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ABSTRACT
With the increasing accessibility of transactional data in
venture finance, venture capital firms (VCs) face great chal-
lenges in developing quantitative tools to identify new in-
vestment opportunities. Recommendation techniques have
the possibility of helping VCs making data-driven invest-
ment decisions by providing an automatic screening process
of a large number of startups across different domains on
the basis of their past investment data. A previous study
has shown the potential advantage of using collaborative fil-
tering to catch and predict the VCs’ investment behaviours
[17]. However, two fundamental challenges in venture fi-
nance make conventional recommendation techniques diffi-
cult to apply. First, risk factors should be cautiously con-
sidered when making investments: for a potential startup, a
VC needs to specifically estimate how well this new invest-
ment can fit into its holding investment portfolio in such a
way that investment risk can be hedged. Second, The invest-
ment behaviours are much sparser than conventional recom-
mendation applications and a VC’s investments are usually
limited to a few industry categories, making it impossible
to use a topic-diversification method to hedge the risk. In
this paper, we solve the startup recommendation problem
from a risk management perspective. We propose 5 risk-
aware startup selection and ranking algorithms to catch the
VCs’ investment behaviours and predict their new invest-
ments. Apart from the contribution on the new risk-aware
recommendation model, our experiments on the collected
CrunchBase dataset show significant performance improve-
ments over strong baselines.
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1. INTRODUCTION
Early-stage investment is a key driving force of techno-

logical innovation and is vitally important to the wider eco-
nomy, especially in high-growth and hi-tech industries, such
as life sciences, clean-tech and information technology. Tra-
ditionally, investment opportunities are either referred or
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identified through manual technology scans [18]. The main
stages of an investor’s decision making process involve deal
origination, screening, evaluation, structuring and post in-
vestment activities. These stages align with those iden-
tified by other research into venture capital (VC) invest-
ment [7]. In recent years, the traditional venture financing
landscape has also shown signs of evolving. Some commen-
tators [2] depict an industry “trifurcating” with (i) top-tier
firms, e.g., Sequoia Capital, (ii) incubators and accelera-
tors, e.g., Y Combinator, and, finally, (iii) firms that are
taking a more quantitative approach to funding, e.g., Corre-
lation Ventures. There is potentially a fourth factor in the
emergence of entirely new funding sources such as “crowd-
funding” which generally operate through online platforms,
e.g., AngelList. Shifts towards more quantitative and data
driven approaches along with new opportunities for online
private investment provide additional impetus and scope
for applying data mining and intelligent recommendations
to this domain [17].

Whilst recommendation is useful in helping make invest-
ment decisions, this new domain, however, is quite distinct
from existing applications of recommender systems (e.g.,
for movies and music) and represents unique cha-llenges.
First, an essential question about venture finance is to es-
timate and control the risk, which is not well modelled for
traditional recommender systems. Specifically, in a recent
work where the collaborative filtering method is applied to
the startup recommendations [17], the authors purely ex-
plored the similarity between new investment opportunities
and VCs’ holding investments. Promoting similar oppor-
tunities may be attractive to the VCs at the first sight,
but such similarity-based methods fail to catch VCs’ un-
derlying main investment intention, which is to examine
how well the new investment will fit into the current in-
vestment portfolio to hedge the risk and increase the re-
turn [9]. Figure 1 further illustrates our motivation by em-
ploying a latent-factor model on our collected dataset from
CrunchBase (https://www.crunchbase.com/). This figure
compares the mean and variance between the probabilistic
matrix factorisation (PMF) [14] recommendations and VCs’
groundtruths (detailed in Section 3). The PMF recommen-
dations are made to contain the same number of items as
the groundtruths for each VC in order to make comparison.
We can see that for 76.3% VCs, PMF recommendations
have higher mean values, but in 83.5% cases, the VCs’ true
investments have lower variances and thus lower risk.

Furthermore, investments usually involve a long term pro-
cess, which is different from content consumption behaviours
such as movie watching. It is because a VC’s decision on
more investments does not necessarily indicate terminations
of previous holding investments, but adding them into the
existing portfolio. This emphasises the need that instead of
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Figure 1: Mean and variance comparisons between PMF
recommendations and groundtruth investments in Crunch-
Base. Left: percentage of higher mean for individual VCs.
Right: percentage of lower variance for individual VCs.

diversifying the recommendation list alone, as many person-
alised recommendation systems have studied [16, 24, 22], it
is more sensible to diversify the joint investment portfolio
including both the VCs’ holding investments and potential
future ones. In other words, the recommended investment
opportunities should be able to potentially hedge some risk
of the portfolio the investor has already held. This point
makes the VC investment recommendation significantly dif-
ferent from traditional recommendation tasks.

Finally, from the analysis of the CrunchBase data, we
can find some unique characteristics in the VC investment
behaviours (see Section 3). The dataset is much sparser
as each VC usually only invests in a small number of in-
vestments. Meanwhile, a VC usually only focuses on a few
industry categories, making the previous recommendation
methods based on topic diversification, e.g., [27, 8], infeasi-
ble here.

In this paper, we address the above issues by integrating
risk management into recommender systems and tailoring
it for venture finance. Our contributions are fourfold. (i)
We find that with advances in recommender systems, par-
ticularly collaborative filtering, it is possible to envision an
automatic startups screening process according to the ex-
pectation and risk revealed by the VC-startup relationships.
(ii) Based on the estimated risk, we propose 5 algorithms
to systematically optimise the startup recommendations in
a risk-aware manner. (iii) We conduct comprehensive ex-
periments which show significant improvements on various
measures, proving the effectiveness of our algorithms in rec-
ommending future investments and predicting VC invest-
ment behaviours. (iv) We publicise our collected Crunch-
Base venture finance dataset used in this paper, in an effort
to facilitate scientific research on investment behaviours and
recommendations in venture finance.

The rest of this paper is organised as follows. Related
work is discussed in Section 2. In Section 3, we describe and
analyse the CrunchBase dataset. In Section 4 we present the
proposed risk-aware solutions for startup recommendations.
Our experimental evaluation is reported in Section 5 and
Section 6 summarises and concludes this paper.

2. RELATED WORK
Venture Finance. Venture finance refers to the financ-

ing of private companies through the use of venture capital.
Venture capital is a form of private equity, a medium to
long-term form of finance provided in return for an equity
stake in potentially high growth companies. Early-stage in-
vestment is typified by venture capital firms who deploy
capital towards high-risk ventures. Venture capital has five
main characteristics [13]: is a financial intermediary; invests
only in private companies; takes an active role in monitoring
and helping portfolio companies; primary goal is to max-
imise financial return by exiting investments through sale
or an initial public offering (IPO); invests to fund the in-
ternal growth of companies. Whilst there have been some
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Figure 2: Behaviour comparison by category/genre distri-
bution.

applications of recommender systems to the broader domain
of finance, including microfinance [3], there has seemingly
been little previous academic research in applying such tech-
niques directly to venture finance. To our knowledge, [17]
is the first and the only one that has studied collaborative
filtering on venture finance recommendation. However, [17]
only showed some empirical results of a direct application
of recommendation algorithms to venture finance, lacking
a more sophisticated consideration or adjustment of recom-
mendation methods to the unique domain, where the risk
is a major concern. It is worth mentioning that [25] also
considered risk in recommendation optimisation for a P2P
lending investment recommendation problem. However, the
authors failed to address the correlations between invest-
ments or to analyse the investors’ risk-averse levels, making
it significantly different from our paper.

Diversification in Recommender Systems. Recom-
mendation diversification has become a hot research topic
recently, and there are mainly two types of solutions. The
first type of work tries to diversify the recommendation re-
sult explicitly [27, 22, 11]. For example, the authors of [27]
explicitly introduced an intra-list similarity metric based
on content-based features of the items and increased topic
diversification by reducing the intra-list similarity. The au-
thors of [22] defined an item set diversity based on averaged
item-pair distances in a learnt latent space, and formulated
the diversification problem into a binary optimisation prob-
lem to balance the accuracy and diversity. In [11], the au-
thors discussed the diversification of recommended items as
a temporal process so that the system delivers novel items
with respect to the recommendations made in the past. And
[19] discussed several evaluation metrics for diversification
and novelty of the recommendation result. Generally, this
type of work first defines a diversity metric, e.g., item cat-
egory coverage or item distance in a latent space, and then
proposes solutions to increase the measured diversity.

The second type of work achieves diversification by intro-
ducing the risk management concept from finance [9], where
the investors can combine negatively or weakly correlated
investments to diversify the risk of deficit using quantita-
tive methods such as the modern portfolio theory [5]. In
the recommendation scenario, items with the same topics
or attributes usually have positive correlations with respect
to users’ preferences on them, making it higher risk to in-
clude them in one recommendation list. Thus by controlling
the risk in the recommendation list, diversification of top-
ics and results can be naturally achieved [16, 24, 4]. The
authors of [16] first introduced the idea of portfolio the-
ory to the mean-variance analysis of user-item preference
modelling and then proposed a re-ranking algorithm to bal-
ance between the uncertainty and expectation of user prefer-
ences. The authors found that by increasing the risk-averse
level, the item category diversification in the recommended
ranked list can be improved. The authors of [24] stud-
ied a bi-portfolio scenario, where the recommendation lists
from personalised and non-personalised methods were mod-



elled as two portfolios. By proposing a risk-aware switching
algorithm, they answered the dilemma of whether the per-
sonalised or non-personalised recommendations should be
used. In [4], a contextual bandit algorithm is proposed to
control the risk in mobile recommendations which dynami-
cally address the user’s risk levels. However, there has been
no academic research how to address risk control in venture
finance recommendation, which is the main focus of this
paper.

3. THE CRUNCHBASE DATASET
CrunchBase is a repository of startup companies, indi-

vidual partners, and financial institutes focusing on the US
high-tech sectors [1]. With its self-description as a “free
database of technology companies, people and investors that
anyone can edit”, CrunchBase maintains the investment
events between investors (including financial institutes and
individual partners) and investment opportunities (usually
startup companies) associated with the total amount of
raised funding1 and time. According to [17], financial organ-
isations and individual partners are significantly different in
their investment behaviours. Thus in search of consistent
properties, in this work we focus on only the financial organ-
isations. We crawled the CrunchBase data from its official
API2 in May 2014. In total, we collected 62,926 investment
events between 7,706 VCs and 18,026 startups from 1987 to
2014. We publicise the dataset online for research use3.

By comparing the statistics between CrunchBase and the
MovieLens 1M dataset (a well-known dataset for collabo-
rative filtering research), we have identified quite different
characteristics. First, as shown in Figure 2, VCs in the
CrunchBase dataset tend to invest in a small number of in-
dustry categories, whereas users in the MovieLens dataset
tend to rate a variety of movies, which often span more
than 15 different genres. The reasons could be that, on one
hand, VC’s investment numbers in CrunchBase are gener-
ally much lower than the user rating numbers in MovieLens,
due to the severe sparsity of the CrunchBase dataset (de-
tailed below); on the other hand, VCs may be cautious in
investing in unfamiliar industry categories to avoid risk.

Second, the CrunchBase dataset is much sparser than
conventional recommendation data. The rating ratio of the
MovieLens 1M dataset is about 4.46%, and it is 1.17% for
another well-known movie-rating dataset Netflix. These ra-
tios are already very low, but the observed investment ratio
of CrunchBase is even lower: only 0.045%, about 1/97 of
MovieLens 1M’s and 1/25 of Netflix’s. Such sparsity is rea-
sonable since private investment activity is not as common-
place as simply watching movies. Also, the final investment
decision will require the consent of both the company and
VCs and usually involves a lengthy due diligence process [6].

The distinct characteristics of the venture finance invest-
ment behaviours revealed by the CrunchBase data motivate
us to build new risk-aware recommendation algorithms tai-
lored for the unique investor-investment ecosystem:
• From Figure 1, VCs tend to invest in opportunities

with risk concerns rather than pure recommendations
based on similarity.
• VCs usually cannot make extremely large numbers of

investments. For each new investment opportunity,
the VC may consider how it can fit into its holding
portfolio. This motivates us to optimise the portfolio

1It is the total raised money in one round for a startup
instead of indicated for each funding party. Therefore we
choose not to use the funding amount information in this
work.
2CrunchBase API: http://developer.crunchbase.com
3http://www0.cs.ucl.ac.uk/staff/w.zhang/cb.html

including both the invested startups and those to be
recommended together.
• VCs normally focus on a small number of industry cat-

egories, unlike the wide range of genres in users’ movie
watching behaviours. This suggests that we cannot
simply use a topic-diversification method commonly
used for recommendation list diversification [27].

4. METHODOLOGY
4.1 Problem Formulation

Let us denote a VC (venture capital firm) as u and the
available startup (investment opportunity) pool as I. Sup-
pose that VC u has already invested in m startups from the
pool, and the recommender system is to seek another n star-
tups from the pool for this VC to invest in. Without loss of
generality, we denote the m holding investments (startups
that the VC has already invested in) as i = (i1, i2, . . . , im),
and denote the startups to recommend as j = (j1, j2, . . . , jn)
where j ⊂ I\i. We will also refer to the available startup
set for VC u as Iu ( Iu = I\i) in the sequel.

We define a joint portfolio p(j) as a linear combination of
the m+ n startups (m invested startups and n recommen-
dations) with normalised weights:

p(j) = {(i1, wi1), . . . (im, wim), (j1, wj1), . . . (jn, wjn)} (1)

with
∑m
α=1 wiα+

∑n
β=1 wjβ = 1. Here the weights stand for

estimated importance of each startup in the portfolio and
will finally determine the ranking of the recommendation
list [24]. Note that i is omitted in this notation for the sake
of simplicity because the holding startups denoted by i are
always contained in the joint portfolio.

We further denote VC u’s preference on the joint portfo-
lio p(j) as Ru,p(j), which is a weighted linear combination
of the preferences on its component, as will be discussed
later. According to PMF, Ru,p(j) can be modelled as a
random variable [14]. The utility function U [Ru,p(j)] based
on the random variable Ru,p(j) is defined as a trade-off be-
tween the expected reward E[Ru,p(j)] and the associated
risk. The risk is usually defined as the variance of the re-
ward Var[Ru,p(j)] [12, 21, 24]. In the risk-averse case, it is
subtracted from the expected reward E[Ru,p(j)] to form the
utility function.

The objective function is thus to find n startups (with
rankings) to recommend to the VC so that the VC’s utility
over the joint portfolio is optimised:

j∗ = arg max
j︸ ︷︷ ︸

startup selection

[
max

wi,wj

(
E[Ru,p(j)] − bVar[Ru,p(j)]

)]
︸ ︷︷ ︸

portfolio optimisation

. (2)

Here we have already used vectors wi and wj to denote
the weight vector of startups i and startups j respectively.
The n recommended startups are then ranked according
to their weights optimised in the process. Parameter b is
the VC’s risk-averse level. A higher b means that the VC
is more risk-averse and is willing to sacrifice the expected
reward to hedge the risk. It can be optimised globally (for
all the VCs) or personally (adapted for each individual VC)
from the data. We will show in the experiment section how
b is determined and calibrated from the data.

We can see that there are two sub-problems in the objec-
tive function:
• Portfolio optimisation: given a candidate recom-

mendation set of startups j, to find the optimally al-
located weights to maximise the utility of the joint
portfolio p(j). This part is discussed in Section 4.2.
• Startup selection and ranking: given a pool of

available startups Iu, to select a subset j ⊆ Iu (|j| =
n) to form the joint portfolio p(j). This part is dis-
cussed in Section 4.3.

http://developer.crunchbase.com
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Algorithm 1 Sampling-based Startup Selection (Sampling)

Require: VC u, current invested startups i1, . . . , im, can-
didate startup set Ic, risk-averse parameter b, recommen-
dation size n, utility function U , sampling time T .
Initialise j∗ ← ∅
for t = 1 . . . T do

Sample jt = (j1, j2, . . . , jn) from Ic
Build portfolio p(jt) based on the joint set
(i1, . . . , im, j1, j2, . . . , jn) via Eq. (1)
Calculate the maximum utility U [Ru,p(jt)] via Eq. (3)
if U [Ru,p(jt)] is the largest utility so far then

Update j∗ ← jt
end if

end for
return Rank list j∗

The two sub-problems are inter-connected. To optimise
the portfolio we need to provide the selected startup subset,
and to determine the optimal startups to recommend, we
need to optimise each joint portfolio and compare between
different startup selections.

4.2 Portfolio Optimisation
We first focus on the portfolio optimisation problem:

max
wi,wj

U [Ru,p(j)] = max
wi,wj

E[Ru,p(j)]− bVar[Ru,p(j)]. (3)

To further simplify the notations, we will use w as the
concatenation (wi,wj) in the sequel. We will also denote
the startups contained in the joint portfolio as κ which
is a concatenation (i, j). A startup in the joint portfo-
lio is thus denoted by a single symbol κ (κ ∈ κ). Now,
the optimisation problem is simplified as maxw E[Ru,p(j)]−
bVar[Ru,p(j)]. Here we allow flexible weights wi of existing
startups in the portfolio optimisation process as we assume
the VC can adjust importance and priorities of them.

4.2.1 Portfolio-Level Preference
As mentioned before, we associate weights as the impor-

tance of startups in the portfolio. We also define the ranking
order of startups by the importance (weight) order among
all recommended items. Now that the problem is translated
into a ranking problem, and thus we adopt a generalised
definition of weight which can be either positive or nega-
tive [24]. An advantage of this treatment also lies in its
analytical solution for weight optimisation.

As mentioned before, a VC u’s preference on a portfolio
is a random variable Ru,p(j), which is a linear combination
of the preference random variables of individual startups
denoted by ru,κ:

Ru,p(j) =
∑
κ

wκru,κ = wTr, (4)

where r is the vector representation of the VC’s preferences
of startups in the portfolio. By denoting the mean and vari-
ance of the preference ru,κ as µu,κ and σ2

u,κ, the expectation
and variance of Ru,p(j) are calculated as:

E[Ru,p(j)] =
∑
κ

wκE[ru,κ] = wTµ, (5)

Var[Ru,p(j)] =
∑
κ

∑
κ′

wκwκ′ Cov(κ, κ′) = wTΣw. (6)

Here we have used µ to denote the vector of the preference
expectations, and Σ to denote the covariance matrix whose
(κ, κ′)-th element is given by the covariance Cov(κ, κ′) =
ρκ,κ′σu,κσu,κ′ , where ρκ,κ′ is the correlation between startup
κ and κ′ [12, 21] and can be estimated via industry category
overlap [17] or latent factor vector cosine [24].

In this paper, we follow [26, 24] and use the PMF model [14]
to obtain the probabilistic representations of the VC-startup
preferences. Assuming that uncertainty in the preference
originates from the uncertainty of the user latent factor es-
timation [26], we can estimate the expectation and variance
of ru,κ as follows:

µu,κ = E[pu]Tqκ, (7)

σ2
u,κ = qTκ Cov[pu]qκ. (8)

Here pu and qκ can be estimated by the MAP solution
of p(ru,i|pu, qi, σ2) = N (ru,i|pTuqi, σ2). Due to space limit,
the technical details are omitted here and we refer to the
PMF setting in [26, 24].

4.2.2 Portfolio Weight Optimisation
Integrating Eqs. (5) and (6) into Eq. (3), we translate

the portfolio optimisation problem into the portfolio weight
optimisation problem:

max
w
wTµ− bwTΣw, (9)

which is a standard quadratic optimisation problem. In the
case when w can take any value in Rm+n, there is an ana-
lytic solution explicitly given in [24]. Without loss of gener-
ality we assume an optimised portfolio is ranked according
to the item weight such that

wi1 > wi2 > · · · > wim , and wj1 > wj2 > · · · > wjn ,

i.e., elements in i and j are ranked by their importance.

4.3 Startup Selection and Ranking
In Section 4.2, we discussed the model to estimate the

maximum investment utility U [Ru,p(j)] given the recom-
mended startups j. In this section, we discuss the algo-
rithms to efficiently find the optimal recommendation set j
from a large candidate corpus Iu.

Considering the fact that the possible startup combina-
tion space is extremely large (Cn|Iu|), we need to first re-
duce the candidate set by pre-selecting a size-N candidate
startup set Ic ⊆ Iu (|Ic| = N) with the highest expected
preferences µu,κ estimated from PMF (Eq. (7)). Then within
the candidate set Ic we determine the final ranked list of
startups j. All of our proposed algorithms share the pro-
cedure of first choosing the size-N candidate set and then
determining the final size-n ranked recommendations.

With the candidate set Ic we propose the following 5
different algorithms to find the optimal selections and their
ranking.

4.3.1 Startup Selection by Sampling
A straightforward solution is to use a sampling method

to approximate the optimal solution, which greatly reduces
the computational cost. The details are presented in Algo-
rithm 1. By sampling n-sized startup combinations among
the N candidates for T times and picking the combination
with the highest utility, we can get a globally 1/T best com-
bination in expectation. As T → Cn|Ic|, the performance of
the sampling-based method will converge to the globally op-
timal solution, i.e., the portfolio p(j∗) leading to the highest
utility U [Ru,p(j∗)].

4.3.2 Startup Selection by Individual Score Ranking
This is a simple ranking algorithm that ranks the startup

utility by considering individual startups joining the current
portfolio. We denote the joint portfolio including one candi-
date startup j as p(j), and the maximum utility U [Ru,p(j)]
with j will act as the ranking score of j. Based on the score
of each candidate startup, we can rank them and choose the



Algorithm 2 Individual Startup Selection (Idv)

Require: VC u, current invested startups i1, . . . , im, can-
didate startup set Ic, risk-averse parameter b, recommen-
dation size n, utility function U .
for each candidate startup j in Ic do

Build portfolio p(j) based on the joint set (i1, . . . , im, j)
via Eq. (1)
Calculate the maximum utility U [Ru,p(j)] via Eq. (3)

end for
return Rank list j∗ of n startups with highest U [Ru,p(j)]

Algorithm 3 Sequential Startup Selection (Seq)

Require: VC u, current invested startups i1, . . . , im, can-
didate startup set Ic, risk-averse parameter b, recommen-
dation size n, utility function U .
Initialise startup set j∗ ← ∅
for l = 1 . . . n do

Select the optimal startup j∗l in Ic such that

j∗l = arg max
jl∈Ic

U [Ru,p(j∗,jl)]

where the portfolio p(j∗, jl) is built based on startups
{i1, . . . , im, j∗1 , j∗2 , . . . , j∗l−1, jl} via Eq. (1)
j∗ ← j∗ ∪ {j∗l }
Ic ← Ic\j∗l

end for
return Rank list j∗ with the selection order

top-n startups with the highest scores. This procedure is
given in Algorithm 2.

As we can see, Algorithm 2 is quite straightforward: se-
lecting each startup based on the utility it brings. However,
this algorithm fails to consider the correlation among the n
recommended startups.

4.3.3 Sequential Startup Selection
Inspired by [21, 16], we select the startups incrementally

to approximate the optimal solution with a large computa-
tional cost reduced. For each iteration, in a greedy fashion,
we select one startup which can bring the highest increase
in the utility function when being added into the current
portfolio. This procedure is described in Algorithm 3.

Sequential methods have been adopted in previous work
on top-N recommendation [16] and webpage ranking [21].
Though it is a greedy method, it has shown high efficiency
and good empirical performances.

4.3.4 Startup Selection by Weight Ranking
With the candidate startup set Ic, we can build a port-

folio pg with all the candidate startups and the invested
startups i. Then we can apply the portfolio optimisation
according to Eq. (3) to obtain the optimal weights for all
the candidates. We rank their weights and select the top n.
This algorithm is illustrated in Algorithm 4.

This algorithm takes into account the inter-relationship
between each pair of candidate startups in Ic. However,
by selecting the top n candidates with the highest portfolio
weights, the resulting portfolio is already different from the
global portfolio pg. In other words, the top n candidates
are selected based on a globally learnt weight ranking rather
than a direct optimisation on the joint portfolio with only
these n candidates added, which is a discrepancy.

4.3.5 Startup Selection by Weight Filtering
Here we implement a backward sequential method shown

in Algorithm 5. In each iteration, we build the global port-
folio pg based on the invested startups and the startups

Algorithm 4 Weight-based Startup Selection (Weight)

Require: VC u, current invested startups i1, . . . , im, can-
didate startup set Ic, risk-averse parameter b, recommen-
dation size n, utility function U .
Build the portfolio pg based on the joint set g =
{i1, . . . , im} ∪ Ic via Eq. (1)
Calculate the optimal weights wg via Eq. (3)
Sort the candidate startups by their weight in wg

return Rank list j∗ of n startups with highest weights

Algorithm 5 Filtering-based Startup Selection (Filtering)

Require: VC u, current invested startups i1, . . . , im, can-
didate startup set Ic, risk-averse parameter b, recommen-
dation size n, utility function U .
while |Ic| > n do

Build portfolio pg based on the joint startup set g =
{i1, . . . , im} ∪ Ic via Eq. (1)
Obtain the optimal weights wg via Eq. (3)
Obtain jf with the lowest weight in wg

Update Ic ← Ic\jf
end while
return Rank list of startups in Ic by the optimal weights

in the candidate set, optimise the portfolio to obtain the
optimal weights according to Eq. (3), and remove the can-
didate startup with the lowest weight from the candidate
startup set. This process iterates until the resulting can-
didate startup set shrinks to the size of n. Similar to the
weight ranking algorithm, the weight filtering algorithm is
also based on the weights obtained by optimising the port-
folio constructed by the overall startup set rather than the
selected subset, and thus suffers from the same discrepancy.

4.4 Adaptive Risk-Averse Level
With different industry category focuses and investment

strategies, different VCs may have different risk-averse lev-
els, represented as the parameter b in our model Eq. (3).
All the above discussed algorithms take b as a model pa-
rameter, yet b can also be learnt for each VC u and thus
the portfolio can be optimised in a personalised manner.

In order to adaptively learn this parameter for each VC,
we conduct a cross validation on the training data, tune the
parameter bu for each VC u and pick its optimal value for
each VC which maximises the startup ranking evaluation
measure (e.g., NDCG) on the validation data. Then the
learnt bu for VC u will be used in the test phase.

5. EXPERIMENTS
After describing the experiment setup in Section 5.1, we

present the experimental results in three parts. (i) In Sec-
tion 5.2, we focus on the case of recommending the next
startup, i.e., n = 1. With only one startup to be recom-
mended, the correlation between the recommended startup
and the existing portfolio plays the key role in the deci-
sion process. (ii) In Section 5.3, we study the cases where
multiple recommendations are made, i.e., n = 3, 5, 10. In
these cases, not only the correlation between each of the
new items and the existing investments, but also correla-
tions among the recommended ones are important. (iii) In
Section 5.4, we further perform a statistical data analysis
on the optimal risk-averse level b among the VCs.

5.1 Experimental Setup
5.1.1 Data Processing

As described in Section 3, we base our experiments on
the CrunchBase dataset that we collected. We first divide



the CrunchBase dataset into training set and test set with
2:1 ratio for each VC according to investment time. Split-
ting this way, the total investment number is 69,422 in the
training set and 24,138 in the test set.

We label a recorded investment from a VC to a startup as
1, i.e., a positive observation. Since it is a one-class training
data [15], we follow [15] to perform a user-oriented negative
item sampling process, i.e., for each VC, we sample the
same number of negative data points as its observed positive
points and label them with 0. We train the PMF model to
obtain the latent factors for the VCs and startups as well as
the probabilistic representation of the VC latent factors (as
discussed in Section 4.2). Note that our focus in this paper
is not on the performance comparison against the state-
of-the-art recommendation methods, but on investigating
how the proposed portfolio-based algorithms can improve
the recommendation results. The choice of PMF enables a
coherent view of the effectiveness of the proposed method
as it enables pure model-based mean/variance/covariance
estimation for building portfolios.

5.1.2 Compared Algorithms
Three types of state-of-the-art algorithms are compared:

the conventional recommendation algorithms, portfolio-based
algorithms and adaptive-b portfolio-based algorithms. As
described in Section 4.3, we always first determine a candi-
date item set Ic obtained as the top-N items from PMF,
before applying any item selection and ranking algorithm.

Random sampling (Random). As a baseline, we com-
pare our results with randomly-chosen n startups from the
candidate set.

PMF. PMF method directly gives the top-n startup de-
termined by the maximum a posteriori (MAP) estimation
of the VC’s preference regarding each startup.

Portfolio-based methods. These methods include Sam-
pling, Sequential Selection (Seq), Individual Score Rank-
ing (Idv), Weight Ranking (Weight), and Weight Filtering
(Filtering). Details of each algorithm are described in Sec-
tion 4.3.

Adaptive-b portfolio-based methods. These meth-
ods adopt a personalised risk-averse level b for each VC, as
described in Section 4.4. We denote them with ‘-A’ follow-
ing the algorithm’s name.

5.1.3 Evaluation Measures
As the task falls into the category of top-N recommenda-

tion based on implicit data, we follow previous work [26, 23]
to evaluate the recommendation performances with the fol-
lowing ranking evaluation measures: Precision (P@n), Nor-
malised Discounted Cumulative Gain (NDCG@n) [10], and
Mean Reciprocal Rank (MRR@n) [20]. For each algorithm,
we calculate the recommendation performances (with re-
spect to these three measures) in regard to each test VC,
then average for all test VCs to get the average perfor-
mances.

5.2 Next Startup Recommendation
In this subsection, we focus on the case of n = 1, i.e., only

one startup is recommended for each test VC. In this case,
Sampling, Idv, and Seq are essentially the same, denoted
as Portfolio. We compare Portfolio and its adaptive-b ver-
sion Portfolio-A with the baseline algorithm PMF. As P@1,
NDCG@1 and MRR@1 provide exactly the same result in
the case n = 1, we only use P@1 as the measure here.

Figure 3 shows the result comparison between PMF, Port-
folio and the adaptive-b version Portfolio-A, for different la-
tent space dimensions (k = 25 and k = 50). The candidate
size N and the risk-averse level b are both tuned to optimal
to obtain the Portfolio performance.
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Figure 3: Precision comparison when n = 1.

(a) Risk-averse level b (b) Candidate set size N

Figure 4: Performance against parameters when n = 1. The
computation time is calculated as per test VC.

From Figure 3, we have the following observations. (i)
For both cases (k = 25 and k = 50), Portfolio and Portfolio-
A perform significantly better than PMF. (ii) Comparing
between k = 25 and k = 50, the performance of PMF keeps
unchanged, whilst the performance improvements by Port-
folio and Portfolio-A are even higher when k = 50. (iii) In
the case of k = 50, Portfolio is outperformed by Portfolio-A.
These facts show the effectiveness of our proposed algo-
rithms over PMF, indicating that recommendations with
risk concerns are superior in catching the VCs’ investment
behaviour, and different VCs have different risk-averse lev-
els. We will extend these discussions in Section 5.4.

In Figure 4, we show the effect of parameters b and candi-
date size N . From Figure 4(a), we can see that the perfor-
mance peaks when the global risk-averse level b = 1. The
global b reflects the overall risk-averse level for all test VCs,
and the peak value indicates that a certain risk-averse level
optimally catches the VCs’ overall investment behaviour
and leads to the best recommendation result. In Figure
4(b), we show the effect of tuning the candidate size N with
the corresponding computational time shown as a reference.
We can see that when the candidate set gets larger, the per-
formance first increases and then drops to a lower level. It
indicates that though an increasing candidate size N adds
more options for the algorithm to choose, an oversized can-
didate set may also mislead the algorithm due to overfitted
estimation of latent factors from PMF. The computation
time increases linearly as the candidate set enlarges, so one
may find a trade-off between the candidate size N and the
computation speed as desired.

5.3 Top-N Startup Recommendation
Here we present the results for multiple item recommen-

dations. In this task, ranking measures NDCG@n and MRR@n
are also used in addition to P@n. In Table 1, we com-
pare the results between baseline algorithms Random and
PMF, portfolio-based algorithms and adaptive-b portfolio-
based algorithms. All the (hyper)parameters are optimised
with cross-validation. From Table 1, we can make the fol-
lowing observations. (i) All the proposed algorithms have
great improvements over the results of PMF for all three
measures (with a few exceptions for Weight and Filtering),
showing the effectiveness of our algorithms in a multiple
item recommendation task generally. (ii) Among the (non-
adaptive) portfolio-based methods, Sampling, Seq and Idv



Table 1: Performance comparison by different algorithms. The improvement(-A) is calculated from the best Portfolio(-A)
algorithm over PMF for each measure. (All the numbers except the percentages are in the unit of 0.001.)

n @3 @5 @10
XXXXXXXRec

Measure
Pre NDCG MRR Pre NDCG MRR Pre NDCG MRR

Random 0.746 0.849 1.662 0.665 0.646 1.452 0.659 0.647 1.859
PMF 0.853 0.829 1.492 0.895 0.87 1.939 0.703 0.748 2.288

Sampling 1.492 1.729 3.41 1.279 1.235 3.218 0.959 0.955 3.177
Seq 1.279 1.429 2.771 1.151 1.126 2.931 0.831 0.871 2.931
Idv 1.279 1.239 2.451 1.151 1.105 2.771 0.959 0.987 2.937

Weight 1.066 1.279 2.558 0.767 0.946 2.558 0.703 0.741 2.835
Filtering 1.066 1.35 2.771 0.895 0.927 2.398 0.767 0.781 2.394

Improvement 74.9% 108.6% 128.6% 42.9% 42.0% 66.0% 36.4% 32.0% 38.9%

Sampling-A 5.968 6.126 11.509 5.243 5.395 12.479 3.964 4.112 12.293
Seq-A 1.705 1.879 3.73 1.662 1.74 3.986 1.087 1.299 4.276
Idv-A 1.705 1.768 3.41 1.662 1.616 3.89 1.087 1.304 4.452

Weight-A 1.066 1.279 2.558 0.767 1.008 2.685 0.703 0.786 2.92
Filtering-A 1.705 1.807 3.41 1.407 1.391 3.325 1.023 1.163 3.773

Improvement-A 599.6% 639.0% 671.4% 485.8% 520.1% 543.6% 463.9% 449.7% 437.3%

(a) NDCG@n (b) MRR@n

Figure 5: Performance against risk-averse level b.

perform better than Filtering or Weight. This fact indicates
that top-down algorithms like Filtering and Weight, which
filter out items according to the direct portfolio optimisa-
tion weight for the overall joint portfolio (invested startups
plus all the candidate startups), do not work as well as the
group-selection-based Sampling, or the bottom-up Seq and
Simple. This is due to the discrepancy between the weights
learnt by a global optimisation and the weights learnt di-
rectly for the chosen group, as mentioned in Section 4.3. (iii)
Adaptive-b portfolio-based algorithms perform better than
non-adaptive ones, showing that each VC’s risk-averse level
is indeed different, so by adaptively fitting the VC’s own
risk-averse level, the performance can be further improved.
(iv) Sampling(-A) outperforms all other algorithms. Again
we ascribe its superior performances to its group-selection
nature, as according to Eq. (3), a group selection method
can achieve the best results. The other methods Seq(-A),
Idv(-A), Weight(-A) and Filtering(-A) are further approxi-
mations than Sampling to approach the exact solution. (iv)
Among the two baselines, PMF performs better than Ran-
dom, indicating the effectiveness of the PMF model to catch
the latent factors of VCs and startups.

5.3.1 Parameter Tuning
In Figure 5 we present the influence of b evaluated by

NDCG and MRR, with different n = 3, 5, 10. From Fig-
ure 5, we can see that for each n and each measure, the
performance has a peak around b = 1, which is consistent
with the case of P@1 in Section 5.2. Furthermore, compar-
ing different top-n tasks, as n increases, NDCG@n decreases
whilst MRR@n increases. This can be explained by the
sparsity of the dataset. When only a small number of rec-
ommendations are made (e.g., 3), only a smaller number of
VCs are provided with the correct recommendations within
the recommendation list. Whereas when the number of rec-
ommendations is enlarged (e.g., 10), more users are pro-
vided with correct recommendation within the longer rec-
ommendation list. According to the definition of MRR [20],

(a) Top 3 (b) Top 10

Figure 6: Impact of candidate size N on performance and
computational time for Seq. The computation time is cal-
culated as per test VC.

only the first correct recommendation counts. Thus, the
result of MRR always increases with n in this case. On the
other hand, NDCG considers the whole ranking list in a dis-
counted manner, and, due to the sparseness of the dataset,
it naturally decreases as n increases.

In Figure 6, we plot the influence of the candidate size
N for the algorithm Seq, when n = 3 and n = 10. We can
see that the performance first increases as the candidate
size gets larger, then slightly drops after peaking around
N = 70. This result may be due to the overfitting of PMF
as mentioned before. Meanwhile, we plot the computation
time for each N accordingly. We can see the computation
time increases linearly with the candidate size N . Similar
to the case when n = 1, we may trade off some performance
for the computation speed by choosing a smaller candidate
set than optimal.

In Figure 7, we plot the influence of the sampling time
T in Algorithm 1 on the performances for both the non-
adaptive and the adaptive-b cases. We can see that the
performance peaks around T = 120 for both cases. The
decrease of performance after the peak in Figure 7(b) may
also be caused by the overfitting of the PMF model. Again,
for the sampling method, we may also seek a trade-off be-
tween the ranking performance and efficiency by tuning the
sampling time T .

5.4 Risk-Averse Level Analysis
In Figure 8(a), we plot the distribution of b optimised for

individual VCs. We can see that VCs generally form two
clusters: a risk-sensitive group whose risk-averse levels b are
larger than 0.1 and a risk-neutral group whose risk-averse
levels are much smaller. We also have interesting findings on
the relationship between the number of investments made
by a VC and its optimal risk-averse level b, shown in Figure
8(b). Here we applied a log-scale on the investment number,
because the VCs’ investment activity distribution is power-



(a) Sampling (b) Sampling-A

Figure 7: Impact of sampling time T on the performance
of Sampling(-A) and computational time. The computation
time is calculated as per test VC.

law [17]. We can find that on the log-log plot, the correlation
of the two is negative: companies holding a large number
of investments tend to be more risk-neutral, whilist compa-
nies with smaller investment scales tend to have higher risk-
averse levels (more risk-sensitive). By inspecting company
names, we can find some of the largest VCs in the world,
such as Start-Up Chile, Sequoia Capital and Accel Part-
ners, fall in the category of the risk-neutral group, whereas
smaller VCs, such as Allegro Venture Partners, are more
risk-averse. These companies are tagged on Figure 8(b) for
reference. These observations coincide with the intuition
that the fewer investments held by a VC, the more careful
it should be in making new investments, whereas, for a VC
with a great number of investments, the risk may have al-
ready been diversified in its holding portfolio, and thus there
is less risk concerns in making new investments compared
to smaller VCs.

6. CONCLUSIONS
In this paper, we proposed a portfolio optimisation frame-

work to solve the information filtering problem in venture
finance, specifically by optimising the joint portfolio of VC’s
holding investments and potential investment opportuni-
ties. We exploited the variance defined on latent factors
using a probabilistic matrix factorisation model, and opti-
mised the joint portfolio towards a trade-off between ex-
pected preference and uncertainty. We divided the problem
into two connected sub-problems including an item selec-
tion problem and a portfolio optimisation problem, and pro-
posed five different algorithms to solve it. Through the ex-
periments, we demonstrated significant improvement by us-
ing our portfolio-based algorithms and adaptive-b portfolio-
based algorithms, compared with a direct PMF approach.
In addition, we discussed the influence of the risk-averse
level b, and conducted a data analysis over the distribution
of risk-averse levels among the VCs.

For future work, we are interested in investigating the re-
lation between the users’ past investment scales and their
levels of risk appetite, and how this can affect the portfolio
optimisation process. Also, we will investigate the dynamic
portfolio optimisation problem where the portfolio is opti-
mised over time. Finally, we are also interested in including
more features to our model, such as the amount of invest-
ment, investment actions (e.g., buying back or reinvesting)
and how these can facilitate the model.
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