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ABSTRACT

In this paper we study bid optimisation for real-time bid-
ding (RTB) based display advertising. RTB allows adver-
tisers to bid on a display ad impression in real time when
it is being generated. It goes beyond contextual advertising
by motivating the bidding focused on user data and it is
different from the sponsored search auction where the bid
price is associated with keywords. For the demand side,
a fundamental technical challenge is to automate the bid-
ding process based on the budget, the campaign objective
and various information gathered in runtime and in histo-
ry. In this paper, the programmatic bidding is cast as a
functional optimisation problem. Under certain dependen-
cy assumptions, we derive simple bidding functions that
can be calculated in real time; our finding shows that the
optimal bid has a non-linear relationship with the impres-
sion level evaluation such as the click-through rate and the
conversion rate, which are estimated in real time from the
impression level features. This is different from previous
work that is mainly focused on a linear bidding function.
Our mathematical derivation suggests that optimal bidding
strategies should try to bid more impressions rather than
focus on a small set of high valued impressions because ac-
cording to the current RTB market data, compared to the
higher evaluated impressions, the lower evaluated ones are
more cost effective and the chances of winning them are
relatively higher. Aside from the theoretical insights, of-
fline experiments on a real dataset and online experiments
on a production RTB system verify the effectiveness of our
proposed optimal bidding strategies and the functional op-
timisation framework.
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1. INTRODUCTION

Real-time bidding (RTB) has recently emerged as a new
display advertising paradigm. Unlike traditional sponsored

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD’14, August 24-27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623633.

1077

search or contextual advertising, where an advertiser pre-
sets a bid price for each keyword chosen for their campaigns,
RTB allows an advertiser to submit a bid for each individ-
ual impression (based on the impression level features) in a
very short time frame, often less than 100ms [38]. RTB has
fundamentally changed the landscape of display advertis-
ing because (i) allowing per impression transactions scales
the buying process across a large number of available ad
inventories including the leftovers; (ii) real-time audience
data encourages behaviour (re-)targeting and makes a sig-
nificant shift towards buying that is focused on user data
[31], rather than contextual data.

Demand-Side Platforms (DSPs) are thus created to help
advertisers manage their campaigns and optimise their real-
time bidding activities. Figure 1 briefly illustrates the role
of a DSP in the RTB eco-system. In RTB display adver-
tising, once a user visits a webpage and an ad impression
is created, a bid request for the impression is immediately
triggered by the publisher (usually the Supply-Side Platfor-
m, a.k.a. SSP, a technology platform to manage publishers’
inventories) and then sent to the DSPs via an ad exchange.
On behalf of an advertiser, the DSP will compute a bid for
this impression and return a bid response to the exchange,
where a second price auction is usually held to select the
winner. Finally the winner is notified and his/her ad is dis-
played to the user through the publisher. A more detailed
introduction to RTB is given in [35, 38].

More specifically, after receiving a bid request, the DSP
will find all eligible ad creatives from all campaigns® and
compute a bid for each of them. The DSP uses both con-
textual [6] (e.g. domain, webpage, keywords, time and date,
geographical location, weather, language, operating system,
browser, etc.) and behavioural [22] (e.g. search, browsing,
and purchase history, occupation, income, sentiment, etc.)
data to compute a bid. It is common and usually encour-
aged that advertisers buy user interest segments from third
data providers [31]. Note that although we confine our work
to the Cost-Per-Mille (CPM) pricing model which is com-
monly adopted in RTB, other less popular models are also
available (e.g. Cost-Per-Click and Cost-Per-Acquisition).

This bid calculation (see the bidding engine in Figure 1) is
the most important problem for a DSP. The solution to this
problem is referred to as a bidding strategy. In pure second
price auctions [24] for strategic competitors, theoretically
the dominant strategy for advertisers is truth-telling: to
bid their private values [15]. When facing a bid request,
a DSP will evaluate the value of the impression i.e. to es-
timate the click-through/conversion rate (CTR/CVR) and

!The eligibility of the creative and campaign means their
target combinations match the bid request, such as place-
ment size, user demographics, geographical location, lan-
guage, etc. It acts as pre-filtering rules before the bidding
process.
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Figure 1: An illustration of a demand-side platform
and its bidding engine in RTB display advertising.

multiply it by the value of a click/conversion [26]. Many
advertisers simply set this value as their bid [32, 26] and
keep using it throughout a campaign’s lifetime. However,
when computing a bid, practical constraints need to be tak-
en into account including the bid landscape (the expected
impressions against the bid price), total budget and the
campaign’s remaining lifetime. These considerations en-
able the DSP to optimise towards the overall performance
of a campaign (usually referred to as Key Performance In-
dicator, KPI, e.g. the number of clicks, conversions or total
revenue) using stochastic methods rather than assuming ad-
vertisers are strategic and have a private “true” value per
impression [3].

In this paper, the impression level bidding strategy is for-
mulated as a function that maps the individual impression
evaluation to the bid value. A novel functional optimisation
framework is proposed to find the optimal bidding func-
tion: (i) given the budget constraint and the campaign’s
lifetime, and (ii) taking into account various statistics such
as the probability of winning the auction and the prior dis-
tribution of the impression features. Our analytical solu-
tion indicates that the auction winning function plays a
more critical role in shaping the bidding function, whereas
the distribution of the features is less correlated. Simple
winning functions derived from practical bidding data re-
sult in optimal bidding functions that are non-linear and
in a concave form. Unlike a linear function previously pro-
posed [32], our bidding function encourages to higher bids
for impressions with low estimated value because compared
to higher evaluated ones, those are more cost-effective and
the chance of winning them are relatively higher. Apart
from the theoretic insights, both offline experiments on a
real dataset and online experiments on a production DSP
show that the proposed bidding strategies outperform the
strong baselines that have been considered.

To summarise, the contributions of our work are list-
ed below. (i) We propose a novel functional optimisation
framework to find the optimal bidding strategy in RTB dis-
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play advertising. (ii) Based on the auction winning function
built from the data, the derived optimal bidding function
from our framework is in the concave form against the KPI
of each impression, which to our knowledge has never been
studied in previous literature on RTB display advertising.
(iii) Comprehensive offline and online experiments are con-
ducted to verify the practical effectiveness of our proposed
bidding strategy.

2. RELATED WORK

Bid optimisation is a well-studied problem in online ad-
vertising [17, 21, 18, 32]. Nonetheless, most research has
been so far limited to keyword auction in the context of
sponsored search (SS) [15, 4, 28]. Typically, under the
scenario of pre-setting the keyword bids (not impression
level), the keyword utility, cost and volume are estimated
and then an optimisation process is performed to optimise
the advertisers’ objectives (KPIs) [5, 42, 23, 41]. Given a
campaign budget as the cost upper bound, optimising the
advertiser performance is defined as a budget optimisation
problem [17, 30]. Furthermore, the authors in [7, 16] focus
on the bid generation and optimisation on broad matched
keywords, where query language features are leveraged to
infer the bid price of related keywords. The authors in
[40] propose to jointly optimise the keyword-level bid and
campaign-level budget allocation under a multi-campaign
sponsored search account. Some recent work focuses on pe-
riodically changing the pre-setting keyword auction price,
taking into account the remaining budget and lifetime. For
instance, in [3, 20], Markov decision process is used to per-
form online decision in tuning the keyword bid price, where
the remaining auction volume and budget act as states and
the bid price setting as actions. In [23] authors propose to
calculate a bid allocation plan during the campaign lifetime,
where the bid price on each keyword is set in different dis-
crete time unit by considering the market competition and
the CTR on different ad positions. However, none of the
work evaluates per-impression auction as in SS, all the bids
are associated with keywords and impression level features
are seldom considered, especially for advertisers and their
agencies. Moreover, in SS bid optimisation, search engines
play two roles: setting the keyword bids as well as hosting
the auctions. The objective function could be diverted to
optimise the overall revenue for the search engine [2, 33, 14,
43], rather than the performance of each individual adver-
tiser’s campaigns.

The bid optimisation for RTB display advertising is fun-
damentally different. First, the bids are not determined by
pre-defined keywords [38], but are based on impression lev-
el features. Although in general advertisers (or DSPs) are
required to set up their target rules, they need to estimate
the value of each ad impression that is being auctioned in
real time and return the bid price per auction. Second, in
RTB, CPM pricing is generally used [38]. Winning an im-
pression directly results in the cost, despite the fact clicks
and conversions can now be directly optimised by adver-
tisers and DSPs. Thus, the dependencies over various ef-
fectiveness measures such as eCPC?, CPM and the budget
constraints need to be studied in a single framework. In
[18] the authors propose an algorithm that learns winning
bids distribution from full or partial information of auctions
in display advertising. The algorithm then makes bidding
decisions to achieve the best delivery (number of impres-
sions) within the budget constraint. In [10], the bid price
from each campaign can be adjusted by the publisher side
in real time and the target is to maximise the publisher side

2Effective cost per click (eCPC) - The cost of a campaign
divided by the total number of clicks delivered.



Table 1: Notations and descriptions.

Notation Description
x The bid request represented by its features.
pz(x) The probability density function of @.
0(x) The predicted KPI if winning the auction
of . It could be the CTR, CVR etc.
pe(0) The probability density function of KPI 6.
B The campaign budget.
N7 The estimated number of bid requests during
the lifetime T" of the budget.
b(6(x), ) The bidding strategy is defined as function

b(). Assume a generative process:

x — 0 — b, so b(0(x), ) =b(0(x)). See

the text. We occasionally use notation

b to refer to a specific bid value.

The probability of winning the bid request x
with bid price b(6(x)). We approximate it by
the dependency assumption: € — 0 — b — w,
so w(b(6(x)), ) = w(b(0(x))). See the text
for details.

w(b(0()), z)

revenue. The most relevant work is in [32], where DSP re-
turns the bid price with a linear relationship to the predict-
ed CTR (pCTR) for each ad impression being auctioned.
The analytical solution from our proposed functional opti-
misation framework shows that an optimal bidding function
should be non-linear. The non-linearity is closely related to
the probability of auction winning, but is loosely correlated
with the prior distribution of the impression features.

As a new advertising paradigm, other problems in RTB
have also been studied. In [25] the authors focus on the
pacing problem, where the target is to smoothly deliver
the campaign budget. From the SSP perspective, the re-
serve price setting in RTB ad auctions is studied in [36]. In
[26] the sparsity problem of conversion rate estimation is
handled by modelling the conversions at different selected
hierarchical levels. In [13] the authors study the evaluation
measures of the display advertising performance and they
find the site visit turns to be a better proxy than the user
click. In addition, there is some work on the ad exchange
communication problem [9, 29]. More discussion on related
research of RTB can be found in [38].

3. OPTIMAL REAL-TIME BIDDING

Each user visit of a publisher page triggers an ad auction
for each ad slot on that page, which, in real time, gener-
ates a bid request for each targeting campaign. Given a
bid request, along with features covering user, ad, context,
and auction information, the DSP bidding engine decides
whether to participate this auction, and if participates, re-
turns a bid for this auction. The bid price depends on many
factors. It is not only influenced by the predicted KPI (p-
KPI) value of the ad impression being auctioned, such as
the CTR and CVR, that the advertiser wants to achieve,
but most importantly, related to many other factors such as
the budget constraint, the probability of auction winning,
and the features and cost of this particular ad impression.
In this section, we consider the problem of optimally gen-
erating real-time bids as a functional optimisation problem
and propose a novel optimisation framework by taking all
these factors into account. We show that solving it leads to
a practical bidding function.

3.1 Problem Definition

Let us first mathematically formulate the real-time bid-
ding problem. To launch a campaign in display advertising,
the advertiser uploads their ad creatives, sets the targeting
rules (e.g. the user segmentation, time, location) and the
corresponding budget for the lifetime of the campaign.

After the target rules are set, before optimising the bid,
the advertiser would first spend a small amount of budget
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to bid random impressions in order to learn some statistic-
s. For instance, as studied in [8, 12] the auction volume
forecast (e.g. bid landscape prediction) module is usually
employed to estimate auction statistics with respect to the
current setting and budget constraint. More specifically, we
denote the estimated number of bid requests for the target
rules during the lifetime T as Nr. Also, each bid request is
represented by a high dimensional feature vector @, where
its entries consist of two sets of features: one is exacted
from the campaign ad itself, and the other is related to the
impression being auctioned, e.g., the cookie information of
the underlying user, location, time, user terminal, brows-
er, the contextual information about the webpage, etc. We
use pg(x) to denote the prior distribution of the feature
vectors which match the campaign target rules. For each
campaign, the advertiser can use the historic bidding and
feedback data to predict the KPI for the ad impression be-
ing auctioned. We denote the predicted KPI of a bid request
x as O(x). Note that different advertisers might consider d-
ifferent KPIs. For example, if the goal of a campaign is to
maximise the direct visits, i.e. the total number of clicks,
then 6(x) denotes the pCTR for that impression. For CTR
estimation, we refer to [19, 34]. If the goal of a campaign
is for conversions, then 6(x) denotes the predicted CVR
(pCVR) for that impression. We also denote pg(f) as the
prior distribution of the predicted KPI per bid request. The
notation descriptions are given in Table 1.

Once the major statistics are gathered, our problem now
is to devise an optimal bidding strategy such that a cer-
tain KPI objective over the budget will be maximised. For
the sake of clarity, we consider the number of clicks as the
objective here, while a natural extension to covering alter-
native KPIs and their experimental results are given later
in Section 5.5. Mathematically, our optimal bid generation
problem is formulated as a functional optimisation problem:

b()orTB =

argmax Nt
b()

subject to NT/

xT

/ 0(@)w(b(0(x), @), 2)p. (x)de (1)

b(0(x), z)w(b(0(x), ), x)ps (x)dx < B.

where b(0(x), x) denotes the bidding function we intend to
obtain. It depends on the feature vector @ and the esti-
mated CTR 6(x). w(b,x) denotes the estimated winning
rate for a bid price b given the feature @ of the impression
auction. In Eq. (1), the product of 8(x) and w(b, ) pro-
duces the probability of click given an impression auction.
Marginalising it over the feature space yields the expect-
ed click per impression auction. Note that in practice, the
impression auctions arrive sequentially, so one can poten-
tially make a sequential bidding rule by taking a feedback
loop and employing a dynamical optimisation model such as
partially observable Markov decision processes (POMDPs)
[37]. However, generally these models are computationally
expensive thus not feasible in our case, where bid decisions
usually need to be returned within 100ms. We, thus, take
a two-stage approach (learning statistics such as p(x) and
Nr, then optimising the bids). Without loss of generality,
we consider a simple static model and follow a widely ac-
cepted assumption in the previous bid optimisation work
[20, 10]: each time the feature vector is independently gen-
erated from an identical distribution.

The constraint is made by an upper bound of the expect-
ed cost. RTB normally applies the second price auction
(pay the second highest bid). However, due to the reserve
price setting, the cost is quite often higher than the second
highest bid [36, 38]. We thus use the bid price b(0(x), z)
as the upper bound of the cost of winning. Specifically, the



product of the cost and the winning rate produces the ex-
pected cost per impression auction. Marginalising it over
the feature space and multiplying by Nt yields the expected
cost, which is set to be not greater than the budget B. Note
that by maximising the click number with the budget con-
straint, the eCPC is minimised, which is a much important
measure in display advertising.

To make the above problem solvable, we consider sequen-
tial dependency among the variables for each auction by
making the following assumptions:

e Assume b(0(x),z) = b(6(x)). That is: & — 0 — b.
This allows us to largely reduce the functional decision
space for the optimisation, while still gaining the de-
pendency of the impression features through the KPI
estimation f(x). The previous work in [32] also adopts
a similar dependency (bid only depends on CTR).

Assume w(b,z) = w(b). That makes the feature x
only influence the winning rate via its generated bid:
x — 0 — b — w. The assumption as sensible as we
found out (shown in Section 4.1) that the dependency
over the bid request features is far less than the bid
price. Previous SS bid optimisation work [23, 40] also
makes such assumption on winning keyword ad slots.

Then the optimisation problem is rewritten as
b()ORTB = argmax Nr

% / 0(a)w (b(6(x)))p.

subject to NT/ b(0(x))w(b(0(x)))ps(x)de < B.

o(w)dz  (2)

Furthermore, since there is a deterministic relationship be-
tween x and 6(x), the relationship between their probability
density is also determined:

po(B()) = 2=E)_

IVé()||

Thus we can focus on 6 via performing integration by sub-

stitution
/ 0z

_ / 0(a)w(b(0(x)))po (6())|| VO()][da
:/9( )9(:”)“’(1’(9(:”)))1’0(H(m))de(w)

3)

©)))pz(@)dz

- / 0 (b(0))po (6)d0 (4)

0
and the similar substitution for [ b(6(x))w(b(6(x)))p
Rewriting the integration with respect to € leads to our final
functional optimisation problem as follows:

b()orTB —argmax NT/Hw (6)de (5)

subject to NT/b(G)w(b(Q))pg(H)dG <B.
0

3.2 Optimal Solutions
The Lagrangian of the objective function (Eq. (5)) is

L(b(),N) :/Gw(b(e))pg(é)dé)

4
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where A is the Lagrangian multiplier. Based on calculus of
variations, the Euler-Lagrange condition of b(0) is

(7)
X (b(0)) =[0 ~ Ab(0)] %(g» ®

where we can see the KPI probability density pe(f) has
been eliminated and the form of bidding function b(6) only
depends on the winning function w(b(6))®. This is main-
ly because both the objective and constraint take the in-
tegration over the distribution of pg(#). Different winning
functions result in different optimal bidding functions. Here
we present two winning functions which are typical and fit
the curves of real-world data. And we derive the optimal
bidding function form for each winning function.

3.2.1 Winning & Bidding Function 1

As depicted in Figure 5 from our experiment on a real
data®, the winning rate w(b) consistently has an (approxi-
mately) concave shape: when the bid price is low, adding a
unit bid will increase the winning rate more than when the
bid is already high. Thus a simple winning function is in
the form of

b(6)
c+b(0)’
where ¢ is a constant. An illustration of the winning func-

tion with different ¢’s is given in Figure 2(a).
Taking a derivative with respect to the bid gives:

Ow(d(0)) _

w(b(0)) = 9)

C

ab(®)  (c+b(0)2 (10)
Taking Eq. (9) and (10) into Eq. (8) gives:
oc b(0) bO) 1
(c+b(0))2 _)\[c+b(0) T h0))? ;=0
(b(e) + c) =+ % (12)

Solving the above equation gives our final optimal bidding

function:
[c
borTs1(0) = X@ +c2—c.

3Later we will show that the optimal value of A depends on
po(6), but X is only a parameter in b(0); thus py(0) does not
change the general form of b(9).

4All the price numbers are presented with the unit of RMB
cent. And the bid price is counted on CPM.

(13)
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Under the assumption of the winning function 1 in the form
of Eq. (9), the optimal bidding function borrs1(f) is in a
concave form: a square root function form. Figure 2(b)
gives an illustration of this bidding function with different
parameter ¢’s, fixing A = 5.2 x 10~ ".

3.2.2 Winning & Bidding Function 2

For some campaigns with competitive targets, or the tar-
geted publishers/SSPs setting a high reserve price, the win-
ning probability will not increase rapidly when the bid price
is around 0; only after the bid price becomes larger than
some non-zero value the winning probability starts to dra-
matically increase. Such case usually occurs in high-profile
ad slots [40]. To get this feature, we slightly alter it and
propose an alternative of winning function:

v (6)

w(b()) = Z1 R (14)

where the parameter ¢ controls the increasing point of the
curve®. An illustration is given in Figure 3(a).

Following the same token, we solve Eq. (8) using the win-
ning function in Eq. (14), i.e.

borra2(0)
VAN + 602\ 5 c 3
() - () 0

cA
Fixing A = 5.2 x 1077, the bidding functions with different
¢’s are shown in Figure 3(b). Again the borrn2(f) is a
concave function.

Our optimisation framework is a general one: Eq. (8)
shows that different winning functions would lead to differ-
ent optimal bidding functions. The framework can adapt to
various ad markets with different winning functions. Here
we estimate the winning functions from real data (Figure 5)
and limit our study to the RTB markets only.

3.2.3 Discussions on Resulting Bidding Functions

Unlike the linear form bidding function in the previous
study [32, 26] (denoted as Lin), our derived bidding func-
tions (denoted as ORTB) Eq. (13) and (15) suggest a non-
linear concave form mapping from CTR estimation to the
bid value under a budget constraint for RTB. As shown in
Figure 4, compared with Lin, ORTB bids higher when the
estimated KPT is low, which means ORTB allocates more
budget on the low reward and low cost cases.

The strategy of bidding more low cost impressions comes
from the shape of the winning functions. In Figure 5 we
find that for all the campaigns, when we increase the bid

5Actually we can take a more general form of the winning
function: w(b(0)) = b*(0)/(c™ + b*(0)). We investigate the
case of @« = 1,2 in this paper. When « is larger than 2,
there is no analytic solution of borrs(0).
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price from zero, the winning probability will have a high
growth rate first and after the bid price surpasses a region,
the winning probability starts to converge to 1. As such, the
strategy of ORTB will earn much more winning probability
while only increase a little CPM because of the concavity
of winning rate respective to the bid price.

3.2.4 Optimal Solution of )

The bidding functions in Eq. (13) and (15) also take A as
the parameter; let us explicitly denote them as b(6, A). To
calculate the optimal A, the Fuler-Lagrange condition of A
from Eq. (6) is

/ b(0, N w(b(6, \))po (0)d6
]

Given the formula of b(6, \), the solution A can be found.
However, in many cases such as using our winning function-
s, there is no analytic solution of A. Also we can see the
solution depends on pg(f). Alternatively, one can find the
numeric solution using the bidding log data and practically
solve it using efficient numeric calculation. In this paper, we
take a rather pragmatic approach by regarding A as a tun-
ing parameter for the bidding functions and learn it from
the data. From Eq. (13), (15) and (16), it is easy to see that
when A decreases the value of [, b(6, \)w(b(6, \))pe(0)do
monotonically increases. Therefore, with larger per-case
budget B/Nr, the solution of A becomes smaller, which
corresponds to a higher bid price. Our experiment will
demonstrate the trend of optimal A corresponding to dif-
ferent per-case budget B/Nr (Figure 11 and 12).

(16)

4. EXPERIMENT SETUP

Our methods are tested both by offline evaluation (Sec-
tion 5) using a real-world dataset and via online evaluation
(Section 6) over a commercial DSP with real advertisers and
impressions. In this section, we introduce the experiment
setup and report the results from our data analysis.

4.1 Dataset and Analysis

Dataset description. We use the real-world bidding
feedback log from a well-known DSP company as our dataset®.
It records more than 15 million impressions and the user
feedback of 9 campaigns from different advertisers during
ten days in 2013. For each bid request, the log contains the
information from the user (e.g. the user segmentation), ad-
vertiser (e.g. the creative format and size), publisher (e.g.

5The dataset has been publicly released on our website:
http://data.computational-advertising.org



Table 2: Dataset statistics.

Cpg. Imps  Clicks Cost CTR CPM eCPC
1 3,083,056 2,454 212,400 0.080%  68.89 86.55
2 1,742,104 1,358 160,943 0.078%  92.38  118.52
3 2,593,765 1,926 210,240 0.074% 81.06 109.16
4 2,847,802 2,076 219,067 0.073% 76.93  105.52
5 1,970,360 1,027 156,088  0.052%  79.22  151.99
6 835,556 280 77,755  0.034%  93.06 277.70
7 687,617 207 61,611 0.030% 89.60 297.64
8 1,322,561 843 118,082  0.064%  89.28  140.07
9 312,437 1,386 19,689 0.444%  63.02 14.21
Total 15,395,258 11,557 1,235,876 0.075%  80.28 106.94
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Figure 5: Relationship between auction winning
rate and bid value for different campaigns.

the auction reserve price, ad slot, page domain and URL)
and the context (e.g. the time, region, the browser and op-
eration system). For each bid request, there is an auction
winning bid price, and the user feedback (click, conversion)
is recorded if the advertiser won the auction. More details
of the dataset is shown in Table 2.

Data analysis on winning bids. Figure 5 depicts the
winning rate with respect to the bid price for campaigns
1-6 (due to space limit, campaigns 7-9 are not shown). We
observe that all the campaigns follow a similar pattern: as
the bid price increases, the campaign winning rate increases
dramatically; when the bid price gets larger (e.g. more than
100), the increasing of winning rate slows down and finally
the winning rate converges to 1. Thus, it is reasonable to
employ concave functions like Eq. (9) and (14) to model
the relationships. For each campaign, we fit the winning
functions with the parameter c leading the least square error
with the real curve.

Next, we study the dependency between the bid request
features and the winning bid prices (also named as market
prices in [3]). Figure 6 gives the box plot [27] of winning
price distribution against the features such as hour, week-
day, user browser, operation system and location regions of
bid requests to campaign 1 (other campaigns follow the sim-
ilar pattern). Compared with the clear changing relation-
ship with the bid price shown in Figure 5, Figure 6 shows
that the winning price distributions do not have obvious de-
pendency on the categorical feature value. It suggests that
the bid price is the key factor influencing the campaign’s
winning rate in its auctions. Once we have known the bid
value, the winning rate is less sensitive to the other bid re-
quest features. Thus it is practically reasonable to simplify
w(b, &) = w(b) as proposed in Section 3.1.

Training/test split. For each campaign, we perform a
2:1 train/test data split by the time sequence. The training
data is mainly used to train the CTR estimator and tune
the bidding function parameters. The test data is used to
evaluate the compared DSP bidding strategies.
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Figure 6: Winning bid distribution against different
features for campaign 1.

4.2 Evaluation Measure

The task of DSPs is to optimise each campaign’s KPI
(such as clicks, conversions etc.) given the budget. There-
fore, the KPI is the primary evaluation measure in our ex-
periment. Specifically, we have considered clicks as our pri-
mary KPI, while other statistics such as CPM, and eCPC
are also monitored. In addition, we also test on an alter-
native KPI which is the combination of achieved clicks and
conversions, as will be discussed in Section 5.5.

4.3 KPI Estimator Training

For each campaign, we use its impression/click/conversion
log data to train a KPI estimator for each bid request. Par-
ticularly, if the KPI is click, then this task turns to be the
well-known CTR estimation [19, 34]. Regression models
such as random forest and gradient boosting regression tree
can be applied here. Since this work mainly focuses on the
bidding strategy instead of the KPI estimator model, we
apply the Logistic regression as our CTR estimator as it is
a widely used choice [34]. The loss is the cross entropy be-
tween the predicted click probability and the ground-truth
result. In addition, L2 regularisation is used. For an alter-
native KPI in our experiment, the KPI estimator training
will be discussed in Section 5.5.

Features are extracted from the log data to train the C-
TR estimator model. Specifically, we extract 29,408 first-
order binary features and based on that generate 657,756
second-order binary features, which yields the total 687,164
features for our training.

4.4 Test Evaluation Setup

Evaluation flow. The evaluation flow is depicted in Fig-
ure 7. Given the bidding strategy and a budget for the test
period for a particular campaign, we can go through its test
data. The test data is a list of records. Each record consists
of the features of one bid request, the auction winning price
and the user feedback information. Specifically, receiving
the bid request features of each record by the timestamp,
the bidding strategy generates a bid price for it (if the cost
is beyond the budget, just returns 0, i.e. skips the remain-
ing bid requests). If the bid price is higher than the auction
winning price of this record, the campaign wins the auction,
gets its ad shown. The corresponding user feedback (click)
and the corresponding charged price of the record are then
referenced to update the performance and cost. After that,
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Figure 7: Evaluation flow chart.

if there is no more bid requests in the test data, then the
evaluation is over, with the final performance returned.

It is worth mentioning that using user feedback logs for
evaluation has limitation. In our case, user feedback on-
ly occurs for the winning auctions (having ad impressions);
there is no user feedback for the losing bids. We thus do
not know whether the user will click or convert even if we
bid enough high to win the originally losing ad auction in
our offline experiment. In this paper, we follow the conven-
tion of the offline evaluations from sponsored search [19],
recommender systems [39] and Web search [11] that the
objects (auctions) with unseen user feedback are ignored
(i.e., considered as auction failure cases). To complement
with the offline evaluation, we will further show the online
test performance on a production DSP in Section 6.

Budget constraints. It is easy to see that if we set
the budget the same as the original total cost in the test
log, then just simply bidding as high as possible for each
case will exactly run out the budget and get all the logged
clicks. In our work, to test the performance against various
budget constraints, for each campaign, we respectively run
the evaluation test using 1/64, 1/32, 1/16,1/8, 1/4 and 1/2
of the original total cost in the test log as the budget.

4.5 Compared DSP Bidding Strategies

We compare the following baseline and state-of-the-art
bidding strategies in our experiment. The parameters of
each bidding strategy are tuned using the training data.
Constant bidding (Const). Bid a constant value for all
the bid requests to the campaign. The parameter is the
specific constant bid price.

Random bidding (Rand). Randomly choose a bid value
in a given range. The parameter is the upper bound of the
random bidding range.

Bidding below max eCPC (Mcpc). As discussed in
[26], given the advertiser’s goal on max eCPC, which is the
upper bound of cost per click, the bid price on an impression
is obtained by multiplying max eCPC and pCTR. Here we
calculate the max eCPC for each campaign by dividing its
cost and achieved number of clicks in the training data. No
parameter for this bidding strategy.

Linear-form bidding of pCTR (Lin). In the previous
work [32], the bid value is linearly proportional to the pC-
TR. The formula can be generally written as

0

0o’
where 6 is the average CTR under a target condition (e.g.,
a user-inventory pair) and bg is the basic bid price for this
target condition. We tune by in our experiment.

Optimal real-time bidding (ORTB1 and ORTB2).
These are our derived optimal bidding strategies in our

bLin(Q) = bO (17)

Process flow —
Data dependency - - -»
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Table 3: Bid strategy attributes.
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Figure 8: Overall performance comparison.

framework. As shown in Eq. (13) and (15), the parame-
ters are ¢ and A, where c is obtained by fitting the winning
probability and A is tuned using the training data.

Table 3 summarises the attributes of the different strate-
gies. Mcpc is not budget-aware to make sure it spends all
the budget. Mcpc, Lin and ORTB perform bidding based
on impression-level evaluation. Taking winning functions
into account, ORTB is the most informative strategy. In
Section 5 we will analyse the impact of these attributes in
the final performance.

5. OFFLINE EVALUATION

In the experiment, we answer the following questions. (i)
Does our derived non-linear bidding function outperform
the state-of-the-art linear one? (ii) What are the character-
istics of our ORTB algorithms and how do the parameters
impact the performance and what are their relationships
with the budget conditions?

5.1 Performance Comparison

The performance comparison on total clicks and eCPC
under different budget conditions are reported in Figure 8.
We observe that (i) under every budget condition, our pro-
posed bidding strategies ORTB1 and ORTB2 have the best
performance on total clicks, which verifies the effectiveness
of the derived non-linear forms of the bidding function. (ii)
Except ORTB, Lin is the best algorithm in the comparison.
This algorithm represents the widely used DSP bidding s-
trategies in product [32]. (iii) Mcpc is aware of the upper
bound cost for each bid request, and dynamically changes
its bid according to the estimated CTR. However, compared
to ORTB and Lin, Mcpc has no adaptibility to different bud-
get conditions. For example, when the budget is relatively
low for the bid request volume, Mcpc will still bid based
on the originally set max eCPC, while ORTB and Lin can
adaptively lower the bid to earn the impressions and click-
s with higher RIO. (iv) Rand and Const provide very low
performance even though their parameters are tuned under
different budget conditions. (v) Also from the eCPC perfor-
mance we can see Rand and Const spend much more money
to get one click than the case-value-aware strategy Mcpc,
Lin and ORTB. The last two points suggest the benefit of
real-time bidding based display advertising: evaluating the



Table 4: Click improvement of ORTB1 over Lin for
each campaign under different budget conditions.

Cpg. 1/64 1/32 1/16 1/8 1/4 1/2
1 0.68% 1.97% -0.46% 1.04% 1.25% 0.26%
2 0.70% 0.00% 0.44% 3.38% 0.48%  0.90%
3 27.16% 2.33% 1.45% 0.43% 6.50% 1.11%
4 24.46% -1.19% 3.11% 2.84% 0.06%  3.14%
5 49.54% 10.85% 0.33% 5.17% 3.82%  1.42%
6 84.07% 49.89% 9.13%  -1.99% 5.67% 3.51%
7 85.67% 51.10% 18.50% 6.27% 2.67%  0.00%
8 58.13% 23.78% 8.82% 1.93% 0.59%  0.65%
9  428.26% 118.78%  103.91% 63.68%  18.82%  6.50%
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Figure 9: Overall click improvement of ORTB1 over
Lin under different budget conditions.

value for each bid request (impression level) plays a signif-
icant role in the performance.

Table 4 gives detailed performance improvement on total
clicks of ORTBL1 over Lin under different campaigns and
budget conditions. Among the listed 54 settings, ORTB1
wins Lin in 49 (90.7%) settings, ties in 2 (3.7%) settings,
and lose in 3 (5.6%) settings. This shows ORTB1 is fairly
robust and the outperformance is stable.

5.2 The Impact of Budget Constraints

It is of great interest to investigate how the bid strate-
gy adapts the changing of the budget constraints. In our
experiment, we set the test budget as 1/64, 1/32, 1/16,
1/8, 1/4 and 1/2 of the original total cost in the history
log respectively. Figure 9 depicts the percentage improve-
ment on total clicks of ORTB1 over Lin with respect to the
budget constraints. As we can see, (i) when the budget is
quite low (e.g. 1/64 of the original total cost), the click
improvement of ORTBI over Lin is quite high (more than
45%). This indicates that our proposed bidding strategy
performs particularly well under very limited budget con-
ditions. Intuitively, when the budget is quite low (budget
on per bid request B/Nr is low), a good bidding strategy
should spend relatively low on each bid request. Compared
with the linear Lin, ORTB1 allocates more budget on the
low cost cases due to the concave form of the bidding func-
tion (see Figure 2(b)). This is sensible because from the
winning rate functions in Figure 5 we know that lowering
the high bid actually does not drop the winning probability
too much. By contrast, highering the low bid a little will
increase the winning probability a lot. (ii) When the test
budget gets higher, the improvement percentage gets low-
er. This is reasonable: when there is more budget per bid
request, the strategy will appropriately reallocate budget
from the low cost cases to high cost cases because the high
cost cases also mean high value (CTR). Thus the concave
degree of the curve in Figure 2(b) will be lower. The curve
will relatively approximate to (but not fully change to) the
linear form. An extreme case is that when the test budget
is set the same as the original total cost in the test log, the
improvement is zero. This is because under such condition
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Figure 10: Performance on different measures with
different budget conditions.

for every bidding strategy (except Mcpc), just bidding as
high as possible will exactly run out the budget and get
every impression and click in the test log.

5.3 Clicks vs. Impressions

Figure 10(a) and 10(b) show the total clicks and eCPC of
each bidding strategy. We observe that both click number
and eCPC increase as the budget increases. This is reason-
able because when the budget is low, the optimal setting
for each bidding strategy will push the budget to the low
cost cases, while the budget is higher, the left budget will
be allocated on the relative expensive cases (but with lower
ROI), which will higher the eCPC. Mcpc is unaware of the
budget condition, and its slight eCPC fluctuation purely de-
pends on the data. Another point is that when the budget
is set very low (1/64, 1/32, 1/16 of the original spend), the
eCPC of Lin and ORTB is lower than Mcpc, and when the
budget increases over 1/4 of the original spend, the eCPC
of Lin and ORTB starts to be higher than Mcpc.

Figure 10(c) and 10(d) plot the total impressions and
CPM of each bidding strategy. We see that while our OR-
TB strategies generate the highest clicks, they also produce
comparable numbers of impressions against the others. This
certainly benefits advertisers who aim to maximising their
traffic (clicks) while still want to maintain a good exposure
(impressions).

5.4 Parameter Tuning

As explained previously, although parameter A can be di-
rectly solved numerically, for efficiency, in our experiment,
we tune it for each campaign using the training data. Fig-
ure 11 and 12 shows the corresponding ORTB1 and ORTB?2
click performance for the campaign 1 when tuning its pa-
rameter A\. For each A, we also try different value of the
other parameter ¢, which makes multiple points to each x-
value for volatility checking. However, practically we direct
learn c to best fit the winning rate data for each campaign.
From Figure 11 and 12 we see that when the given budget is
low, the optimal value of A is high. This is much reasonable.
From Eq. (13) and (15) we can see the parameter A controls
the general scale of the bidding price: when A is higher, the
bid price gets lower. Thus it is understandable that when
the budget is more limited, the general bidding price level

"The trends on other campaigns are quite similar.
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should get lower, which corresponds to the higher optimal
value of \.

5.5 Results for An Alternative KPI

As discussed in Section 3.1, our framework is flexible to
incorporate different KPIs as our optimisation target. A-
part from the number of clicks as the main objective studied
in this paper, we also test an alternative KPI as the target
by considering conversions, namely, a linear combination of
the click number and conversion number, with the param-
eter k controlling the importance of conversion:

KPI = #click + k - #conversion. (18)

This objective is practically useful [1] since the conversion
is a quite important measure for advertisers [32], and such
linear combination can address the sparsity problem of con-
version counting [26]. In our dataset, only campaign 2 and
8 have sufficient conversion records. Thus we choose them
as our optimising campaigns and we set k = 5 in our exper-
iment. Specifically, we use two logistic regression models to
learn and predict the CTR and CVR (pCTR and pCVR)
for each bid request and the pKPI can be calculated by
PKPI = pCTR + k - pCVR, which is the value of € in the bid-
ding function.

Figure 13 gives the overall KPI performance and the spe-
cific clicks/conversions obtained by each bidding strategy®.
From the results we see our ORTB strategies still outper-
form other compared bidding strategies, which verifies the
effectiveness of ORTB on the alternative KPI optimisation.
Particularly, on 1/64 budget condition, ORTB2 achieves
higher KPI and conversion numbers than ORTB1, this is
mainly because the winning function 2 fits these two opti-
mised campaigns better than winning function 1.

8Here Mcpc is renamed as Mcpi (i.e. bidding under max
cost-per-unit-of-KPT).
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6. ONLINE EVALUATION

With the strategy of emphasising more on lower CPM
impressions than the linear strategy, we conduct an online
experiment on iPinYou Optimus platform, which is current-
ly the largest DSP in China. We test on three campaigns
during consecutive three days in December 2013. Another
two compared bidding strategies are: (i) White list (White),
which keeps a list of feature rules and bids much high only
when the case satisfies any of the white list rules; (ii) Lin
as we discussed before. The target KPI in the optimisation
is click. Compared with Lin, White acts like the strategy
with a step function in [32]. For each bid request, each of
the three algorithms has the equal possibility to perform
the bidding of iPinYou DSP. The performance comparison
with various measures was reported in Figure 14. Due to
the data sensitivity, we follow [40] to only present the rela-
tive performance here.

From the comparison we can have following observations.
(i) ORTB bids much more cases than the other two algo-
rithms (bids lower than the auction reserve price are not
counted), and gets the most impressions, clicks and conver-
sions. Also ORTB achieves the lowest eCPC, which indi-



cates it is also the most cost effective algorithm. (ii) ORTB
obtains the lowest CPM. These two points show ORTB al-
locates more budget to the cheap cases. As a result, ORTB
bids more cases with lower CPM. (iii) Because of the low
CPM on low pCTR cases, ORTB has the lowest auction
winning rate and CTR, but this is not that important since
our target is the total click number. (iv) White acts oppo-
sitely to ORTB. It only bids high on a subset of cases, which
results in its low bidding number and high CPM. Due to the
carefully made white list, the cases matching the white list
do have high CTR. (v) Lin mostly plays moderately, which
is in our expectation. In sum, the online test supports our
proposed bidding strategies which allocate more budget on
the cheap cases to perform more bids with lower CPM.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel functional optimisation
framework to find the optimal real-time bidding strategy for
display advertising. The derived optimal bidding functions
are non-linear and concave with respect to predicted KPI,
which to our knowledge has not been studied in the pre-
vious literature about real-time bidding strategies. In our
experiments, we compared our bidding strategies with other
baselines and state-of-the-art bidding strategies under dif-
ferent budget and KPT settings. Apart from the theoretical
soundness, the offline and online experiments show that our
proposed optimal bidding strategies are also practically the
most effective.

In the future work, we plan to further investigate on the
bidding function which directly covers the bid request fea-
tures, not the KPI alone. We also intend to extend our
optimisation framework to cover the following three sce-
narios: (i) As DSPs or ad agencies, how to optimise the
overall performance over several advertisers they are man-
aging? Combining auction theory [24] with our function-
al optimisation framework would possibly provide a sound
solution. (ii) Dynamic approaches [3] which tune the bid
according to the specific current performance will be con-
sidered in our framework. (iii) Modelling the uncertainty
and the risk of the bidding. The uncertainty in the CTR
prediction, bidding and auction process should be carefully
studied to build risk-aware bidding strategies.
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