attribu-
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Table III
THE CHANNELS WITH THE HIGHEST & LOWEST TIME DECAY ωk .

Channel Type Site βk ωk

100275048 SEM SearchEngine1 0.027 278.73
100275520 SEM SearchEngine1 0.0033 255.92
100275034 SEM SearchEngine1 0.0029 187.81
100248636 Branded Album SearchEngine1 0.0031 183.10
100242644 SEM SearchEngine1 0.0033 180.44
100242334 SEM SearchEngine1 0.0025 141.44
100275033 SEM SearchEngine1 0.0022 128.95
100242474 SEM SearchEngine1 0.0080 115.24
100275238 SEM SearchEngine1 0.0036 115.02
100242477 SEM SearchEngine1 0.0019 113.95

1Nx PromotedDownload VerticalSite11 1.5e-6 0.0013
100234134 Column Area SearchEngine1 1.7e-5 9.5e-4
100281794 iFocus Portal1 1.9e-5 7.9e-4
100281786 iFocus Portal5 1.4e-5 7.3e-4
100281091 SEM SearchEngine1 4.1e-5 6.4e-4
100281089 SEM SearchEngine1 3.3e-5 5.6e-4
100281056 SEM SearchEngine1 2.2e-5 5.2e-4
100281085 SEM SearchEngine1 4.0e-5 4.1e-4
100281341 Banner Portal1 6.0e-5 4.1e-4
100281341 Banner Portal1 4.8e-5 3.8e-4

tion models with conversion prediction. It is straight-forward

to perform conversion prediction with ADDITIVEHAZARD

model, logistic regression model and last-touch model. For

simple probabilistic model and causal attribution model, we

take advantage of the simulation method in Dalessandro

et al.’s paper [3] for conversion prediction. We use their

conversion-generation formula to calculate the probability

of conversion of a user:

P (Y ) = (1−
K∏
k

(1− P (Y |Ck)))× δ
∑

I(Ck)

The first term in brackets represents the probability of

conversion assuming zero interaction effects. The second

term accounts for the marginally decreasing effect of each

ad. We also choose δ = 0.95 as they did. Notice that the

formula only uses the first order conditional probabilities.

This formula is used for both simple probabilistic model and

causal attribution model. Therefore, the two models give the

same results in terms of conversion prediction and we treat

them as one single method for this purpose.

We then compare the performance of conversion pre-

diction of the following four methods, ADDITIVEHAZARD

model, last-touch model, logistic regression model, and

simple probabilistic model & causal model. As we can see

from Figure 5, the ADDITIVEHAZARD model clearly out-

performs the other three models. Considering the purchases

are extremely sparse in the real world data set (i.e., only

4,281 purchases for over 1.2 billion ad exposures), it is

quite challenging to accurately predict the purchases. The

ADDITIVEHAZARD model achieve nearly the F1-score of

0.035 and has much more superior performance than the

other three models in terms of precision, recall, and F1

score. The next best model is the simple probabilistic model

& causal model, followed by the logistic regression model.

And no surprise, the last touch model performs the worse

among the four models. The simple probabilistic model

& causal model are more close to the ADDITIVEHAZARD

model in terms of model formulation, which matches with

our experimental results that in terms of precision, recall,

and F1-score in conversion prediction, the two models are

more similar to the ADDITIVEHAZARD model. Logistic

regression model does not have a probabilistic interpretation

and is more close to last touch in the attribution formulation.

It is observed that the logistic regression model performs

more similar to the last touch models.
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Figure 5. Results of conversion prediction for the real world data set by
the four different attribution models.

E. Attribution Analysis

We next present the attribution analysis of 5 different

methods, including the proposed ADDITIVEHAZARD model,

last-touch model, logistic regression model [8], simple prob-

abilistic model [8] and causal attribution model [3]. For the

ADDITIVEHAZARD model, the dynamics of the influences

of an advertisement on user conversion are modeled with

the strength of influence and its time-decaying property.

Hence, in perform the attribution, we need to set a pre-

defined observe window T . Here we set it empirically to

694



30 days. Because it is difficult to interpret the attribution

at individual channels, we here aggregate the attribution of

individual channels based on the corresponding ad types

or ad sites. The results are summarized in Figure 6. To

facilitate the interpretation of the attribution, we also plot

the distribution of distance to conversion for different ad

types and ad sites in Figure 7.
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Figure 6. Attribution analysis on real data set.

As can be seen from Figure 6 and Figure 7, the ADDI-

TIVEHARZARD model, the simple probabilistic model, and

the causal attribution model have more similar attribution,

while the logistic regression model and the last touch model

have more similar attribution, which matches our previous

analysis that the ADDITIVEHARZARD model is more close

to the simple probabilistic model and the causal attribution

model, and the logistic regression model is more close to

last touch model in attribution modeling.
All the models tends to give more credit to the ad

types and web sites which are closer to the conversions on

average and appear a large number of times in the users’

ad viewing/clicking history. From Figure 6, we can find that

the ad types Brand album and SEM and the site Search1
are given most credit in the attribution. Figure 7 shows that

Brand album, SEM and Search1 all have an average distance

of nearly one to conversion.
The type Float background is given high attribution score
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Figure 7. Distribution of distance to purchase of different ad types and
ad sites.

by the ADDITIVEHARZARD model, the simple probabilistic

model, and the causal attribution model, while the logistic

regression model and the last touch model give it close to

0 attribution. A further investigation into the data reveals

that the type Floating background contains only one channel

100246500. It only appears once in last touch in 1704

conversions. Thus last touch attribute and logistic regression

model tend to give it low attribution score. On the other

hand, the total number of appearance of this channel in the

training data is only 152, among while 37 is in last position.

So the ADDITIVEHARZARD model tend to give it high value

for the attribution. The main reason we attribute so different

from Last touch is because we focus on the inferred more

objective conversion rate of the channels by removing the

influence of the presentation biases in the training data.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a fully data-driven model called

additive hazard model based on survival theory for the

multi-channel attribution problem in online advertising. In

particular, the proposed model not only considers the dif-

ferent levels of impact of different advertising channels but

also takes time-decaying effect into account. The proposed
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model is fitted by optimizing the likelihood function in

an iterative manner. When experimented with the synthetic

data and real-world data, the proposed method makes a

good inference of the parameters, in terms of relative error.

For the real-world data, the proposed method typically

outperforms the last-touch (default model in industry) and

logistic regression model.

There are several interesting directions in the future work.

Currently we fit the model at individual channel level. As

Shao et al. [8] point out, selecting the right dimensions to

model on and controlling the dimensionality are important

because introducing unnecessary dimensions might intro-

duce noise and make results difficult to interpret and higher

dimensionality and cardinality would either significantly

increase the amount of data needed for statistical significance

or drown out the important conclusions. A possible future

research direction is to investigate how to limit the set

of dimensions by aggregating ads of similar behaviors. In

addition, a more efficient algorithm may be explored to

solve the inference problem. How to find the best kernel

function for each advertising channel statistically is another

interesting topic. Moreover, more factors can be taken into

account to be added to our model like the mutual exciting

effects among different advertising channels and so on.
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